北师大版_2021北师大版初三中考数学模拟试题及答案
【北师大版】2021年中考数学模拟专题 《一元一次不等式(组)及应用》(含解析)
专题01一元一次不等式(组)及应用学校:__________姓名:___________班级:___________一、选择题:(共4个小题)1.【乐山】下列说法不一定成立的是( )A.若a b >,则a c b c +>+ B.若a c b c +>+,则a b >C.若a b >,则22ac bc > D.若22ac bc >,则a b >【答案】C.【解析】【考点定位】不等式的性质.2.【广安】如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A.2y x =+ B.22y x =+ C.2y x =+ D.12y x =+【答案】C.【解析】 试题分析:A.2y x =+,x为任意实数,故错误;B.22y x =+,x为任意实数,故错误;C.2y x=+,20x+≥,即2x≥-,故正确;D.12yx=+,20x+≠,即2x≠-,故错误;故选C.【考点定位】1.函数自变量的取值范围;2.在数轴上表示不等式的解集.3.【绥化】关于x的不等式组1 x ax>⎧⎨>⎩的解集为x>1,则a的取值范围是( )A.a>1 B.a<1 C.a≥1 D.a≤1【答案】D.【解析】试题分析:因为不等式组1x ax>⎧⎨>⎩的解集为x>1,所以可得a≤1,故选D.【考点定位】1.不等式的解集;2.综合题.4.【淄博】一次函数3y x b=+和3y ax=-的图象如图所示,其交点为P(﹣2,﹣5),则不等式33x b ax+>-的解集在数轴上表示正确的是()A.B.C.D.【答案】C.【解析】【考点定位】1.一次函数与一元一次不等式;2.在数轴上表示不等式的解集.二、填空题:(共4个小题)5.【广安】不等式组340 12412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为.【答案】0.【解析】试题分析:340124 12xx+≥⎧⎪⎨-≤⎪⎩①②,解不等式①得:43x≥-,解不等式②得:50x≤,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.【考点定位】一元一次不等式组的整数解.6.【雅安中学中考模拟】若关于x的一元一次不等式组202x mx m-<+>⎧⎨⎩有解,则m的取值范围为【答案】m>23.【解析】【考点定位】1.解一元一次不等式组;2.含字母系数的不等式;3.综合题.7.【达州】对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是.【答案】45a≤<.试题分析:根据题意得:2※x=2x﹣2﹣x+3=x+1,∵a<x+1<7,即a﹣1<x<6解集中有两个整数解,∴a的范围为45a ≤<,故答案为:45a ≤<.【考点定位】1.一元一次不等式组的整数解;2.新定义;3.含待定字母的不等式(组);4.阅读型.8.【重庆市】从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a -⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a-++=的解为负数的概率为 .【答案】35.【解析】【考点定位】1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题.三、解答题:(共2个小题)9.【遂宁】解不等式组2 6 3(1)2 5 x x x -<⎧⎨+≤+⎩①②,并将解集在数轴上表示出来.【答案】32x -<≤.试题分析:分别求出每个不等式的解集,再求出其公共解集并在数轴上表示出来即可.试题解析:2 6 3(1)2 5 x x x -<⎧⎨+≤+⎩①②,由①得,3x >-,由②得,2x ≤,故此不等式组的解集为:32x -<≤.在数轴上表示为:【考点定位】1.解一元一次不等式组;2.在数轴上表示不等式的解集.10.【内江】某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x 台,这100台家电的销售总利润为y 元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润;(3)实际进货时,厂家对电冰箱出厂价下调k (0<k <100)元,若商店保持这两种家电的售价不变,请你根据以上信息及(2)问中条件,设计出使这100台家电销售总利润最大的进货方案. 【答案】(1)1600,2000;(2)有7种,当购进电冰箱34台,空调66台获利最大,最大利润为13300元;(3)当50<k<100时,购进电冰箱40台,空调60台销售总利润最大;当0<k<50时,购进电冰箱34台,空调66台销售总利润最大;当k=50时,每种进货方案的总利润都一样.【解析】(3)当电冰箱出厂价下调k(0<k<100)元时,则利润y=(k﹣50)x+15000,分两种情况讨论:当k﹣50>0;当k﹣50<0;利用一次函数的性质,即可解答.试题解析:(1)设每台空调的进价为x元,则每台电冰箱的进价为(x+400)元,根据题意得:8000064000400x x =+,解得:x=1600,经检验,x=1600是原方程的解,x+400=1600+400=2000,答:每台空调的进价为1600元,则每台电冰箱的进价为2000元.(2)设购进电冰箱x台,这100台家电的销售总利润为y元,则y=(2100﹣2000)x+(1750﹣1600,第1题,100﹣x)=﹣50x+15000,根据题意得:1002501500013000x x x -≤⎧⎨-+≤⎩,解得:133403x ≤≤,∵x为正整数,∴x=34,35,36,37,38,39,40,∴合理的方案共有7种,即①电冰箱34台,空调66台;②电冰箱35台,空调65台;③电冰箱36台,空调64台;④电冰箱37台,空调63台;⑤电冰箱38台,空调62台;⑥电冰箱39台,空调61台;⑦电冰箱40台,空调60台;∵y=﹣50x+15000,k=﹣50<0,∴y随x的增大而减小,∴当x=34时,y有最大值,最大值为:﹣50×34+15000=13300(元),答:当购进电冰箱34台,空调66台获利最大,最大利润为13300元.【考点定位】1.一次函数的应用;2.分式方程的应用;3.一元一次不等式组的应用;4.分类讨论;5.方案型;6.最值问题.专题02 平面直角坐标系、函数及其图像学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【内江】函数121y x x =-+-中自变量x 的取值范围是( ) A.2x ≤ B.2x ≤且1x ≠ C.x <2且1x ≠ D.1x ≠【答案】B.【解析】试题分析:根据二次根式有意义,分式有意义得:20x -≥且10x -≠,解得:2x ≤且1x ≠.