中考数学图形及其变换复习教案
第四单元图形的变换数学教案设计
第四单元图形的变换數學教案設計
标题:第四单元图形的变换数学教案设计
一、教学目标:
1. 知识与技能:
学生能够理解并掌握图形变换的基本概念,包括平移、旋转和翻转,并能熟练地进行相关的操作。
2. 过程与方法:
通过实际操作和观察,引导学生发现图形变换的规律和特点,培养学生的观察能力和逻辑思维能力。
3. 情感态度价值观:
培养学生对图形变换的兴趣,激发他们的探索精神和创新意识。
二、教学内容:
1. 图形变换的基本概念
2. 平移、旋转和翻转的操作方法
3. 图形变换的应用
三、教学过程:
1. 导入新课:通过展示一些生活中常见的图形变换现象,如时钟的指针转动、电梯的上下移动等,引入图形变换的概念。
2. 新知讲授:首先解释图形变换的基本概念,然后分别讲解平移、旋转和翻转的操作方法。
在这个过程中,可以使用实物模型或者多媒体动画来帮助学生理解和记忆。
3. 实践操作:让学生自己动手进行图形变换的操作,通过实践加深对知识的理解。
4. 总结归纳:引导学生总结图形变换的规律和特点,提升他们的抽象思维能力和概括能力。
5. 作业布置:布置一些图形变换的习题,让学生在实践中巩固所学知识。
四、教学评价:
1. 过程性评价:观察学生在课堂上的表现,包括参与度、积极性和问题解决能力。
2. 结果性评价:通过作业和小测验,检查学生对图形变换知识的掌握程度。
五、教学反思:
根据学生的学习反馈和学习效果,及时调整教学策略,提高教学效果。
以上就是关于“第四单元图形的变换数学教案设计”的全部内容,希望对您有所帮助。
初中图形变化教案
初中图形变化教案教学目标:1. 了解平移、旋转和轴对称的概念及其在实际中的应用。
2. 学会使用平移、旋转和轴对称对图形进行变换。
3. 培养学生的观察能力、操作能力和解决问题的能力。
教学重点:1. 平移、旋转和轴对称的概念及性质。
2. 平移、旋转和轴对称在实际中的应用。
教学难点:1. 平移、旋转和轴对称的计算。
2. 灵活运用平移、旋转和轴对称解决实际问题。
教学准备:1. 教学课件或黑板。
2. 图形模板。
3. 练习题。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的物体,如桌子、椅子、黑板等,找出它们之间的平移、旋转和轴对称关系。
2. 学生分享观察结果,教师点评并总结。
二、新课讲解(15分钟)1. 讲解平移的概念和性质,如平移的定义、平移的方向和距离等。
2. 讲解旋转的概念和性质,如旋转的定义、旋转的中心和角度等。
3. 讲解轴对称的概念和性质,如轴对称的定义、对称轴等。
三、实例演示(10分钟)1. 教师用图形模板进行实例演示,展示平移、旋转和轴对称的变换过程。
2. 学生跟随教师一起操作,体会平移、旋转和轴对称的性质。
四、练习巩固(10分钟)1. 学生独立完成练习题,巩固平移、旋转和轴对称的知识。
2. 教师选取部分学生的作业进行点评,解答学生的疑问。
五、应用拓展(5分钟)1. 学生分组讨论,思考平移、旋转和轴对称在实际中的应用,如设计图案、解决几何问题等。
2. 每组选代表进行分享,教师点评并总结。
六、课堂小结(5分钟)1. 教师引导学生总结本节课所学内容,巩固知识点。
2. 学生分享学习收获,教师给予鼓励和评价。
教学反思:本节课通过引导学生观察生活中的实例,让学生了解平移、旋转和轴对称的概念和性质,学会运用这些知识进行图形的变换。
在教学过程中,注意调动学生的积极性,鼓励学生参与课堂讨论,提高学生的观察能力和操作能力。
同时,通过练习题和应用拓展环节,让学生巩固所学知识,提高解决问题的能力。
在今后的教学中,可以尝试引入更多实际应用案例,让学生更好地理解和运用图形变化知识。
人教版中考数学第一轮复习第七章图形与变换
第七章图形与变换第二十四讲平移、旋转与对称【基础知识回顾】一、轴对称与轴对称图形:1、轴对称:把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形那么就说这两个图形成轴对称,这条直线叫2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相那么这个图形叫做轴对称图形3、轴对称性质:⑴关于某条直线对称的两个图形⑵对应点连接被对称轴【名师提醒:1、轴对称是指个图形的位置关系,而轴对称图形是指个具有特殊形状的图形;2、对称轴是而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转:1、平移:⑴定义:在平面内,把某个图形沿着某个移动一定的这样的图形运动称为平移⑵性质:Ⅰ、平移不改变图形的与,即平移前后的图形Ⅱ、平移前后的图形对应点所连的线段平行且【名师提醒:平移作图的关键是确定平移的和】2