数列的概念练习题(有答案)doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题
1.已知数列{}n a 的前n 项和为n S ,若*1
n S n N n
=∈,,则2a =( ) A .12
-
B .16-
C .
16
D .
12
2.已知数列{}n a 满足11a =
),2n N n *=
∈≥,且()2cos
3
n n n a b n N π
*=∈,则数列{}n b 的前18项和为( ) A .120
B .174
C .204-
D .
373
2
3.在数列{}n a 中,11a =,11n n
a a n +=++,设数列1n a ⎧⎫
⎨⎬⎩⎭
的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( )
A .()3,+∞
B .[
)3,+∞
C .()2,+∞
D .[)2,+∞
4.数列{}n a 满足()1
1121n n n a a n ++=-+-,则数列{}n a 的前48项和为( )
A .1006
B .1176
C .1228
D .2368
5.已知数列{}n a 前n 项和为n S ,且满足*
112(N 3)33n n n n S S S S n n --+≤+∈≥+,,则( )
A .63243a a a ≤-
B .2736+a a a a ≤+
C .7662)4(a a a a ≥--
D .2367a a a a +≥+
6.数列{}n a 满足 112a =,11
1n n
a a +=-,则2018a 等于( )
A .
1
2
B .-1
C .2
D .3
7.在数列{}n a 中,114a =-,1
11(1)n n a n a -=->,则2019a 的值为( ) A .
4
5
B .14
-
C .5
D .以上都不对
8.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”现有高阶等差数列,其前7项分别为1,4,8,14,23,36,54,则该数列的第19项为( )
(注:()()
22221211236
n n n n ++++++=

A .1624
B .1198
C .1024
D .1560
9.已知数列{}n a 满足1221n n n a a a ++=+,n *∈N ,若11
02
a <<,则( ) A .8972a a a +< B .91082a a a +> C .6978a a a a +>+
D .71089a a a a +>+
10.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和
383969a a a ++⋅⋅⋅+=( )
A .180
B .160
C .150
D .140
11.数列{}n a 满足:12a =,111n
n n
a a a ++=-()*n N ∈其前n 项积为n T ,则2018T =( ) A .6-
B .1
6-
C .
16
D .6
12.已知数列{}n a 满足11a =,12
2
n n a a n n
+=++,则10a =( ) A .
259
B .
145 C .
3111
D .
176
13.已知数列{}n a 的前n 项和2n S n n =+,则4a 的值为( ) A .4
B .6
C .8
D .10
14.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤
C .数列{}n a 的最小项为3a 和4a
D .数列{}n a 的最大项为3a 和4a
15.已知lg3≈0.477,[x ]表示不大于x 的最大整数.设S n 为数列{a n }的前n 项和,a 1=2且S n +1=3S n -2n +2,则[lg(a 100-1)]=( ) A .45
B .46
C .47
D .48
16.在数列{}n a 中,2
1
n n a n +=+,则{}n a ( ) A .是常数列
B .不是单调数列
C .是递增数列
D .是递减数列
17.已知数列{}n a 满足111n n n n a a a a ++-=+,且11
3
a =,则{}n a 的前2021项之积为( )
A .
23
B .
13
C .2-
D .3-
18.数列1111
,,,
57911
--,…的通项公式可能是n a =( ) A .1(1)32
n n --+
B .(1)32
n n -+
C .1(1)23
n n --+
D .(1)23
n
n -+
19.已知数列{}n a 满足:11a =,145n n a a +=+,则n a =( ) A .8523
3
n
⨯- B .1
852
3
3
n -⨯- C .8543
3
n
⨯-
D .1
854
3
3
n -⨯- 20.若数列{a n }满足1112,1n
n n
a a a a ++==-,则2020a 的值为( ) A .2
B .-3
C .12
-
D .
13
二、多选题
21.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =
C .135********a a a a a +++