故选B.【考点定位】函数自变量的取值范围.2.【自贡】小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是( )【答案】C.【解析】试题分析:由题意,得:以400米/分的速度匀速骑车5分,路程随时间匀速增加;在原地休息了6分,路程不变;以500米/分的速度骑回出发地,路程逐渐减少,故选C.【考点定位】1.函数的图象;2.分段函数.3.【宜宾】在平面直角坐标系中,任意两点A (1x ,1y ),B (2x ,2y ),规定运算:①A ⊕B =(12x x +,12y y +);②A ⊗B =1212x x y y +;③当12x x =且12y y =时,A =B ,有下列四个命题:(1)若A (1,2),B (2,﹣1),则A ⊕B =(3,1),A ⊗B =0;(2)若A ⊕B =B ⊕C ,则A =C ;(3)若A ⊗B =B ⊗C ,则A =C ;(4)对任意点A 、B 、C ,均有(A ⊕B )⊕C =A ⊕(B ⊕C )成立,其中正确命题的个数为( )A .1个 B.2个 C.3个 D.4个【答案】C .【解析】【考点定位】1.命题与定理;2.点的坐标;3.新定义;4.阅读型.4.【泸州】在平面直角坐标系中,点A (2,2),B (32,32),动点C 在x 轴上,若以A 、B 、C 三点为顶点的三角形是等腰三角形,则点C 的个数为( )A.2 B.3 C.4 D.5【答案】B.【解析】【考点定位】1.等腰三角形的判定;2.坐标与图形性质;3.分类讨论;4.综合题;5.压轴题.二、填空题:(共4个小题)5.【广元】若第二象限内的点P (x ,y )满足3x =,225y =,则点P 的坐标是________.【答案】(﹣3,5).【解析】 试题分析:∵3x =,225y =,∴x =±3,y =±5,∵P 在第二象限,∴点P 的坐标是(﹣3,5).故答案为:(﹣3,5).【考点定位】点的坐标.6.【2015六盘水】观察中国象棋的棋盘,其中红方“马”的位置可以用一个数对(3,5)来表示,红“马”走完“马3进四”后到达B 点,则表示B 点位置的数对是: .【答案】(2,7).【解析】试题分析:建立平面直角坐标系如图所示,点B的坐标为(2,7).故答案为:(2,7).【考点定位】坐标确定位置.7.【甘孜州】如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,AO,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,12;…)的中心均在坐标原点则顶点A20的坐标为.【答案】(5,﹣5).【解析】试题分析:∵204=5,∴A 20在第二象限,∵A 4所在正方形的边长为2,A 4的坐标为(1,﹣1),同理可得:A 8的坐标为(2,﹣2),A 12的坐标为(3,﹣3),∴A 20的坐标为(5,﹣5),故答案为:(5,﹣5).【考点定位】1.规律型:点的坐标;2.规律型;3.综合题.8.【2015资阳雁江区中考适应】如图①,在正方形ABCD 中,点P 沿边DA 从点D 开始向点A 以2cm /s 的速度移动;同时,点Q 沿边AB 、BC 从点A 开始向点C 以3cm /s 的速度移动.当点P 移动到点A 时,P 、Q 同时停止移动.设点P 出发x s 时,△PAQ 的面积为ycm 2,y 与x 的函数图像如图2 所示,则线段EF 所在的直线对应的函数关系式为 .【答案】y =-3x +18.【解析】【考点定位】1.动点问题的函数图象;2.动点型;3.综合题.三、解答题:(共2个小题)9.【丹棱县一诊】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点都在格点上,建立平面直角坐标系.(1)点A 的坐标为 ,点C 的坐标为 .(2)将△ABC 向左平移7个单位,请画出平移后的111C B A ,若M 为△ABC 内的一点,其坐标为(a ,b )则平移后点1M 的坐标为 .(3)以原点O 为位似中心,将△ABC 缩小,使变换后的222C B A ∆与△ABC 对应边的比为1:2,请在网格内画出一个222C B A ∆,则2A 的坐标为 .【答案】(1)A (2,7),C (6,5);(2)作图见解析;(3)作图见解析.【解析】(2)平移后的△A 1B 1C 1如图所示:∵M 为△ABC 内的一点,其坐标为(a ,b ),△ABC 向左平移了7个单位,∴平移后点M 的对应点M 1的坐标为M 1(a -7,b ).(3)如图所示:△A 2B 2C 2为所求.【考点定位】1.作图-平移变换;2.作图-位似变换.10.【黔西南州】某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元. (1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x 吨,应交水费为y 元,写出y 与x 之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元? 【答案】(1)每吨水的政府补贴优惠价为1元,市场调节价为2.5元;(2)(012)2.518 (12)x x y x x ≤≤⎧=⎨->⎩;(3)47. 【解析】答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.(2)∵当0≤x ≤12时,y =x ;当x >12时,y =12+(x ﹣12)×2.5=2.5x ﹣18,∴所求函数关系式为: (012)2.518 (12)x x y x x ≤≤⎧=⎨->⎩;(3)∵x=26>12,∴把x=26代入y=2.5x﹣18,得:y=2.5×26﹣18=47(元).答:小英家三月份应交水费47元.【考点定位】1.一次函数的应用;2.分段函数;3.分类讨论.。
【北师大版】2021年中考数学模拟专题《 一元一次方程、二元一次方程(组)及应用》(含解析)