、旋转:⑴定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个,这样的图形运动称为旋转,这个点称为转动的称为旋转角⑵旋转的性质:Ⅰ、旋转前后的图形Ⅱ、旋转前后的两个圆形中,对应点到旋转中心的距离都,每对对应点与旋转中心的连线所成的角度都是旋转角都【名师提醒:1、旋转作用的关键是确定、和,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1800能与另一个图形就说这两个图形关于这个点成中心对称,这个点叫做2、中心对称图形:一个图形绕着某点旋转后能与自身重合,这种图形叫中心对称图形,这个点叫做3、性质:在中心对称的两个图形中,对称点的连线都经过且被平分【名师提醒:1、中心对称是指个图形的位置关系,而中心对称图形是指个具有特殊形状的图形2、常见的轴对称图形有、、、、、等,常见的中心对称图形有、、、、、等3、所有的正n边形都是对称图形,且有条对称轴,边数为偶数的正多边形,又是对称图形,4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】1.已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为.2.点P(2,-1)关于x轴对称的点P′的坐标是.3.在图示的方格纸中(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?4.已知点P(3,2),则点P关于y轴的对称点P1的坐标是,点P关于原点O的对称点P2的坐标是5.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.6.点(3,2)关于x轴的对称点为()A.(3,-2)B.(-3,2)C.(-3,-2)D.(2,-3)7.在平面直角坐标系中,将点A(-2,3)向右平移3个单位长度后,那么平移后对应的点A′的坐标是()A.(-2,-3)B.(-2,6)C.(1,3)D.(-2,1)8.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于()A.55°B.70°C.125°D.145°9.P是∠AOB内一点,分别作点P关于直线OA、OB的对称点P1、P2,连接OP1、OP2,则下列结论正确的是()A.OP1⊥OP B.OP1=OP2C.OP1⊥OP2且OP1=OP2D.OP1≠OP2 10.已知点M(3,-2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是.11.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m,且桥宽忽略不计,则小桥总长为m.12.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB= °.13.如图,正方形ABCD的边长为4,点P在DC边上且DP=1,点Q是AC上一动点,则DQ+PQ的最小值为.14.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为.15.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标.(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标.第二十五讲相似图形(一):【知识梳理】1.比例基本性质及运用(1)线段比的含义:如果选用同一长度单位得两条线段a、b的长度分别为m、n,那么就说这两条线段的比是a:b=m:n,或写成a m=b n,和数的一样,两条线段的比a、b中,a叫做比的前项 b叫做比的后项.注意:①针对两条线段;②两条线段的长度单位相同,但与所采用的单位无关;③其比值为一个不带单位的正数.(2)线段成比例及有关概念的意义:在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段,已知四条线段a、b、c、d,如果a c=b d或a:b=c:d,那么a、b、c、d叫做成比例的项,线段a、d叫做比例外项,线段b、d叫做比例内项,线段d叫做a、b、c的第四比例项,当比例内项相同时,即a bb c=或a:b=b:c,那么线段b叫做线段a和c的比例中项.(3)比例的性质,①基本性质:如果a:b=c:d,那么ad=bc;反之亦成立。
初中数学图与图形的变换精讲
