五年级数学提优第三讲----数的整除
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学提优训练(三)
年级班姓名得分
一、基础测试部分(30分钟)
1、四位数1
3AA是9的倍数,那么A=_____
已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之.
设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,
3771÷9=419.
2、在25□79这个五位数的□内填上一个数字,使这个数能被11整除,方格内应填_____
这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+□+9应等于12,□内应填12-2-9=1. 3、能同时被2、3、5整除的最大三位数是_____
要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.
4、能同时被2、
5、7整除的最大五位数是_____
解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999□0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.
解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.
5、在1至100以内所有不能被3整除的数的和是_____
先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.
(1+2+3+...+100)-(3+6+9+12+ (99)
=(1+100)÷2⨯100-(3+99)÷2⨯33
=5050-1683
=3367
6、所有能被3整除的两位数的和是______
能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:
12,15,18,21,…,96,99 这一列数共30个数,其和为
12+15+18+…+96+99
=(12+99)⨯30÷2
=1665
7、已知一个五位数□691□能被55整除,所有符合题意的五位数是_____
7. 96910或46915
A691能被55整除,即此五位数既能被5整除,又能被11整除.所以B=0或5.当B=0五位数B
A能被11整除,所以(A+9+0)-(6+1)=A+2能被11整除,因此A=9;当B=5时,同样可求出时,6910
A=4.所以,所求的五位数是96910或46915.
8、如果六位数1992□□能被105整除,那么它的最后两位数是_____
因为105=3⨯5⨯7,根据数的整除性质,可知这个六位数能同时被3、5和7整除。
根据能被5整除的数的特征,可知这个六位数的个位数只能是0或5两种,再根据能被3整除的数的特征,可知这个六位数有如下七个可能:
199200,199230,199260,199290,199215,199245,199275.
最后用7去试除知,199290能被7整除.
所以,199290能被105整除,它的最后两位数是90.
[注]此题也可以这样思考:先把后面两个方框中填上0后的199200除以105,根据余数的大小来决定最后两个方框内应填什么.
199200÷105=1897 (15)
105-15=90
如果199200再加上90,199290便可被105整除,故最后两位数是90.
9、已知42□28□是99的倍数,这个数除以99所得的商是_____
因为99=9⨯11,所以42□28□既是9的倍数,又是11的倍数.根据是9的倍数的特点,这个数各位上数字的和是9的倍数.42□28□这个六位数中已知的四个数的和是4+2+2+8=16,因此空格中两个数字的和是2或11.我们把右起第一、三、五位看做奇位,那么奇位上已知两个数字的和是2+2=4,而偶位上已知两个数字的和是4+8=12,再根据是11的倍数的特点,奇位上数字的和与偶位上数的和之差是0或11的倍数,所以填入空格的两个数应该相差3或相差8.从以上分析可知填入的两个数字的和不可能是2,应该是11.显然它们的差不可能是8,应该是3,符合这两个条件的数字只有7和4.填入空格时要注意7填在偶位上,4填在奇位上,即原六位数是42 7 28 4 ,又427284÷99=4316,所以所得的商是4316.
10、已知六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____
2620或2711
一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能
23 0 56 0 或23 8 56 8
又230560÷88=2620
238568÷88=2711
所以,本题的答案是2620或2711.
11、已知123456789□□这个十一位数能被36整除,那么这个数的个位上的数最小是_____
因为36=9⨯4,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性.
所以,这个数的个位上的数最小是0.
12、已知173□是个四位数字。
数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?
∵能被9整除的四位数的各位数字之和能被9整除,1+7+3+□=11+□
∴□内只能填7.
∵能被11整除的四位数的个位与百位的数字和减去十位与千位的数字和所得的差能被11整除.
∴(7+□)-(1+3)=3+□ 能被11整除, ∴□内只能填8.
∵能被6整除的自然数是偶数,并且数字和能被3整除,
而1+7+3+□=11+□, ∴□内只能填4.
所以,所填三个数字之和是7+8+4=19.
13、在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?
设补上的三个数字组成三位数abc,由这个七位数能被2,5整除,说明c=0;
由这个七位数能被3整除知1+9+9+2+a+b+c=21+a+b+c能被11整除,从而a+b能被3整除;
由这个七位数又能被11整除,可知(1+9+a+c)-(9+2+b)=a-b-1能被11整除;
由所组成的七位数应该最小,因而取a+b=3,a-b=1,从而a=2,b=1.
所以这个最小七位数是1992210.
[注]小朋友通常的解法是:根据这个七位数分别能被2,3,5,11整除的条件,这个七位数必定是2,3,5,11的公倍数,而2,3,5,11的最小公倍数是2⨯3⨯5⨯11=330.
这样,1992000÷330=6036…120,因此符合题意的七位数应是(6036+1)倍的数,即
1992000+(330-120)=1992210.
14、有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.
4. 10,11,12或21,22,23或32,33,34.
三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有
当和为33时,三个数是10,11,12;
当和为66时,三个数是21,22,23;
当和为99时,三个数是32,33,34.
[注]“三个连续自然数的和必能被3整除”可证明如下:
设三个连续自然数为n,n+1,n+2,则
n+(n+1)+(n+2)
=3n+3
=3(n+1)
所以,)2
+n
n能被3整除.
n
+
+
)1
(
(+
15、有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.
符合条件的两位数的两个数字之和能被4整除,而且比这个两位数大1的数,如果十位数不变,则个位增加1,其和便不能整除4,因此个位数一定是9,这种两位数有:39、79.
所以,所求的和是39+79=118.
16、一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是___.