专题01一元一次方程、二元一次方程(组)及应用学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【成都四月模拟】某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x支,则依题意可列得的一元一次方程为()A.1.2×0.8x+2×0.9(60+x)=87 B.1.2×0.8x+2×0.9(60-x)=87 C.2×0.9x+1.2×0.8(60+x)=87 D.2×0.9x+1.2×0.8(60-x)=87 【答案】B.【解析】【考点定位】一元一次方程的应用.2.【巴中】若单项式22a bx y+与413a bx y--是同类项,则a,b的值分别为()A.a=3,b=1 B.a=﹣3,b=1 C.a=3,b=﹣1 D.a=﹣3,b=﹣1 【答案】A.【解析】试题分析:∵单项式22a bx y+与413a bx y--是同类项,∴24a ba b-=⎧⎨+=⎩,解得:a=3,b=1,故选A.【考点定位】1.解二元一次方程组;2.同类项.3.【绵阳】若5210a b a b+++-+=,则()2015b a-=()A.﹣1 B.1 C.20155 D.20155-【答案】A.【解析】试题分析:∵5210a b a b+++-+=,∴⎩⎨⎧=+-=++125baba,解得:⎩⎨⎧-=-=32ba,则()20152015321b a-=-+=-().故选A.【考点定位】1.解二元一次方程组;2.非负数的性质.4.【乐山】电影《刘三姐》中,秀才和刘三姐对歌的场面十分精彩.罗秀才唱到:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”若用数学方法解决罗秀才提出的问题,设“一少”的狗有x条,“三多”的狗有y 条,则解此问题所列关系式正确的是()A.33000300x yx y+=⎧⎨<<<⎩B.33000300x yx yx y+=⎧⎪<<<⎨⎪⎩、为奇数C.330003300x yx yx y+=⎧⎪<=<⎨⎪⎩、为奇数D.3300 0300 0300 x yxyx y+=⎧⎪<<⎪⎨<<⎪⎪⎩、为奇数【答案】B.【解析】试题分析:设“一少”的狗有x条,“三多”的狗有y条,可得:33000300x yx yx y+=⎧⎪<<<⎨⎪⎩、为奇数,故选B.【考点定位】由实际问题抽象出二元一次方程.二、填空题:(共4个小题)5.【甘孜州】已知关于x的方程332xa x-=+的解为2,则代数式221a a-+的值是.【答案】1.【解析】【考点定位】一元一次方程的解.6.【南充】已知关于x ,y 的二元一次方程组⎩⎨⎧-=+=+12,32y x k y x 的解互为相反数,则k 的值是 . 【答案】﹣1. 【解析】试题分析:解方程组⎩⎨⎧-=+=+12,32y x k y x 得:232x k y k =+⎧⎨=--⎩,因为关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,可得:2330k k +--=,解得:1k =-.故答案为:﹣1.【考点定位】二元一次方程组的解.7.【崇左】4个数a 、b 、c 、d 排列成a bc d ,我们称之为二阶行列式,规定它的运算法则为:a b ad bcc d=-.若3 3123 3x x x x +-=-+,则x=____.【答案】1. 【解析】试题分析:根据规定可得:223 3(3)(3)12123 3x x x x x x x +-=+--==-+,整理得:1x =,故答案为:1.【考点定位】1.解一元一次方程;2.新定义.8.【龙东】某超市“五一放价”优惠顾客,若一次性购物不超过300元不优惠,超过300元时按全额9折优惠.一位顾客第一次购物付款180元,第二次购物付款288元,若这两次购物合并成一次性付款可节省 元. 【答案】18或46.8. 【解析】【考点定位】1.一元一次方程的应用;2.分类讨论;3.综合题.三、解答题:(共2个小题)9.【珠海】阅读材料:善于思考的小军在解方程组2534115x yx y+=⎧⎨+=⎩①②时,采用了一种“整体代换”的解法:将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③把方程①带入③得:2×3+y=5,∴y=﹣1把y=﹣1代入①得x=4,∴方程组的解为41 xy=⎧⎨=-⎩.请你解决以下问题:(1)模仿小军的“整体代换”法解方程组325 9419x yx y-=⎧⎨-=⎩①②;(2)已知x,y满足方程组2222321247 2836x xy yx xy y⎧-+=⎪⎨++=⎪⎩①②.(i)求224x y+的值;(ii)求112x y+的值.【答案】(1)32xy=⎧⎨=⎩;(2)(i)17;(ii)54±.【解析】【考点定位】1.解二元一次方程组;2.阅读型;3.整体思想;4.综合题.10.【百色】某次知识竞赛有20道必答题,每一题答对得10分,答错或不答都扣5分,3道抢答题,每一题抢答对得10分,抢答错扣20分,抢答不到不得分也不扣分.甲乙两队决赛,甲队必答题得了170分,乙队必答题只答错了1题.(1)甲队必答题答对答错各多少题?(2)抢答赛中,乙队抢答对了第1题,又抢到了第2题,但还没作答时,甲队拉拉队队员小黄说:“我们甲队输了!”,小汪说:“小黄的话不一定对!”,请你举一例说明“小黄的话”有何不对.【答案】(1)甲队答对18道题,则甲队答错或不答的有2道题;(2)举例见试题解析.【解析】③若第2题甲队抢答错误:则甲得分:190-20=170分,第3题乙队抢答错误,则甲队最后得分:170分,乙队得分:185-20=165分,甲队获胜.试题解析:(1)设甲队答对x道题,则甲队答错或不答的有(20﹣x)道题,由题意,得:10x﹣5(20﹣x)=170,解得:x=18.∴甲队答错或不答的有2道题.答:甲队答对18道题,则甲队答错或不答的有2道题;(2)甲队现在得分:170+20=190分,乙队得分:19×10-5=185分,有以下三种情况,甲队可获胜:①若第2题甲队抢答正确:则甲得分:190+20=210分,第3题甲队不抢答,不管乙队抢答是否正确,则乙队最多得分:185+20=205分,甲队获胜;②若第2题甲队抢答错误:则甲得分:190-20=170分,第3题甲队抢答正确,则甲队最后得分:170+20=190分,乙队得分185,甲队获胜;③若第2题甲队抢答错误:则甲得分:190-20=170分,第3题乙队抢答错误,则甲队最后得分:170分,乙队得分:185-20=165分,甲队获胜.【考点定位】1.一元一次方程的应用;2.分类讨论;3.综合题.专题02一元二次方程及应用学校:___________姓名:___________班级:___________ 一、选择题:(共4个小题)1.【达州】方程21(2)304m x mx---+=有两个实数根,则m的取值范围()A.52m>B.52m≤且2m≠C.3m≥D.3m≤且2m≠【答案】B.【解析】试题分析:根据题意得:220301(3)4(2)04mmm m⎧⎪-≠⎪-≥⎨⎪⎪∆=----⨯≥⎩,解得52m≤且2m≠.故选B.【考点定位】1.根的判别式;2.一元二次方程的定义.2.【攀枝花】关于x的一元二次方程2(2)(21)20m x m x m-+++-=有两个不相等的正实数根,则m的取值范围是()A.34m>B.34m>且2m≠C.122m-<<D.324m<<【答案】D.【解析】【考点定位】1.根的判别式;2.一元二次方程的定义.3.【广安】一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A.12 B.9 C.13 D.12或9 【答案】A. 【解析】【考点定位】1.