图形与图形的变换1.图形的初步认识①掌握画基本几何体(直棱柱、圆柱、圆锥、球)的三视图,会判断简单物体的三视图,能根据三视图描述基本几何体或实物原型.②了解直棱柱、圆锥的侧面展开图,能根据展开图判断立体模型.③了解几何体与其三视图、展开图(球除外)之间的关系.④掌握比较角的大小,估计一个角的大小,计算角度的和与差,进行度、分、秒简单换算.⑤了解角平分线及其性质,了解补角、余角、对顶角;理解等角的余角相等、等角的补角相等、对顶角相等.⑥了解两点之间,线段最短;了解经过两点有一条直线,并且只有一条直线.⑦了解垂线、垂线段等概念,垂线段最短的性质,点到直线距离的意义;了解过一点有且仅有一条直线垂直于已知直线.⑧掌握用三角尺或量角器过一点画一条直线的垂线;了解线段垂直平分线及其性质.⑨理解平行线的特征和平行线的识别;了解过直线外一点有且仅有一条直线平行于已知直线;掌握用三角尺和直尺过已知直线外一点画这条直线的平行线.⑩理解平行线之间距离的意义;掌握度量两条平行线之间的距离的方法.2.轴对称①认识轴对称.②理解对应点所连的线段被对称轴垂直平分的性质.③掌握能按要求作简单平面图形经过一次或两次轴对称后的图形.④掌握简单图形之间的轴对称关系,并指出对称轴.⑤掌握基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性质及相关性质.⑥掌握利用轴对称进行图案的设计.3.平移和旋转①认识平移,理解对应点连线平行且相等的性质;掌握按要求作简单平面图形平移后的图形;掌握选用平移进行图案设计.②认识旋转(含中心对称);理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.③了解平行四边形、圆是中心对称图形.④掌握按要求作简单平面图形旋转后的图形.⑤掌握图形之间的轴对称、平移、旋转及其组合四种关系形式.⑥掌握运用轴对称、平移和旋转的组合进行图案设计.⑦在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,培养学生的数学说理的习惯与能力.【课时分布】图形与图形的变换在第一轮复习时大约需要3个课时,下表为内容及课时安排(仅供参考)课时数内容1基本图形的认识1轴对称与轴对称图形1平移与旋转1图形与图形的变换单元测试与评析【知识回顾】1.知识脉络图形的初步认识立体图形平面图形视图平面展开图点和线角相交线平行线图形之间的变换关系轴对称平移旋转旋转对称中心对称2.基础知识(1)两点之间线段最短;连结直线外一点与直线上各点的所有线段中,垂线段最短.(2)视图有正视图、俯视图、侧视图(左视图、右视图).(3)平行线间的距离处处相等.(4)平移是由移动的方向和距离决定的.(5)平移的特征:①对应线段平行(或共线)且相等;连结对应的线段平行(或共线)且相等;②对应角分别相等;③平移后的图形与原图形全等.(6)图形的旋转由旋转中心、旋转角度和旋转方向决定.(7)旋转的特征:①对应点与旋转中心的距离相等;对应线段相等,对应角相等;②每一点都绕旋转中心旋转了相同的角度;③旋转后的图形与原图形全等.3、能力要求例1选择、填空题(1)如图6-1,小军将一个直角三角板绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是·····································A.B.C .D .【分析】图形的旋转与展开.【解】D .(2)如图6-2,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为()A .4πcmB .3πcmC .2πcmD .πcm【分析】图形的旋转与圆弧问题结合.【解】C .(3)有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45 ,第1次旋转后得到图①,第2次旋转后得到图②……,则第10次旋转后得到的图形与图①~图④中相同的是()A .图①B .图②C .图③D .图④【分析】图形的旋转与操作.【解】B .(4)如图6-3,在Rt △ABC 中,∠C =90°,AC =8,BC =6,ABCD 图6-3C’图①图②图③图④图6-2ABCDO图6-1(5)按图中所示方法将△BCD 沿BD 折叠,使点C 落在边AB 上的点C ′处,则折痕BD的长为__________.【分析】图形的折叠与勾股定理应用.【解】35.(5)如图6-4,在68⨯的网格图(每个小正方形的边长均为1个单位长度)中,⊙A 的半径为2个单位长度,⊙B 的半径为1个单位长度,要使运动的⊙B 与静止的⊙A 内切,应将⊙B 由图示位置向左平移个单位长度.【分析】图形平移、圆的位置关系与发散思维结合【解】4或6(6)如图6-5所示,在折纸活动中,小明制作了一张ABC △纸片,点D E 、分别是边AB 、AC 上,将ABC△沿着DE 折叠压平,A 与'A 重合,若=70A ︒∠,则1+2∠∠=()A.140︒B.130︒C.110︒D.70︒【分析】图形折叠、三角形内角和与平角的结合【解】A(7)如图6-6-1和6-6-2,四边形ABCD 是边长为1的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与x 之间函数关系的图象是()图6-4图6-5图图【分析】图形的平移、动点问题及函数图像【解】B【说明】由于概念、性质比较多,复习时可以通过基本练习题的训练,使学生熟练掌握图形与图形变换的基本知识、基本方法和基本技能.重视平移、旋转、折叠、展开过程中学生思维的训练,重视平移、旋转、折叠、展开的操作过程,提高学生的分解、组合图形的能力和动手能力。