+= D .222
2123202020202021a a a a a a ++++=
22.已知数列{}n a 满足0n a >,
121
n n n a n
a a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )
A .11a =
B .121a a =
C .201920202019S a =
D .201920202019S a >
23.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,….,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =
B .733S =
C .135********a a a a a +++⋅⋅⋅+=
D .
222
122019
20202019
a a a a a ++⋅⋅⋅⋅⋅⋅+= 24.已知数列{}n a 满足:12a =,当2n ≥
时,)
2
12n a =
-,则关于数列
{}n a 的说法正确的是 ( )
A .27a =
B .数列{}n a 为递增数列
C .2
21n a n n =+-
D .数列{}n a 为周期数列
25.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =
C .3430a a +=
D .当且仅当11n =时,n S 取得最大值
26.记n S 为等差数列{}n a 前n 项和,若81535a a = 且10a >,则下列关于数列的描述正确的是( ) A .2490a a += B .数列{}n S 中最大值的项是25S C .公差0d >
D .数列
{}n
a 也是等差数列
27.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的
是( ) A .110S =
B .10n n S S -=(110n ≤≤)
C .当110S >时,5n S S ≥
D .当110S <时,5n S S ≥ 28.(多选题)在数列{}n a 中,若22
1n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称
{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )
A .若{}n a 是等差数列,则{}
2
n a 是等方差数列
B .
(){
}
1n
-是等方差数列
C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列
29.{} n a 是等差数列,公差为d ,前项和为n S ,若56S S <,678S S S =>,则下列结论正确的是( ) A .0d <
B .70a =
C .95S S >
D .170S <
30.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且32019
11
111
a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <
31.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d >
B .0d <
C .80a =
D .n S 的最大值是8
S
或者9S
32.已知数列{}n a 的前n 项和为,n S 2
5,n S n n =-则下列说法正确的是( )
A .{}n a 为等差数列
B .0n a >
C .n S 最小值为214
-
D .{}n a 为单调递增数列
33.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )
A .2
n S n =
B .2
23n S n n =-
C .21n a n =-
D .35n a n =-
34.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{
}n
a n
是递增数列 D .数列{}3n a nd +是递增数列
35.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <
B .70a >
C .{}n S 中5S 最大
D .49a a <
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题 1.A 解析:A 【分析】
令1n =得11a =,令2n =得2121
2
S a a =+=可解得2a . 【详解】 因为1n S n =
,所以111
11
a S ===, 因为21212S a a =+=,所以211
122
a =-=-. 故选:A
2.B
解析:B
将题干中的等式化简变形得2
11n n a n a n --⎛⎫
= ⎪⎝⎭
,利用累乘法可求得数列{}n a 的通项公式,由
此计算出(
)32313k k k b b b k N *
--++∈,进而可得出数列{}n
b 的前18项和.
【详解】
)1,2n a n N n *
--=
∈≥,将此等式变形得2
11n n a n a n --⎛⎫= ⎪⎝⎭