解一元二次方程-因式分解法;2.三角形三边关系;3.等腰三角形的性质.4.【雅安中学中考模拟】关于x的方程2()0m x h k ++=(m,h,k均为常数,m≠0)的解是13x =-,22x =,则方程2(3)0m x h k +-+=,的解是 ( ) A . 16x =-,21x =- B.10x =,25x = C .13x =-,25x = D.16x =-,22x =【答案】B. 【解析】试题分析:解方程2()0m x h k ++=(m,h,k均为常数,m≠0)得kx h m =-±-,而关于x的方程2()0m x h k ++=(m,h,k均为常数,m≠0)的解是13x =-,22x =,所以3k h m ---=-,2k h m -+-=,方程2(3)0m x h k +-+=的解为3k x h m =-±-,所以1330x =-=,2325x =+=.故选B.【考点定位】1.解一元二次方程-直接开平方法;2.综合题. 二、填空题:(共4个小题)5.【泸州】设1x 、2x 是一元二次方程2510x x --=的两实数根,则2212x x +的值为. 【答案】27. 【解析】 试题分析:∵1x 、2x 是一元二次方程2510x x --=的两实数根,∴125x x +=,121x x =-,∴2212x x +=21212()2x x x x +-=25+2=27,故答案为:27.【考点定位】根与系数的关系.6.【达州】新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x 元,可列方程为 . 【答案】(40﹣x)(20+2x)=1200. 【解析】【考点定位】1.由实际问题抽象出一元二次方程;2.销售问题.7.【广元】从3,0,-1,-2,-3这五个数中抽取一个敖,作为函数2(5)y m x =-和关于x的一元二次方程2(1)10m x mx +++=中m的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m的值是________. 【答案】2-. 【解析】试题分析:∵所得函数的图象经过第一、三象限,∴250m ->,∴25m <,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入2(1)10m x mx +++=中得,210x +=,△=﹣4<0,无实数根;将1m =-代入2(1)10m x mx +++=中得,10x -+=,1x =,有实数根,但不是一元二次方程;将2m =-代入2(1)10m x mx +++=中得,2210x x +-=,△=4+4=8>0,有实数根. 故m=2-.故答案为:2-.【考点定位】1.根的判别式;2.一次函数图象与系数的关系;3.综合题.8.【凉山州】已知实数m,n满足23650m m +-=,23650n n +-=,且m n ≠,则n mm n += .【答案】225-.【解析】试题分析:∵m n ≠时,则m,n是方程23650x x --=的两个不相等的根,∴2m n +=,53mn =-.∴原式=22m n mn +=2()2m n mn mn +-=2522()223553-⨯-=--,故答案为:225-.【考点定位】1.根与系数的关系;2.条件求值;3.压轴题. 三、解答题:(共2个小题)9.【崇左】为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同. (1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房? 【答案】(1)50%;(2)18. 【解析】【考点定位】1.一元二次方程的应用;2.增长率问题.10.【广元】李明准备进行如下操作实验:把一根长40cm的铗丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于582cm,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于482cm.你认为他的说法正确吗?请说明理由.【答案】(1)12cm和28cm;(2)正确.【解析】(2)两正方形面积之和为48时,10058482+-=xx,0416402=+-x x ,∵06441614)40(2<-=⨯⨯--, ∴该方程无实数解,也就是不可能使得两正方形面积之和为48cm2,李明的说法正确.【考点定位】1.一元二次方程的应用;2.几何图形问题.。
2021年北师大版九年级数学上册期中模拟考试(参考答案)
2021年北师大版九年级数学上册期中模拟考试(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2019-=( )A .2019B .-2019C .12019D .12019- 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.下列说法正确的是( )A .一个数的绝对值一定比0大B .一个数的相反数一定比它本身小C .绝对值等于它本身的数一定是正数D .最小的正整数是14.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .18.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .339.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23⨯=______________.2.分解因式:2x 3﹣6x 2+4x =__________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:11322x x x-=---2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 23.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB .(1)求BC 的长;(2)求证:PB 是⊙O 的切线.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、B6、D7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)12、2x (x ﹣1)(x ﹣2).3、24、125.5、360°.6、49三、解答题(本大题共6小题,共72分)1、无解2、11m m +-,原式=.3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,2-. 4、(1)2(2)略5、()117、20;()22次、2次;()372;()4120人.6、(1)35元/盒;(2)20%.。
2021年数学中考模拟试卷[下学期]北师大版