第四单元图形的变换数学教案设计
第四单元图形的变换數學教案設計
一、教案主题:第四单元图形的变换
二、教学目标:
1. 学生能够理解和掌握图形平移、旋转和镜像等基本概念。
2. 学生能够通过实际操作和观察,理解图形变换的特点和规律。
3. 培养学生的空间观念和逻辑思维能力。
三、教学内容:
1. 图形的平移
2. 图形的旋转
3. 图形的镜像
4. 综合运用图形的变换
四、教学步骤:
1. 引入新课:
通过展示一些有趣的图形变换动画或者实例,引起学生对图形变换的兴趣。
2. 新知讲解:
(1) 图形的平移:首先,定义平移的概念,然后给出具体的例子进行解释,最后让学生自己动手操作,感受平移的过程和特点。
(2) 图形的旋转:同样,先定义旋转的概念,然后通过具体的例子进行说明,最后让学生自己尝试,体验旋转的过程和规律。
(3) 图形的镜像:首先,介绍镜像的概念,然后通过实物或模型演示镜像的形成过程,最后让学生自己实践,了解镜像的特点和变化规律。
3. 练习巩固:
设计一些相关的练习题,让学生在实践中进一步理解和掌握图形变换的知识。
4. 总结回顾:
回顾本节课所学的内容,强调图形变换的重要性和应用,鼓励学生在生活中寻找和发现图形变换的例子。
五、作业布置:
设计一些与图形变换相关的家庭作业,以帮助学生巩固课堂所学知识。
六、教学反思:
在教学过程中,要随时注意学生的反应和反馈,及时调整教学方法和策略,确保学生能真正理解和掌握图形变换的知识。
以上是一个基本的教学框架,具体内容可以根据学生的实际情况和需求进行适当的调整和补充。
希望这个框架能对您的教学有所帮助。
《图形和变换》数学教案
《图形和变换》数学教案
标题:《图形和变换》数学教案
一、教学目标:
1. 学生能够理解和掌握图形的基本概念和分类。
2. 学生能够掌握图形变换的基本方法,包括平移、旋转和反射。
3. 通过实际操作,提高学生的空间观念和几何思维能力。
二、教学内容:
1. 图形的基本概念和分类
- 点、线、面的概念
- 常见的二维图形(如圆形、正方形、长方形等)和三维图形(如球体、立方体等)
2. 图形的变换
- 平移:定义、特点和操作方法
- 旋转:定义、特点和操作方法
- 反射:定义、特点和操作方法
三、教学过程:
1. 引入新课:教师可以通过实物或者图片展示各种图形,引导学生观察并提问:“这些图形有什么共同点?我们可以怎样将它们进行分类?”以此引入图形的基本概念和分类。
2. 新知讲解:在讲解图形变换时,教师可以先让学生观察一个图形经过平移、旋转或反射后的变化,然后引导学生总结出每种变换的特点和操作方法。
3. 实践操作:设计一些实践活动,如让学生用纸片制作一个简单的图形,然后尝试对其进行平移、旋转和反射。
4. 巩固练习:设计一些习题,让学生通过解答来巩固所学的知识。
四、教学评价:
1. 过程评价:在实践操作环节,教师可以通过观察学生的表现,了解他们对图形变换的理解程度。
2. 结果评价:通过检查学生的作业和测试成绩,评估他们的学习效果。
五、教学反思:
1. 对于学生在课堂上的反应和反馈进行分析,找出教学中的问题和不足,以便改进教学方法。
2. 对于学生的学习成果进行评估,看看是否达到了预期的教学目标。
初中平面图形的变化教案
初中平面图形的变化教案教学目标:1. 认识和理解平面图形的变换,包括平移、旋转、轴对称和镜像对称。
2. 学会运用几何语言和符号描述平面图形的变换。
3. 能够运用变换的性质解决实际问题,提高空间想象和解决问题的能力。
教学重点:1. 掌握平面图形的平移、旋转、轴对称和镜像对称的性质和特点。
2. 学会运用变换的性质解决实际问题。
教学难点:1. 理解和掌握平面图形的变换的数学描述和符号表示。
2. 灵活运用变换的性质解决实际问题。
教学准备:1. 多媒体课件和教学素材。
2. 几何画图工具,如直尺、圆规等。
教学过程:一、导入(5分钟)1. 引导学生观察和描述一些日常生活中的平面图形变化,如旋转门、折叠纸盒等。
2. 提问:这些平面图形的变化有什么共同特点?它们之间有什么联系?二、新课讲解(15分钟)1. 讲解平移的性质和特点,示例演示平移的变换过程。
2. 讲解旋转的性质和特点,示例演示旋转的变换过程。
