高三数学 教案 基本不等式中常用公式及三大定理
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式中常用公式
①√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)
②√(ab)≤(a+b)/2
③a²+b²≥2a b
④ab≤(a+b)²/4
⑤||a|-|b| |≤|a+b|≤|a|+|b|
基本不等式三大定理
•基本不等式有两种:基本不等式和推广的基本不等式(均值不等式)基本不等式是主要应用于求某些函数的最大(小)值及证明的不等式。
其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。
(1)基本不等式
两个正实数的算术平均数大于或等于它们的几何平均数。
向左转|向右转
向左转|向右转
(2)推广的基本不等式(均值不等式)
向左转|向右转
时不等式两边相等。
•不等式运用示例
某学校为了美化校园,要建造一个底面为正方形,体积为32的柱形露天喷水池,问怎样才能使得用来砌喷水池底部和四壁的镶面材料花费最少?
答:设底面正方形边长为x,则水池高为
32/x^2y=x^2+4x*32/x^2=x^2+128/x=x^2+64/x+64/x≥
3(1*64*64)^(1/3)=48所以当x^2=64/x,x=4时花费最少。
上面解法使用了均值不等式
向左转|向右转
时不等式两边相等。