初中毕业暨升学考试试卷(数学)中考试卷第I卷(选择题:共24分)一. 选择题:本大题共8小题:每小题3分:共24分:在每小题给出的四个选项中:只有一项是符合题目要求的。
1. 下列运算错误的是()A.B.C.D.2. 下图可以看作是一个等腰直角三角形旋转若干次而生成的:则每次旋转的度数可以是()A. 90°B. 60°C. 45°D. 30°3. 据苏州市红十字会统计:2004年苏州市无偿献血者总量为12.4万人次:已连续6年保持全省第一。
12.4万这个数用科学记数法表示是()A. B.C. D.4. 将直线向上平移两个单位:所得的直线是()A.B.C.D.5. 如图所示:在平行四边形ABCD中:下列各式不一定正确的是()A.B.C.D.6. 初二(1)班有48位学生:春游前:班长把全班学生对春游地点的意向绘制成了扇形统计图:其中:“想去苏州乐园的学生数”的扇形圆心角是60°:则下列说法正确的是()A. 想去苏州乐园的学生占全班学生的60%B. 想去苏州乐园的学生有12人C. 想去苏州乐园的学生肯定最多D. 想去苏州乐园的学生占全班学生的7. 如图所示:已知等腰梯形ABCD的中位线EF的长为6:腰AD的长为5:则该等腰梯形的周长为()A. 11B. 16C. 17D. 228. 如图所示的转盘被划分成六个相同大小的扇形:并分别标上1:2:3:4:5:6这六个数字:指针停在每个扇形的可能性相等:四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形:下次就一定不会停在3号扇形:乙:只要指针连续转六次:一定会有一次停在6号扇形:丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等:丁:运气好的时候:只要在转动前默默想好让指针停在6号扇形:指针停在6号扇形的可能性就会加大。
其中:你认为正确的见解有:()A. 1个B. 2个C. 3个D. 4个第II卷(非选择题:共96分)二. 填空题:本大题共8小题:每小题3分:共24分:把答案填在题中横线上。
2021年北师大版九年级数学下册期中模拟考试附答案
2021年北师大版九年级数学下册期中模拟考试附答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是()A.2-B.2 C.12D.12-2.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±13.下列结论中,矩形具有而菱形不一定具有的性质是()A.内角和为360° B.对角线互相平分C.对角线相等 D.对角线互相垂直4.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A.﹣2 B.0 C.1 D.45.已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 6.已知:等腰直角三角形ABC的腰长为4,点M在斜边AB上,点P为该平面内一动点,且满足PC=2,则PM的最小值为()A.2 B.2 2 C.2+2 D.27.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.1910.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25二、填空题(本大题共6小题,每小题3分,共18分)1.计算:3816-+=_____.2.因式分解:3222x x y xy +=﹣__________. 3.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解方程:11322x x x-=---2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =.3.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、C5、C6、B7、A8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、()2 x x y-3、30°或150°.45、6、①③④.三、解答题(本大题共6小题,共72分)1、无解2.3、(1)略;(2)S平行四边形ABCD=244、(1)略;(2)4.95、(1)50;(2)72°;(3)补全条形统计图见解析;(4)640;(5)抽取的2名学生恰好来自同一个班级的概率为13.。
2021年北师大版九年级数学下册期中模拟考试及参考答案
2021年北师大版九年级数学下册期中模拟考试及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =--7.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1二、填空题(本大题共6小题,每小题3分,共18分)1.计算:22﹣|1﹣8|+(﹣12)﹣3=_____. 2.分解因式:3244a a a -+=__________.3.若代数式1﹣8x 与9x ﹣3的值互为相反数,则x =__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图,平面直角坐标系中,矩形OABC 的顶点A (﹣6,0),C (0,23).将矩形OABC 绕点O 顺时针方向旋转,使点A 恰好落在OB 上的点A 1处,则点B 的对应点B 1的坐标为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m取满足条件的最大整数时,求方程的根.3.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65ACB∠的度数.∠=︒,求FGC∠=︒,28ABC5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、D5、A6、C7、A8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-72、2(2)a a -;3、24、425、4π6、(,6)三、解答题(本大题共6小题,共72分)1、32x =-. 2、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1) 65°;(2) 25°.4、(1)略;(2)78°.5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)3。
北师大版2021年中考模拟测试九年级数学试题卷
北师大版2021年中考模拟测试九年级数学试题卷____年中考5月模拟测试九年级数学试题卷注意事项:1.本试卷分试题卷和答题卡两部分;考试时间为120分钟;满分120分。