3. 讲解轴对称和镜像对称的性质和特点,示例演示它们的变换过程。
三、课堂练习(15分钟)1. 让学生自主完成一些平面图形变化的练习题,巩固所学的知识。
2. 引导学生运用变换的性质解决实际问题,如设计图案、制作模型等。
四、课堂小结(5分钟)1. 回顾本节课所学的平面图形变化的内容,总结它们的性质和特点。
2. 强调平面图形变化在实际生活中的应用和意义。
五、作业布置(5分钟)1. 让学生完成一些平面图形变化的练习题,巩固所学的知识。
2. 布置一些实际问题,让学生运用变换的性质解决,提高解决问题的能力。
教学反思:本节课通过引导学生观察和描述日常生活中的平面图形变化,激发学生的学习兴趣和好奇心。
通过新课讲解和课堂练习,让学生掌握平面图形的平移、旋转、轴对称和镜像对称的性质和特点,提高学生的空间想象和解决问题的能力。
在教学过程中,要注意关注学生的学习情况,及时解答学生的疑问,确保学生能够理解和掌握所学的知识。
同时,通过实际问题的解决,让学生感受平面图形变化的应用和意义,提高学生的学习积极性和主动性。
图形的变换数学教案
图形的变换数学教案
标题:图形变换数学教案
一、教学目标
1. 理解图形变换的基本概念。
2. 掌握图形平移、旋转、对称、放缩等基本变换方法。
3. 能够运用图形变换解决实际问题。
二、教学重点与难点
1. 重点:理解图形变换的基本概念,掌握图形变换的基本方法。
2. 难点:灵活运用图形变换解决实际问题。
三、教学过程
1. 引入新课:
通过一些有趣的图片或者动画展示图形变换的效果,引起学生的兴趣和好奇心,引入本节课的主题——图形变换。
2. 讲授新课:
(1)图形变换的基本概念:解释什么是图形变换,以及它在生活中的应用。
(2)图形变换的基本类型:讲解平移、旋转、对称、放缩等基本图形变换,并用具体的例子进行说明。
(3)图形变换的基本方法:详细讲解如何进行各种图形变换,包括步骤和注意事项。
3. 练习与实践:
设计一些练习题让学生自己尝试进行图形变换,检查他们是否真正理解和掌握了图形变换的方法。
4. 拓展与提高:
介绍一些复杂的图形变换,比如复合变换,引导学生思考如何将多个基本变换组合起来进行更复杂的变换。
5. 小结与作业:
回顾本节课的主要内容,布置一些相关的课后作业,要求学生在课后继续思考和练习图形变换。
四、教学评价
通过课堂练习和课后作业的反馈,了解学生对图形变换的理解程度和操作能力,及时给予指导和帮助。
五、教学反思
总结本节课的教学效果,反思教学过程中的优点和不足,以便改进和优化后续的教学。
《中考专题复习——图形变换(2)》教学设计
《中考专题复习——图形变换(2)》教学设计一、教材分析1.教材内容:初三数学(人教版)中考专题复习——图形变换中旋转变换的复习. 2.教材的地位、特点与作用运动与变化是数学研究中一种基本方法.平移、轴对称、旋转是图形变换的常见三种形式.平移与轴对称都是关于直线运动的,而旋转是关于点运动的.因此,旋转是对图形运动的完善与补充.从变换的角度来研究诸如等腰直角三角形、等边三角形、正方形等图形的结构有助于对这些几何图形有更本质的认识.通过对旋转内容的复习,既培养了学生动手操作的能力,又培养了他们用数学的方法解决有关问题的能力.通过对数与形的有关问题的解决,使得学生数学思维又提升一个层次.二、学情分析在学习本节课前,学生已经学了平移、旋转和轴对称的相关知识,对于图形的变换已经有所认识.初三的学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展.经过调查分析,学生对旋转(中心对称)概念和性质的理解以及作旋转(中心对称)的图象掌握较好,但由于相比较平移和轴对称,旋转变换的图形关系打破了图形的均衡与匀称的关系,识别图形之间的关系相对困难,在本节课复习中,仍需教师的引导和梳理.三、课程目标(一)教学目标1.知识目标:会识别旋转图形,并能运用旋转变换解决一些有关图形变换的问题;灵活运用旋转解决有关综合题.2.过程性目标:使学生经历对旋转图形的分析、画图等过程,多角度地感受旋转图形的变换,让学生通过问题串的探究,培养学生探究、分析解决问题的能力.3.情感目标:通过合作学习,建立学生学习数学的自信,在问题研究过程,培养学生合作交流意识和探究新知的创新能力.(二)教学重点与难点教学重点:从变换角度观察图形,利用旋转性质分析问题,解决有关的综合题.教学难点:旋转性质的灵活运用,基本几何图形的旋转及识图、作图能力.四、教法学法分析教法:《中考专题复习——图形变换》我设计了 3 个课时,这节课是第二课时,主要采用“发展教学模式”,教学程式为:梳理基本知识——观察、分析迁移——解决“最近发展区”——编构发展的网络——归纳领悟,形成能力.