由累乘法得2
2
2
3
212
12
11211123n n n a
a a n a a a a a n n
--⎛⎫⎛⎫⎛⎫
=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭, ()
2cos
3n n n a b n N π*=∈,22cos 3
n n b n π
∴=, ()()222
323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛⎫∴++=--+--+ ⎪ ⎪⎝⎭⎝
⎭592
k =-,
因此,数列{}n b 的前18项和为()5
91234566921151742
⨯+++++-⨯=⨯-=. 故选:B. 【点睛】
本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.
3.D
解析:D 【分析】
利用累加法求出数列{}n a 的通项公式,并利用裂项相消法求出n S ,求出n S 的取值范围,进而可得出实数m 的取值范围. 【详解】
11n n a a n +=++,11n n a a n +∴-=+且11a =,
由累加法可得
()()()()12132111232
n n n n n a a a a a a a a n -+=+-+-++-=+++
+=

()122211
n a n n n n ∴
==-++,2222
2222222311n S n n n ⎛
⎫⎛⎫⎛⎫∴=-+-+
+-=-< ⎪ ⎪ ⎪++⎝
⎭⎝⎭⎝⎭
, 由于n S m <对一切正整数n 恒成立,2m ∴≥,因此,实数m 的取值范围是
[)2,+∞.
【点睛】
本题考查数列不等式恒成立问题的求解,同时也考查了累加法求通项以及裂项求和法,考查计算能力,属于中等题.
4.B
解析:B 【分析】
根据题意,可知()
1
1121n n n a a n ++--=-,分别列出各项,再整理得出132a a +=,
248a a +=,572a a +=,6824a a +=,
,45472a a +=,4648184a a +=,可知,
相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16,利用分组
求和法,即可求出{}n a 的前48项和. 【详解】
解:由题可知,()1
1121n n n a a n ++=-+-,
即:()
1
1121n n n a a n ++--=-,则有:
211a a -=,323a a +=,435a a -=,547a a +=,
659a a -=,7611a a +=,8713a a -=,9815a a +=,