2.考生在答题前请阅读答题卡中的“注意事项”,然后按要求答题。
3.所有答案均须做在答题卡相应区域,做在其他区域无效。
一、选择题(本大题共10小题,每小题3分,共30分) 1、-2的倒数是 A.2B.-2C.-?? ??D.?? ??2、下面的图形中,既是轴对称图形又是中心对称图形的是A .B .C .D .3、据统计,从____年到____年中国累积节能1570000000吨标准煤,1570000000这个数用科学记数法表示为A.0.157_1010B.15.7_108C.1.57_108D.1.57_109 4、下列计算正确的是A.(_y)3=_y3 B._5÷_5=_C.3_2?5_3=15_5 D.5_2y3+2_2y3=10_4y95、五个大小相同的正方体搭成的几何体如图所示,其主视图是A. B. C. D.6、在平面直角坐标系中,线段OP的两个端点坐标分别是O(0,0),P(4,3),将线段OP绕点O逆时针旋转90°到OP′位置,则点P′的坐标为A.(3,4) B.(﹣4,3) C.(﹣3,4) D.(4,﹣3) 7、如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.若AB=,则EF的长为 ??,∠DCF=30°A.2 B.3 C.?? D. ?? 8、如图,过半径为23的⊙O外一点P引⊙O的切线PA、PB,切点为A、B,如果∠APB=60°,则图中阴影的面积等于 A.123?2π B.243?2π C. 243?4π D.123?4π??9、张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是()..y/升3025____10950123A.加油前油箱中剩余油量y(升)与行驶时间t(小时)的函数关系式是y=-8t+25 B.途中加油21升C.汽车加油后还可行驶4小时 D.汽车到达乙地时油箱中还余油6升t/小时10、如图所示,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程_之间形成的函数关系的图象大致是A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分) 11、分解因式:2a2-2=.12、解分式方程:2_?1?1,则方程的解是._?22?_13、在?ABC中,点O是?ABC的外心,且?A?80?,则?BOC? . 14、如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为90m,则这栋楼的高度为.(结果保留根号)15、若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是 .16、定义:如果一个y与_的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是y与_的“反比例平移函数”.例如:y?1?1 的图象向左平移2个单位,_?2再向下平移1个单位得到y?1 的图象,则y?1?1是__?2y与_的“反比例平移函数”.如图,在平面直角坐标系中,点O为原点,矩形OABC的顶点A、C的坐标分别为(9,0)、(0,3).点D是OA的中点,连接OB、CD交于点E,“反比例平移函数y?a_?k”的图象经过B、E两点.则这个“反比例平移函数”的表达式_?6为;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,则写出这个反比例函数的表达式为.三、解答题(本大题共9小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤) 17、(7分)计算: ?1?0o?(??3.14)?2sin60?12?1?33.???____? ?13_2?4_?4?_?1)?18、(7分)先化简,再求代数式(的值,其中_?3. _?1_?1?3_?2>_?19、(7分)解不等式组?42,并写出它的所有整数解._?_??3?320、(8分)已知关于_的方程_2-2(k-1)_+k2=0有两个实数根_1,_2.(1)求k的取值范围;(2)若|_1+_2|=_1_2-1,求k的值.21、(8分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=5,CD=4,求BE的长.22、(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生所在扇形的圆心角是度. (2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有多少名?23、(8分)光华农机租货公司共有50台联合收割机,其中甲型20台,乙型30台,现将这50台收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B 地A地区 B地区每台甲型收割机的租金 1800元 1600元每台乙型收割机的租金 1600元 1200元区.两地区与该农机租货公司商定的租货价格见下表.(1)设派往A地区_台乙型联合收割机,租货公司这50台联合收割机一天获得的租金为y元,求y与_之间的函数关系式,并写出_的取值范围;(2)若使农机租货公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租货公司提出一条合理建议.24、(9分)如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E 作EF∥AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;① 当点Q与点C重合时(如图2),求菱形BFEP的边长;② 若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.25、(10分)如图,在平面直角坐标系_oy中,抛物线y?1_2?4_?10与y轴的交点为点189B,过点B作_轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交_轴于点F.设动点P,Q移动的时间为t(单位:秒) (1)求A,B,C三点的坐标;(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;(3)当0<t<9时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由;2(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.九年级数学试题卷(答案)1-5、CBDCC 6-10、CADCA11、2(a+1)(a-1) 12、_= - 1 13、160° 14、1203m15、5616、y?2_?9_?6y?3_ 17、解:原式=____?1?2?32?23?