教学各环节中,适时采用多媒体设备展示学生的成果,提高课堂的效率;借助几何画板演示动态的旋转图形,直观、形象地呈现图形的旋转过程,使信息技术与教学内容有机整合,真正为教学服务.学法:采用“世界咖啡”对话学习模式.“世界咖啡”模式的主要精神就是一组人,针对某个主题,发表各自的见解,互相意见碰撞,激发出意想不到的思维成果,是一种深度汇谈,有效的集体对话方式.每个活动要求做到:(一)请先独立完成活动;(二)组员交流活动情况,组员尝试解决有疑问的题目,可讨论、交流、请教;(三)桌长将问题汇总,归纳,选出代表谈谈小组的学习成果.五、课前准备学生:每位学生准备一个等腰直角三角形、一个等边三角形、一个正方形纸片教师:导学案、多媒体课件、几何画板动态演示图教学环节教学内容师生行为设计意图(二)观察分析迁移解决“最近发展区”活动二:【第一杯咖啡】:感受旋转变换.如图,已知∆AOB、∆COD 均是等腰直角三角形,∠AOB =∠COD = 90︒,连结 AC 和BD,(1)在图 1 中,点 A、O、D 在同一直线上,请判断 AC 与 BD 的关系?并说明理由;图 1(2)若∆COD 转到图 2 的位置,请判断 AC 与 BD 的关系?并说明理由;图 2学生独立尝试解决(1)、(2)组员交流做法.教师巡视,参与小组的交流.学生代表分享小组的学习成果.教师引导学生比较图 1 和图2 的区别与联系.学生可能出现的误区:学生往往会没有考虑 AC 与BD 的位置关系,教师应特别强调.通过【第一杯咖啡】的设计,让学生感受旋转变换的图形之间的关系,让学生尝试从运动的观点观察图形,并尝试运用旋转的性质解决问题,同时为解决【第二杯咖啡】打下基础.通过“世界咖啡”模式,让学生初步经历“独立思考、合作交流、及时反思”的过程.(三)编构活动三:【第二杯咖啡】:进行旋转变换变式一:在第(2)题的基础上改变∆COD 的位置,变成一道新的题目.请同学们画出图形,并判断 AC与 BD 的关系?(不需说明理由)学生先利用等腰直角三角形做实验,独立思考,然后尝试解决问题;同组学生交流新图形,并判断AC 与BD 的关系;小组代表展示小组交流的变式一的设计让学生尝试根据题目需要,有目的对原图形的进行变换,并让学生判断此时 AC与BD 的关系.让学生教学环节教学内容师生行为设计意图(四)归纳领悟,形成能力活动五:课堂小结学生自己总结,并在班上交流:本节课我学会了……使我感触最深的……我感到最困难的是……结合学生所述,教师给予指导.增强学生学习过程中的反思意识,这些及时的反思,能帮助学生举一反三、触类旁通、领悟方法.(五)作业布置1、把各小组的成果进行整理,完成在《导学案》中.2、完成题目:已知:正方形ABCD 中,∠MAN = 45 ,∠MAN 绕点A 顺时针旋转,它的两边分别交CB,DC (或它们的延长线)于点M,N .当∠MAN绕点A旋转到BM=DN时(如图 1),易证BM +DN =MN .(1)当∠MAN绕点A旋转到BM≠DN时(如图 2),线段BM,DN 和MN 之间有怎样的数量关系?写出猜想,并加以证明.(2)当∠MAN 绕点A 旋转到如图 3 的位置时,线段BM,DN 和MN 之间又有怎样的数量关系?请直接写出你的猜想.教师布置作业学生课后完成首先要求总结课堂上各小组的成果,再一次梳理知识.然后通过题目 2(旋转变换的经典题型),进一步拓宽学生对旋转变换的认识,促进学生数学思考,从而激活学生的数学思维.七、板书设计八、教后反思:这是一节中考专题复习课,布鲁纳说过:“思维永远是从问题开始的.”如果教师依然采用程式化的复习方式,那么就很难调动学生的积极性,同时也很难唤醒学生求知的欲望.基于此,本课例的设计采用了“世界咖啡”模式,学生在小组内发表各自的见解,互相意见碰撞,激发出意想不到的思维成果,同时也增强语言表达能力.还让学生用相关的几何图形纸片做实验,亲身经历画图-观察-猜想-验证-归纳,得出旋转变换的特点.教学中,适时采用实物投影仪展示学生的成果,提高课堂的效率;借助几何画板演示动态的旋转图形,直观、形象地呈现图形的旋转过程,使信息技术与教学内容有机整合,真正为教学服务.通过课堂小结,增强学生学习过程中的反思意识,培养他们良好的学习习惯.近几年,中考数学试题的压轴题中常出现动态问题.这类问题,涉及的知识面广,综合性强,解答时有一定的难度,需要学生有一定的数学方式的理性思维,能进行数学思考.本节课中,“两杯咖啡”的设计充分体现学生“动手操作、独立思考、合作交流、及时反思”的过程.动手操作,能让学生学会数学思考;独立思考,能让学生体会数学思考;合作交流,能让学生完成数学思考;及时反思,能让学生发展数学思考.。
“图形的轴对称、平移和旋转”中考专题复习教学设计