474691a a +=,484793a a -=.
所以,132a a +=,248a a +=,572a a +=,6824a a +=,

45472a a +=,4648184a a +=,
可知,相邻的奇数项之和为2,相邻的偶数项之和为等差数列,首项为8,公差为16, 设数列{}n a 的前48项和为48S , 则4812345645464748S a a a a a a a a a a =++++++
++++,
()()1357454724684648a a a a a a a a a a a a =++++
+++++++++
1211
1221281611762
⨯=⨯+⨯+
⨯=, 所以数列{}n a 的前48项和为:1176. 故选:B. 【点睛】
本题考查数列的递推公式的应用,以及利用分组求和法求和,考查归纳思想和计算能力.
5.C
解析:C 【分析】
由条件可得出11n n n n a a a a -+-≤-,然后可得
3243546576a a a a a a a a a a -≤-≤-≤-≤-,即可推出选项C 正确.
因为*
112(N 3)33n n n n S S S S n n --+≤+∈≥+,,
所以12133n n n n S S S S -+-≤--,所以113n n n n a a a a +-≤++ 所以11n n n n a a a a -+-≤-,
所以3243546576a a a a a a a a a a -≤-≤-≤-≤-
所以()6232435465764a a a a a a a a a a a a -=-+-+-+-≤- 故选:C 【点睛】
本题主要考查的是数列的前n 项和n S 与n a 的关系,解答的关键是由条件得到
11n n n n a a a a -+-≤-,属于中档题.
6.B
解析:B 【分析】
先通过列举找到数列的周期,再求2018a . 【详解】
n=1时,234511
121,1(1)2,1,121,22
a a a a =-=-=--==-
==-=- 所以数列的周期是3,所以2018(36722)21a a a ⨯+===-. 故选:B 【点睛】
本题主要考查数列的递推公式和数列的周期,意在考查学生对这些知识的掌握水平和分析推理能力.
7.A
解析:A 【分析】
根据递推式可得{}n a 为一个周期为3的数列,求{}n a 中一个周期内的项,利用周期性即可求2019a 的值 【详解】
由114a =-,1
11(1)n n a n a -=->知 211
15a a =-= 321415
a a =-
= 41311
14
a a a =-
=-=
故数列{}n a 是周期为3的数列,而2019可被3整除 ∴2019345
a a == 故选:A 【点睛】
本题主要考查递推数列,考查数列的周期性,考查合情推理,属于基础题
8.C
解析:C 【分析】
设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b ,则
n c n =,依次用累加法,可求解.
【详解】
设该数列为{}n a ,令1n n n b a a +=-,设{}n b 的前n 项和为n B ,又令1+=-n n n c b b , 设{}n c 的前n 项和为n C ,易得n c n =,
()()()111121n n n n n n n C c c c b b b b b b +----=++
+=++++-
所以11n n b b C +=-,1213b a a -==
22n n n C +=,进而得21332n n n n
b C ++=+=+, 所以()211
33222n n n n b n -=+=-+,
()()()()
2
221111
1212332
2
6
n n n n B n n n n +-=
+++-
++++=
+
同理:()()()111112n n n n n n n B b b b a a a a a a +---=++
+=+++--
11n n a a B +-=
所以11n n a B +=+,所以191024a =. 故选:C 【点睛】
本题考查构造数列,用累加法求数列的通项公式,属于中档题.
9.C
解析:C 【分析】 由递推公式1221n n n a a a ++=
+得出25445n n n a a a ++=+,计算出25,24a ⎛⎫
∈ ⎪⎝⎭
,利用递推公式推导得
出()0,1n a ∈(n 为正奇数),1n a >(n 为正偶数),利用定义判断出数列
{}()21n a n N *-∈和{}()2n a n N *∈的单调性,进而可得出结论.
【详解】
()()
113212132221212221n n n n n n a a a a a a ++++===++++,110,2a ⎛⎫∈ ⎪⎝⎭,25,24a ⎛⎫∴∈ ⎪⎝⎭, ()()
12
1259245221545944221454544452121
n n n n n n n n n n n n a a a a a a a a a a a a ++++++-+++=====-+++++⨯++,
且()2241544545n n n n n n n a a a a a a a +-+-=-=++,()
2
1212
2121
n n n n n n n a a a a a a a +-+-=-=
++. 110,2a ⎛⎫∈ ⎪⎝⎭
,则101a <<,则()()3590,14445n a a =-
∈+, 如此继续可得知()(
)210,1n a n N *
-∈∈,则(
)2
21
21212141=
045
n n n n a a
a a -+---->+,
所以,数列{}()21n a n N *
-∈单调递增;
同理可知,()21n
a n N *
>∈,数列{}()2n
a n N *
∈单调递减.
对于A 选项,78a a <且79a a <,8972a a a ∴+>,A 选项错误; 对于B 选项,89a a >且108a a <,则91082a a a +<,B 选项错误; 对于C 选项,68a a >,97a a >,则6978a a a a +>+,C 选项正确; 对于D 选项,79a a <,108a a <,则71098a a a a +<+,D 选项错误. 故选:C. 【点睛】
本题考查数列不等式的判断,涉及数列递推公式的应用,解题的关键就是推导出数列
{}()21n a n N *-∈和{}()2n a n N *∈的单调性,考查推理能力,属于难题.
10.B
解析:B 【分析】
根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】
由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,
7n 的个位数是以7,9,3,1为周期,
所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期, 所以383969a a a ++⋅⋅⋅+=8(9317)160⨯+++=. 故选:B
11.A
解析:A 【分析】
根据递推公式推导出(
)4n n a a n N *
+=∈,且有1234
1a a a a
=,再利用数列的周期性可计算
出2018T 的值. 【详解】
12a =,()*111++=
∈-n
n n a a n N a ,212312a +∴==--,3131132
a -==-+,41
1121312a -
==+,5
1132113
a +
==-,()4n n a a n N *+∴=∈,且()123411
23123
a a a a ⎛⎫=⨯-⨯-⨯= ⎪⎝⎭,
201845042=⨯+,因此,()504
2018450421211236T T a a ⨯+==⨯=⨯⨯-=-.
故选:A. 【点睛】
本题考查数列递推公式的应用,涉及数列周期性的应用,考查计算能力,属于中等题.
12.B
解析:B 【分析】 由122n n a a n n +=++转化为11
121n n a a n n +⎛⎫-=- ⎪+⎝⎭
,利用叠加法,求得23n
a n =-,即可求解. 【详解】 由122n n a a n n +=+
+,可得121
12(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭

所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+
11111
111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫
=-+-+-++-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭
⎝⎭
122113n n ⎛⎫
=-+=- ⎪⎝⎭

所以102143105
a =-=. 故选:B. 【点睛】
数列的通项公式的常见求法:
1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;
2、对于递推关系式可转化为
1
()n n
a f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1
n n a pa q +=+的数列,可采用构造法求解数列的通项公式.
13.C
解析:C 【分析】
利用443a S S =-计算. 【详解】
由已知22
443(44)(33)8a S S =-=+-+=.
故选:C .
14.C
解析:C 【分析】
令n n b na =,由已知得121n n b b n +-=+运用累加法得2
+12n b n =,从而可得
12
+n a n n
=,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<
<,
由此可得选项. 【详解】
令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=, ,121n n b b n --=-, 所以累加得()()213+2113+
+122
n
n n b n --==,所以2+1212+n n
b n a
n n n n
===, 所以()()()()+13+41212+1+
++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭,
所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,
故选:C.
【点睛】
本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.
15.C
解析:C 【分析】
利用数列的递推式,得到a n +1=3a n -2,进而得到a n =3n -1+1,然后代入[lg(a 100-1)]可求解 【详解】
当n ≥2时,S n =3S n -1-2n +4,则a n +1=3a n -2,于是a n +1-1=3(a n -1),当n =1时,S 2=3S 1-2+2=6,所以a 2=S 2-S 1=4.此时a 2-1=3(a 1-1),则数列{a n -1}是首项为1,公比为3的等比数列.所以a n -1=3n -1,即a n =3n -1+1,则a 100=399+1,则lg(a 100-1)=99lg3≈99×0.477=47.223,故[lg(a 100-1)]=47. 故选C
16.D
解析:D 【分析】
由21
111
n n a n n +=
=+++,利用反比例函数的性质判断即可. 【详解】
在数列{}n a 中,21
111
n n a n n +=
=+++, 由反比例函数的性质得:{}n a 是*n N ∈时单调递减数列, 故选:D
17.B
解析:B 【分析】
由111n n n n a a a a ++-=+,且113
a =,可得:111n n n a a a ++=-,可得其周期性,进而得出结论.
【详解】
因为111n n n n a a a a ++-=+,且11
3
a =, 所以111n
n n
a a a ++=
-, 21
132113
a +
∴==-,33a =-,412a =-,513a =,⋯⋯, 4n n a a +∴=.
123411
···2(3)()132
a a a a ∴=⨯⨯--⋅⨯=.
则{}n a 的前2021项之积50511
133
=⨯=.
故选:B 【点睛】
方法点睛:已知递推关系式求通项:(1)用代数的变形技巧整理变形,然后采用累加法、累乘法、迭代法、构造法或转化为基本数列(等差数列或等比数列)等方法求得通项公式.(2)通过具体的前几项找到其规律,如周期性等求解.
18.D
解析:D 【分析】
根据观察法,即可得出数列的通项公式. 【详解】
因为数列1111
,,,
, (57911)
--可写成 ()()()()234
2322311111,1,1,12,..24.333
-⨯
-⨯-⨯+⨯+⨯+⨯+-⨯, 所以其通项公式为(1)(1)23213
n
n
n a n n -=-=
++⨯. 故选:D.
19.D
解析:D 【分析】 取特殊值即可求解. 【详解】
当1n =时,11a =,显然AC 不正确,
当2n =时,21459a a =+=,显然B 不符合,D 符合 故选:D
20.D
解析:D 【分析】
分别求出23456,,,,a a a a a ,得到数列{}n a 是周期为4的数列,利用周期性即可得出结果. 【详解】
由题意知,212312a +==--,3131132a -==-+,41
1121312a -
==+,5
1132113
a +
==-,
612
312
a +=
=--,…, 因此数列{}n a 是周期为4的周期数列, ∴20205054413
a a a ⨯===. 故选D. 【点睛】
本题主要考查的是通过观察法求数列的通项公式,属于基础题.
二、多选题
21.BCD 【分析】
根据题意写出,,,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】
对A ,,,故A 不正确; 对B ,,故B 正确; 对C ,由,,
解析:BCD 【分析】
根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】
对A ,821a =,620S =,故A 不正确; 对B ,761333S S =+=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得
135********a a a a a +++⋅⋅⋅+=,故C 正确;
对D ,该数列总有21n n n a a a ++=+,2
121a a a =,则()222312321a a a a a a a a =-=-, ()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-, 故2222
123202*********a a a a a a +++⋅⋅⋅+=,故D 正确.
故选:BCD 【点睛】
关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.
22.BC 【分析】
根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,求出,可得C 正确,D 错. 【详解】 由可知,即,
当时,则,即得到,故选项B 正确;无法计算,故A 错; ,所以,则
解析:BC 【分析】
根据递推公式,得到11n n n
n n a a a +-=-,令1n =,得到121
a a =,可判断A 错,B 正确;
根据求和公式,得到1
n n n
S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】
由121n n n a n a a n +=+-可知2111
n n n n n a n n n a a a a ++--==+,即11n n n
n n a a a +-=-, 当1n =时,则12
1
a a =
,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321
111102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=++
+=-+-+
+-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:
由递推公式求通项公式的常用方法:
(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解;
(2)累乘法,形如()1
n n
a f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1
n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通
项时,常需要构造成等比数列求解;
(4)已知n a 与n S 的关系求通项时,一般可根据11,2
,1n n n S S n a a n --≥⎧=⎨=⎩求解.
23.ABCD 【分析】
由题意可得数列满足递推关系,对照四个选项可得正确答案.
对A ,写出数列的前6项为,故A 正确; 对B ,,故B 正确; 对C ,由,,,……,,
可得:.故是斐波那契数列中的第
解析:ABCD 【分析】
由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,对照四个选项可得正确答案. 【详解】
对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,71123581333S =++++++=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-, 可得:135********a a a a a +++⋅⋅⋅+=.故1352019a a a a +++⋅⋅⋅+是斐波那契数列中的第2020项.
对D ,斐波那契数列总有21n n n a a a ++=+,则2
121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-
2222123201920192020a a a a a a +++⋅⋅⋅⋅⋅⋅+=,故D 正确;
故选:ABCD. 【点睛】
本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换.
24.ABC 【分析】
由,变形得到,再利用等差数列的定义求得,然后逐项判断. 【详解】 当时,由, 得, 即,又,
所以是以2为首项,以1为公差的等差数列, 所以, 即,故C 正确; 所以,故A 正确; ,
【分析】
由)
2
12n a =
-1=,再利用等差数列的定义求
得n a ,然后逐项判断. 【详解】
当2n ≥时,由)
2
12n a =-,
得)
2
21n a +=