(33?1)=____?1?3?23?33?1 =____ 7分 18、解:原式=3?_(_?1)?(_?1)_?1?_?1(_?2)2=4?_2_?1_?1?(_?2)2=(2?_)(2?_)_?1?_?1(_?2)2 =2?__?2 当_=3时,原式=?15 19、解:由①得:_??1 由②得:_?2 ∴此不等式组的解集为?1?_?2 5分∴此不等式组的所有整数解是:0,1,2. 20、解:(1)由方程有两个实数根,可得△=b2-4ac=4(k-1)2-4k2=4k2-8k+4-4k2=-8k+4≥0,解得,k≤12 (2)依据题意可得,_1+_2=2(k-1),_1?_2=k2,5分4分7分2分4分7分由(1)可知k≤1 2∴2(k-1)<0,_1+_2<0,∴-_1-_2=-(_1+_2)=_1?_2-1,∴-2(k-1)=k2-1,解得k1=1(舍去),k2=-3, 8分∴k的值是-3.答:(1)k的取值范围是k≤21、(1)证明:连接OD.∵OD=OB ∴ ∠OBD=∠ODB∵BD是∠ABC的角平分线∴ ∠OBD=∠CBD∵ ∠CBD=∠ODB ∴OD∥BC∵∠C=90o ∴∠ODC=90o ∴ OD⊥AC∵点D在⊙O上,1;(2)k的值是-3. 2?AC是⊙O的切线 4分(2)解:过圆心O作OM?BC交BC于M. ∵BE为⊙O 的弦,且OM?BE ∴BM=EM ∵∠ODC=∠C=∠OMC= 90° ∴四边形ODCH为矩形,则OM=DC=422 ∵ OB=5 ∴BM=5?4=3=EM∴BE=BM+EM=6 8分 22、(1) 120 , 108;(每空2分) 4分 (2)6分(3) 450. 8分23、解:(1)若派往A地区的乙型收割机为_台,则派往A地区的甲型收割机为(30-_)台,派往B地区的乙型收割机为(30-_)台,派往B地区的甲型收割机为20-(30-_)=(_-10)台.∴y=1600_+1800(30-_)+1200(30-_)+1600(_-10)=200_+74 000, 2分_的取值范围是:10≤_≤30,(_是正整数); 3分(2)由题意得200_+74 000≥79 600,解不等式得_≥28,由于10≤_≤30,_是正整数,∴_取28,29,30这三个值,∴有3种不同的分配方案.①当_=28时,即派往A地区的甲型收割机为2台,乙型收割机为28台;派往B 地区的甲型收割机为18台,乙型收割机为2台;②当_=29时,即派往A地区的甲型收割机为1台,乙型收割机为29台;派往B 地区的甲型收割机为19台,乙型收割机为1台;③当_=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B 地区; 6分(3)由于一次函数y=200_+74 000的值y是随着_的增大而增大的,所以当_=30时,y取得最大值,如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需_=30,此时y=6000+74 000=80 000. 8分建议农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区,可使公司获得的租金最高.24、(1)证明:∵折叠纸片使B点落在边AD上的E处,折痕为PQ,∴点B与点E关于PQ对称,∴PB=PE,BF=EF,∠BPF=∠EPF,又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF=∠EFP,∴EP=E F,∴BP=BF=EF=EP,∴四边形BFEP为菱形; 3分(2)解:①∵四边形ABCD 是矩形,∴BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,∵点B与点E关于PQ对称,∴CE=BC=5cm,在Rt△CDE中,DE=CE2?CD2=4cm,∴AE=AD﹣DE=5cm﹣4cm=1cm;在Rt△APE中,AE=1,AP=3﹣PB=3﹣PE,∴EP2=12+(3﹣EP)2,解得:EP=cm,∴菱形BFEP的边长为cm; 6分②当点Q与点C重合时,如图2:点E离点A最近,由①知,此时AE=1cm;当点P与点A重合时,如图3所示:点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm. 9分25、解:(1)y?12(_?8_?180),令y?0得_2?8_?180?0,?_?18??_?10??0 18∴_?18或_??10∴A(18,0)124_?_?10中,令_?0得y?10即B(0,?10) 18914由于BC∥OA,故点C的纵坐标为-10,由?10?_2?_?10得_?8或_?0189在y?即C(8,?10)于是,A(18,0),B(0,?10),C(8,?10),。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
命题人单位:十里铺中学 姓名:李芳兰
评价等级:优 良 达标 待达标
一.选择题(每小题3分,计24分) 1.-2的相反数是 ( )
A.2
B.-2
C.2
1
D.- 2
1 2.如图,数轴上A 、B 两点分别对应实数a 、b ,则下列结论正确的是 ( )
A.a+b>0
B.ab>0
C.a-b>0
D.|a|-|b|>0
3.第29届北京奥运会火炬接力活动历时130天,传递行程约为137 000 km.用科学记数法表示137 000 km 是 ( )
A. 1.37xlO 5km
B.13.7×104 km
C. 1.37×104 km
D.1.37x103km
4.以三角形的三个顶点及三边的中点为顶点的平行四边形共有( )
A .1个
B .2个
C .3个
D .4个
5.如图,正三角形的内切圆半径为1,那么三角形的边长为( ) A .2 B .23 C 3 D .3
6.如图,点A 的坐标为(-1,0),点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为( ) A.(0,0) B.(2
2,2
2-
) C.(-2
1,-21) D.(-
2
2,
-
2
2)
7.如图所示,D 、E 是△ABC 中BC 边的三等分点,F 是AC 的中点,AD 与EF 交于O ,则OF
OE
等于 ( )
A.12
B.13
C.23
D.34 8.如图所示是小明在物理实验课上用量筒和水测量铁块A 的体积实验,小明在匀速向上将铁块提起,直至铁块完全露出水面一定高度的过程中,则下图能反映液面高度h 与铁块被提起的时间t 之间的函数关系的大致图象是 ( )
二、填空题(本大题共有10小题,每小题3分,共24分) 9.已知x <2,化简:442+-x x = .
10.某天我国6个城市的平均气温分别是 -3℃、5℃、 -12℃、 16℃、 22℃、 28℃.
则这6个城市平均气温的极差是 ℃.