收稿日期:2021-01-16作者简介:曹自由(1979—),男,高级教师,主要从事中学数学教育研究.“图形的轴对称、平移和旋转”中考专题复习教学设计曹自由摘要:图形的变化是发展空间观念的内容抓手,也是研究图形的基本方法,是发现和构造不变量和不变关系的重要途径.学生在新授课阶段分别学习了轴对称、平移和旋转,在中考第二轮复习中需要建立它们之间的关联,进行整体复习.通过四个课时的复习教学,分别引导学生感受运动变化、理解运动变化、运用运动变化、整合运动变化,有效发展学生的空间观念、几何直观和推理能力.文章将第1课时设计整理成文,以供研讨.关键词:图形的变化;中考复习;教学设计一、内容和内容解析1.内容图形的变化(轴对称、平移、旋转).2.内容解析初中阶段学习的几何图形的变化包括轴对称、平移、旋转和相似(位似)的概念、性质和应用.本节课复习的内容是图形的全等变换——轴对称、平移和旋转.图形的全等变换可以看作是图形的刚体运动,用全等变换的思想研究图形的性质和关系是“图形与几何”领域重要的学习内容.在义务教育阶段,图形之间最重要的关系就是全等,全等可以用图形重合的方式直观获得,而“图形重合”需要通过图形的运动来实现,这种运动就是图形的轴对称、平移和旋转.图形的变化是理解图形空间结构的基本方法,也是空间观念的核心要素.抽象轴对称、平移和旋转的基本性质,用逻辑的方法理解图形的全等变换是从定性到定量研究图形的变化的桥梁.从小学直观认识图形的轴对称、平移和旋转到初中的逻辑研究、坐标表示再到后续的矩阵表示,是图形的全等变换的定性到定量发展的三个重要阶段.基于以上分析,确定本节课的教学重点是:建立三种图形的变化相关知识的逻辑体系,并用图形变化的观点认识几何图形.二、目标和目标解析1.目标(1)理解轴对称、平移、旋转之间的联系,加深对运动变化的认识,落实画图和识图的能力,渗透几何直观能力.(2)在问题探究的过程中,逐步形成用图形的变化思考、解决问题的意识,渗透图形变化思想.2.目标解析达成目标(1)的标志:能够从运动变化的角度描述两个已知图形之间的关系,能够根据图形变化(轴对称、平移、旋转)的概念和性质画出运动变化后的图形,通过梳理建立三种变化相关知识的逻辑体系.达成目标(2)的标志:能够以运动的视角观察图形,用变化的思想分析图形特征.三、教学问题诊断分析近几年北京中考试卷中的几何综合题都考查了图形的变化的相关内容,并且不是单一的,而是从一种变化到另一种变化的综合考查.但是学生学习时,知识是零散的、分割开的,先学习了平移,然后是轴对称和旋转,没有形成三种变化相关知识的逻辑体系.同时,图形的变化是一种观察图形的视角,培养这种“视角”与培养“知识与技能”同样重要.基于以上分析,可以确定本节课的教学难点是:三种图形的变化之间的转化.四、教学过程设计1.课前学习题目如图1,在平面直角坐标系xOy中,△AOB 可以看作是△OCD经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△OCD得到△AOB 的过程:.图1思考问题:什么是轴对称、平移、旋转?它们各有什么性质?它们之间有什么联系?【设计意图】此题为2017年中考北京卷第15题,学生在课前复习轴对称、平移、旋转的相关知识,关注知识的形成过程及知识之间的内在联系,在应用中不断深化认识.通过解决中考试题回顾思考涉及的知识和思想方法,进一步提升能力.2.交流梳理环节1:交流课前学习成果.(1)平移:如图2,平移前后的两个图形全等(从图形形状、大小关系来看);对应线段平行且相等,两对应点连线互相平行(共线)且相等(从图形位置变化来看).图2CC′BAA′B′(2)轴对称:如图3,关于某直线对称的两个图形全等(从图形形状、大小关系来看);对应线段相等,两个图形关于某直线对称,那么对称轴是任意一对对应点所连线段的垂直平分线(从图形位置变化来看).图3B′A′ABCNMC′(3)旋转:如图4,旋转前后的两个图形全等(从图形形状、大小关系来看);每两对对应点连线所形成的角都等于旋转角(从图形位置变化来看);对应点到旋转中心的距离相等(从图形位置变化来看).BCAA′C′(1)OB′ABCC′A′(2)图4(4)轴对称、平移、旋转三者的关系:如图5,两条对称轴平行的轴对称复合⇔一次平移;两条对称轴相交的轴对称复合⇔一次旋转.2(3)2(1)2(2)图5轴对称在三种变化中起到桥梁作用,轴对称与另外两种全等变换在地位上是有区别的,它是更加基础的一种变化,所有平移、旋转都可以用轴对称变化来解释.【设计意图】学生先回答思考问题,借此梳理三种变化的性质,明确各自的画图方法及依据,明确三种变化之间的关系.环节2:问题引导深入思考.思考:只用一种变化可不可以操作?如何操作?用两种变化如何操作?哪种方法容易快速想到?为什么?【设计意图】课上让学生先交流自己的结果.而学生在交流结果时一定是无序的,这时教师可以引导学生进行有序思考.问题1:对于题目,只用两种变化有哪些方法?学生活动:交流使用两种变化的情况.(1)旋转+平移.思路1:将△COD绕点C顺时针旋转90°后,再向左平移两个单位得到△AOB.