1=,又12a =,
所以
是以2为首项,以1为公差的等差数列,
2(1)11n n =+-⨯=+,
即2
21n a n n =+-,故C 正确;
所以27a =,故A 正确;
()2
12n a n =+-,所以{}n a 为递增数列,故正确;
数列{}n a 不具有周期性,故D 错误; 故选:ABC
25.AC 【分析】
先根据题意得等差数列的公差,进而计算即可得答案. 【详解】
解:设等差数列的公差为, 则,解得. 所以,,,
所以当且仅当或时,取得最大值. 故选:AC 【点睛】
本题考查等差数列的
解析:AC 【分析】
先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】
解:设等差数列{}n a 的公差为d ,
则52318312a a d d =+=+=,解得2d =-.
所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】
本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:
(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;
(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;
26.AB 【分析】
根据已知条件求得的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】
依题意,等差数列中,即, .
对于A 选项,,所以A 选项正确. 对于C 选项,,,所以,
解析:AB 【分析】
根据已知条件求得1,a d 的关系式,然后结合等差数列的有关知识对选项逐一分析,从而确定正确选项. 【详解】
依题意,等差数列{}n a 中81535a a =,即()()1137514a d a d +=+,
1149249,2
a d a d =-=-
. 对于A 选项,24912490a a a d +=+=,所以A 选项正确. 对于C 选项,149
2
a d =-
,10a >,所以0d <,所以C 选项错误. 对于B 选项,()()149511122n a a n d d n d n d ⎛
⎫=+-=-
+-=- ⎪⎝
⎭,令0n a ≥得5151
0,22
n n -
≤≤,由于n 是正整数,所以25n ≤,所以数列{}n S 中最大值的项是25S ,
所以B 选项正确.
对于D 选项,由上述分析可知,125n ≤≤时,0n a ≥,当26n ≥时,0n a <,且0d <.所以数列
{}n
a 的前25项递减,第26项后面递增,不是等差数列,所以D 选项错误.
故选:AB 【点睛】
等差数列有关知识的题目,主要把握住基本元的思想.要求等差数列前n 项和的最值,可以令0n a ≥或0n a ≤来求解.
27.BC 【分析】
设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零, 因为, 所以, 即, 解得, ,故A 错误; ,故B 正确;
若,解得,,故C 正确;D 错误; 故选:BC
解析:BC 【分析】 设公差d 不为零,由38a a =,解得192
a d =-,然后逐项判断.
【详解】 设公差d 不为零, 因为
38a a =,
所以1127a d a d +=+, 即1127a d a d +=--, 解得192
a d =-,
11191111551155022S a d d d d ⎛⎫
=+=⨯-+=≠ ⎪⎝⎭
,故A 错误;
()()()()()()221101110910,10102222n n n n n n d d
na d n n n a n n S S d ----=+=-=-+=-,故B 正确;
若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭
,解得0d >,()()22510525222
n d d d n n S n S =
-=--≥,故C 正确;D 错误; 故选:BC 28.BCD
【分析】
根据定义以及举特殊数列来判断各选项中结论的正误.
【详解】
对于A 选项,取,则不是常数,则不是等方差数列,A 选项中的结论错误; 对于B 选项,为常数,则是等方差数列,B 选项中的结论正
解析:BCD
【分析】
根据定义以及举特殊数列来判断各选项中结论的正误.
【详解】
对于A 选项,取n a n =,则
()()()422444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦
()()221221n n n =+++不是常数,则{}2n a 不是等方差数列,A 选项中的结论错误;
对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}
1n -是等方差数列,B 选项中的结论正确;
对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列
{}2
n a 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;
对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得
n a dn m =+,
则()()()()222
1112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++, 由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,
则()2
22d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD.
【点睛】
本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.
29.ABD
【分析】
结合等差数列的性质、前项和公式,及题中的条件,可选出答案.
【详解】
由,可得,故B 正确;
由,可得,
由,可得,
所以,故等差数列是递减数列,即,故A 正确;
又,所以,故C 不正确
解析:ABD
【分析】
结合等差数列的性质、前n 项和公式,及题中的条件,可选出答案.
【详解】
由67S S =,可得7670S S a -==,故B 正确;
由56S S <,可得6560S S a -=>,
由78S S >,可得8780S S a -=<,
所以876a a a <<,故等差数列{}n a 是递减数列,即0d <,故A 正确;
又()9567897820S S a a a a a a -=+++=+<,所以95S S <,故C 不正确;
又因为等差数列{}n a 是单调递减数列,且80a <,所以90a <,
所以()
117179171702a a S a +==<,故D 正确.
故选:ABD.
【点睛】
关键点点睛:本题考查等差数列性质的应用,解题的关键是熟练掌握等差数列的增减性及前n 项和的性质,本题要从题中条件入手,结合公式()12n n n a S S n --≥=,及
()12
n n n a a S +=
,对选项逐个分析,可判断选项是否正确.考查学生的运算求解能力与逻辑推理能力,属于中档题. 30.AC
【分析】
将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项
【详解】
由,可得,令,