11.为解决群众看病难的问题,一种药品连续两次降价,每盒的价格
由原来的60元降至48.6元,则平均每次降价的百分率为 .
12.若关于x的一元二次方程x2+(k+3)x+k=0的一个根是1,则另一个根是.
13.将抛物线y=3x2向左平移1个单位,再向
上平移4个单位后,得到的抛物线解析式是
.
14.如图,⊙A、⊙B、⊙C相互外离,且它们的半径都是2,顺次连接三个圆的圆心得到三角形ABC,则图中三个扇形
(阴影部分)的面积之和是.
15.图17-1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图17-2的新几何体,则该新几何体的体积为 cm3.(计算结果保留π)
16.有一个Rt△ABC,∠A=90︒,∠B=60︒,AB=1,将它放在平面直角
坐标系中,使斜边BC在x轴上,直角顶点A在反比例函数y=3
x 上,则点C的坐标为.
三、解答题(共72分)
17.(本题满分5分)计算:
⑴
1
1
20092520 6
-
⎛⎫
-+-
⎪
⎝⎭
18.(本小题满分6分)先化简,再求值:⎪⎭⎫
⎝
⎛+---÷--11211222x x x x x x ,选一
个你喜欢的实数x 代入求值.
19.(本小题满分8分)国家规定“中小学生每天在校体育活动时间不
低于1小时”.为此,某市就“你每天在校体育活动时间是多少”的问题
(第23题图)
随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:
A组:0.5h
≤
t<;B组:0.5h1h
t<
C组:1h 1.5h
≤D组: 1.5h
t≥
t<
请根据上述信息解答下列问题:
⑴C组的人数是;
⑵本次调查数据的中位数落在组内;
⑶若该辖区约有24 000名初中学生,请你估计其中达国家规定体
育活动时间的人约有多少?
20.(本小题满分8分)如图,在一次夏令营活动中,小明从A地出发,沿北偏东某个方向走500米到达B地;小红从A地出发,沿东南方向走2米到达C地。
若C地恰好在B地的正南方向,求B、
C两地之间的距离。
21.(本小题满分8分)如图,在平行四边形ABCD中,BC
AE⊥于E,AF⊥于F,BD与AE、AF分别相交于G、H.
CD
⑴求证:△ABE∽△ADF;
⑵若AH
AG=,求证:四边形ABCD
是菱形.
22.(本小题满分8分)如图,在ABC △中,AB AC =,以AB 为直径的
O ⊙交BC 于点M ,MN AC ⊥于点. ⑴求证MN 是O ⊙的切线;
⑵若1202BAC AB ∠==°,,求图中阴影部分的面积.
23.(本小题满分8分)今年4月14日,青海省玉树县发生了里氏7.1
级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?人均捐款多少元?
C
24.(本小题满分9分)有3张不透明的卡片,除正面写有不同的数字外,其他均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.
⑴写出k为负数的概率;
⑵求一次函数y=kx+6的图象经过二、三、四象限的概率.(用树状图或列表法求解)
25.(本题满分12分)如图,已知抛物线经过原点O与x轴上另一点A,它的对称轴x=2与x轴交于C,直线y=-2x -1经过抛物线上一点B( -2,m),且与y轴、直线x=2分别交于点D、E.
⑴求m的值及该抛物线对应的函数关系式;
⑵求证:①CB= CE;②D是BE的中
点;
⑶若P(x,y)是该抛物线上的一个动点,是
否存在这样的点P,使得PB= PE,若
存在,试求出所有符合条件的点P的
坐标;若不存在,请说明理由.
九年级数学中考模拟试卷参考答案
一、选择题
1.A
2.C
3.A
4.C
5.B
6.C
7.A
8.B 二、填空题
9.2-x 10.40 11. 10%
12.2- 13. 23(1)4y x =++ 14. 2π 15. π60 16. (12
-
,0)(12,0),)0,25(,)0,25(-
三、解答题
17.(1) 5 18.化简结果为
1
1
-x 19.(1)120 (2)C 组 (3)人约有14400 20. B 、C 两地之间的距离为700米 23.证明略 21. (1)连接OM 证明垂直 (2)阴影面积为
6
833π
- 22.解:设第一天捐款x 人,则第二天捐款(x +50)人 由题意列方程
x
4800=506000
+x 解得 x =200. 检验:当x =200时,x (x +50)≠0 ∴ x =200是原方程的解. 两天捐款人数x +(x +50)=450, 人均捐款
x
4800
=24(元). 答:两天共参加捐款的有450人,人均捐款24元. 23.(1) k 为负数的概率为
3
2
(2)树状图略 24.(1)证:在正方形ABCD 中,∠A =∠B =90°.
∵DE ⊥EF ,∴∠DEF =90°,∴∠DEA+∠BEF =90°.
∵∠ADE+∠DEA =90°,∴∠ADE =∠BEF. ∴△ADE ∽△BEF.
(2)解:由(1)知△ADE ∽△BEF ,∴AD AE
BE BF
=
,即44x x y =-. ∴22111
(4)(2)1444
y x x x x x =-=-+=--+.
∵1
04a =-<,∴当2x =时,y 有最大值,且最大值为1.
(3)解:在21
(2)14
y x =--+中,当2x <时,y 随x 增大而增大.
且当1x =时,3
4
y =
;当2x =时,1y =. ∴当12x <<时,y 的取值范围是3
14
y <<.
25.(1)m=3 (2)证明略
(3))251,53(1++P ,)251,53(2--P。