因为这个数可以分解为两个两位数的积,而且15⨯15=225>200,所以其中至少有1个因数小于15,而且这些因数均需是奇数,但11不可能符合条件,因为对于小于200的自然数凡11的倍数,具有隔位数字之和相等的特点,个位百位若是奇数,十位必是偶数.所以只需检查13的倍数中小于200的三位数13⨯13=169不合要求,13⨯15=195适合要求.所以,答案应是195.
17、任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.
根据题意,两个四位数相乘其积的位数是七位数或八位数两种可能.
因为3456=384⨯9,所以任何一个四位数乘3456,其积一定能被9整除,根据能被9整除的数的特征,可知其积的各位数字之和A也能被9整除,所以A有以下八种可能取
值:9,18,27,36,45,54,63,72.从而A的各位数字之和B总是9,B的各位数字之和C也总是9.
18、有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.
∵0+1+4+7+9=21能被3整除,∴从中去掉0或9选出的两组四个数字组成的四位数能被3
整除.即有0,1,4,7或1,4,7,9两种选择组成四位数,由小到大排列
为:1047,1074,1407,1470,1479,1497….所以第五个数的末位数字是9.
19、从0、1、2、4、5、7中,选出四个数,排列成能被2、3、5整除的四位数,其中最大的是_____.
根据能被2、3、5、整除的数的特征,这个四位数的个位必须是0,而十位、百位、千位
上数字的和是3的倍数。
为了使这个四位数尽可能最大,千位上的数字应从所给的6个数字中挑选最大的一个.从
7开始试验,7+4+1=12,其和是3的倍数,因此其中最大的数是7410.
20、所有数字都是2且能被 10066...6个
整除的最小自然数是_____位数.
∵66...6=2⨯3⨯11 (1)
100个 100个
显然连续的2能被2整除,而要被3整除,2的个数必须是3的倍数,又要被11…1整除,2的个数必须是100的倍数,所以,最少要有300个连续的2方能满足题中要求.答案应填300.
二、提优题部分(讲解)
1、从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_____号.
1331
第一次报数后留下的同学最初编号都是11倍数;
第二次报数后留下的同学最初编号都是121 的倍数;
第三次报数后留下的同学最初编号都是1331的倍数.
所以最后留下的只有一位同学,他的最初编号是1331.
2、试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.
显然,这样的自然数不可能为两位数,因为如果是两位数的话,则必然具有形式xx ,但
x x x 2=+为偶数,与它的各位数字之和等于13矛盾.现设求之数为三位数xyz .于是由题意
13=++z y x ,且由被11整除的判别法则知z y x +-是11的倍数.又由于所求之数为最小,故有z y x +-=11.两式相减得1=y .于是=+z x 12,由于3,9≥≤x z 从而.当9,3==z x 时.
所以,所求的最小自然数是319.
3、只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?
因为225=25⨯9,要使修改后的数能被25整除,就要既能被25整除,又能被9整除,被25整除不成问题,末两位数75不必修改,只要看前三个数字即可,根据某数的各位数字之和是9的倍数,则这个数能被9整除的特征,因为2+1+4+7+5=19,19=18+1,19=27-8,所以不难排出以下四种改法:把1改为0;把4改为3;把1改为9;把2改为1.
4、将500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、
5、6(1至6)报数,既报1又报6的士兵有多少名?
若将这500名士兵从右到左依次编号,则第一次报数时,编号能被5整除的士兵报1;第二次报数时,编号能被6整除的士兵报6,所以既报1又报6的士兵的编号既能被5整除又能被6整除,即能被30整除,在1至500这500个自然数中能被30整除的数共有16个,所以既报1又报6的士兵共有16名.
5、试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.
不能.假设能够按照题目要求在圆周上排列所述的100个数,我们来按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3 的倍数.从而一共有不少于40个数是3 的倍数.但事实上,在1至100的自然数中有33个数是3的倍数,导致矛盾.
6、有一个两位数,把数码1加在它的前面可以得到一个三位数,加在它的后面也可以得到一个三位数,这两个三位数相差666。
求原来的两位数。
分析与解:由位值原则知道,把数码1加在一个两位数前面,等于加了100;把数码1加在一个两位数后面,等于这个两位数乘以10后再加1。
设这个两位数为x。
由题意得到
(10x+1)-(100+x)=666,
10x+1-100-x=666,
10x-x=666-1+100,
9x=765,
x=85。
所以原来的两位数是85。
7、用2,8,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少?解:由例3知,可以组成的六个三位数之和是(2+8+7)×222,
所以平均值是(2+8+7)×222÷6=629。
8、一个两位数,各位数字的和的5倍比原数大6,求这个两位数。
(a+b)×5-(10a+b)=6,
5a+5b-10a-b=6,
4b-5a=6。
当b=4,a=2或b=9,a=6时,4b-5a=6成立,所以这个两位数是24或69。
9、设一个五位数d a c b a,其中d-b=3,试问a,c为何值时,这个五位数被11整除.
解:11|d a c b a
∴11|a+c+d-b- a
即11|c+ 3
∴c=8
1≤a≤9,且a∈Z
10、一个正整数,如果用7进制表示为abc,如果用5进制表示为cba,请用10进制表示这个数. 解:由题意知:0<a,c≤4,0≤b≤4,设这个正整数为n,则
n=abc=a×72+b×7+c, n=cba=c×52+b×5+a
∴49a+7b+c=25c+5b+a
48a+2b-24c=0
b=12(c-2a)
∴12|b,
又∵0≤b≤4
∴b=0,
∴c=2a
∴当a=1,c=2时,n=51
当a=2,c=4时,n=102。