所以是奇函数,且在上单调递减,所以,
所以当数列为等差数列时,;
解析:AC
【分析】 将3201911111a a e e +≤++变形为32019111101212
a a e e -+-≤++,构造函数()1112
x f x e =
-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项
【详解】 由3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()1112
x f x e =-+, ()()1111101111
x
x x x x e f x f x e e e e --+=+-=+-=++++, 所以()1112
x f x e =-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()320192*********
a a S +=≥; 当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()
2021202110110T a =>.
故选:AC
【点睛】
本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 31.BD
【分析】
由,即,进而可得答案.
【详解】
解:,
因为
所以,,最大,
故选:.
【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 解析:BD
【分析】
由6111160S S S S =⇒-=,即950a =,进而可得答案.
【详解】
解:1167891011950S S a a a a a a -=++++==,
因为10a >
所以90a =,0d <,89S S =最大,
故选:BD .
【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题.
32.AD
【分析】
利用求出数列的通项公式,可对A ,B ,D 进行判断,对进行配方可对C 进行判断
【详解】
解:当时,,
当时,,
当时,满足上式,
所以,
由于,所以数列为首项为,公差为2的等差数列,

解析:AD
【分析】
利用11,1,2n n
n S n a S S n -=⎧=⎨-≥⎩求出数列的通项公式,可对A ,B ,D 进行判断,对25,n S n n =-进行配方可对C 进行判断
【详解】
解:当1n =时,11154a S ==-=-,
当2n ≥时,2215[(1)5(1)]26n n n a S S n n n n n -=-=-----=-,
当1n =时,14a =-满足上式,
所以26n a n =-,
由于()122n n a a n --=≥,所以数列{}n a 为首项为4-,公差为2的等差数列,
因为公差大于零,所以{}n a 为单调递增数列,所以A ,D 正确,B 错误, 由于225
255()24
n S n n n =-=--,而n ∈+N ,所以当2n =或3n =时,n S 取最小值,且最小值为6-,所以C 错误,
故选:AD
【点睛】
此题考查,n n a S 的关系,考查由递推式求通项并判断等差数列,考查等差数列的单调性和前n 项和的最值问题,属于基础题
33.AC
【分析】
利用等差数列的前项和公式、通项公式列出方程组,求出,,由此能求出与.
【详解】
等差数列的前项和为.,,

解得,,

故选:AC .
【点睛】
本题考查等差数列的通项公式求和公
解析:AC
【分析】
利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .
【详解】
等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237
S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,
1(1)221n a n n ∴+-⨯=-=.
()21212
n n n S n +-== 故选:AC .
【点睛】
本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.
34.AD
【分析】
根据等差数列的性质,对四个选项逐一判断,即可得正确选项.
【详解】
, ,所以是递增数列,故①正确,
,当时,数列不是递增数列,故②不正确,
,当时,不是递增数列,故③不正确,
,因
解析:AD
【分析】
根据等差数列的性质,对四个选项逐一判断,即可得正确选项.
【详解】
0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,
()()2111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d
-<时,数列{}n na 不是递增数列,故②不正确,
1n a a d d n n -=+,当10a d -<时,{}n a n
不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确, 故选:AD
【点睛】
本题主要考查了等差数列的性质,属于基础题.
35.AD
【分析】
先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案.
【详解】
解:根据等差数列前项和公式得:,
所以,,
由于,,
所以,,
所以,中最大,
由于,
所以,即:
解析:AD
【分析】
先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.
【详解】
解:根据等差数列前n 项和公式得:()111111102a a S +=>,()112121202
a a S +=<
所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD.
【点睛】
本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.。

相关文档
最新文档