思路2:将△COD绕点O顺时针旋转90°后,再向上平移两个单位得到△AOB.思路3:将△COD向左平移两个单位后,再绕点C 顺时针旋转90°得到△AOB.思路4:将△COD向上平移两个单位后,再绕点A 顺时针旋转90°得到△AOB.(2)旋转+轴对称.思路5:将△COD先关于x轴对称,再以点C为旋转中心顺时针旋转90°,再作关于直线x=1的对称得到△AOB.追问:采用“平移+轴对称”的方式可以吗?归纳:对应顶点排列的顺序一致——旋转;与目标图形的方向一致——平移.问题2:用一种变化有哪些方法?追问:两个全等的三角形通过某种运动方式一定能重合吗?若能重合,如何运动?归纳:对应顶点排列顺序一致,经过一次旋转能重合.学生活动:对于题目,展示只通过旋转或只通过轴对称完成任务的方法,并说明自己的画图方法和画图依据.方法1:(旋转)根据旋转的性质,确定旋转中心、旋转方向和旋转角.思路6:将△COD绕点()1,1顺时针旋转90°得到△AOB.思路7:将△COD先绕点()1,-1逆时针旋转90°后,再绕点O旋转180°得到△AOB.方法2:(轴对称)两条对称轴相交的轴对称复合⇔一次旋转.思路8:先将△COD沿直线x=1对称后,再沿直线y=x对称得到△AOB.思路9:先将△COD沿直线y=1对称后,再沿直线y=-x+2对称得到△AOB.【设计意图】题目难度不大,且学生具备直接识别运动变化的能力,但是学生自己描述运动变化的经验还是比较少的,而且运动的方式是不唯一的,给出运动前后的图形,描述运动变化要素,这对学生的要求实际上是提高了很多的.因此,要关注这三种运动变化之间的联系,通过这个过程深化学生对于运动变化的认识.3.变式练习变式1:如图6,在正方形ABCD中,点E,F分别是BC,CD的中点,试类比上一个问题的探究过程,说出△ABE经过怎样的图形的变化(平移、轴对称、旋转)得到△BCF?图6B E CFDA图7B E CDA变式2:如图7,在等边三角形ABC中,AD=BE,试类比上一个问题的探究过程,说出△ABE经过怎样的图形的变化(轴对称、平移、旋转)得到△CAD?学生活动:展示所画图形的变化过程,并用语言描述这个过程.学生可能想到如下情况.(1)旋转+平移(如图8和图9).D图8图9(2)两次轴对称(如图10).图10(3)一次旋转(如图11).图11【设计意图】将任务探究的思维过程结构化,形成解决问题的方法思路.同时渗透用运动变化的眼光观察图形的思想方法.满足特定条件下的图形的变化可能有多种情况,培养思维的有序性、多样性.4.归纳与提升总结、归纳本节课的教学流程如图12所示.运动的眼光,变换的思想ìíîïï图形的平移图形的轴对称图形的旋转图12【设计意图】归纳方法、提升能力,形成用运动的眼光、变换的思想看待两个图形之间的关系的能力,渗透运动变换思想.5.布置作业(1)如图13,在平面直角坐标系xOy中,△O′A′B′可以看作是△OAB经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△OAB得到△O′A′B′的过程:.图13(2)如图14,在平面直角坐标系xOy中,点A,B的坐标分别为A()-4,1,B()-1,3,经过两次变化(平移、轴对称、旋转)得到对应点A″,B″的坐标分别为A″()1,0,B″()3,-3,则由线段AB得到线段A′B′的过程是:,由线段A′B′得到线段A″B″的过程是:.图14(3)如图15,在正方形网格中,线段A′B′可以看作是线段AB经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由线段AB得到线段A′B′的过程:.图16图15ABA′B′(4)如图16,在平面直角坐标系xOy中,△ABC可以看作△DEF是经过若干次图形的变化(轴对称、平移、旋转)得到的,写出一种由△DEF得到△ABC的过程:.五、教学反思本节课是“图形的轴对称、平移和旋转”中考第二轮专题复习课,内容属于“图形的变化”.希望通过一系列数学活动,帮助学生在已有知识基础上对图形变换思想进行相应的概括和应用.同时,在落实“四基”、培养“四能”的过程中,促进学生数学学科核心素养的形成和发展.1.感受运动变化,建立逻辑体系学生通过亲身经历课前的数学操作活动后,体验的水平停留在“感觉”阶段,还没有对活动过程进行深入的思考,没有深刻认识到三种全等变换之间内在的逻辑关系.在此基础上,学生在课堂上通过交流及反思性观察将获得的体验进行抽象,梳理三种全等变换各自的性质及它们之间的联系,形成解决该类问题的一般思维模式.图形的变化是一种观察图形的视角,培养这种“视角”与培养“知识与技能”同样重要.在关注联系的基础上,通过问题引导,使学生能够进行知识的归纳梳理,并能够主动利用经验的迁移去研究其他问题.通过本节课的教学,进一步帮助学生感受运动变化,学会以运动变化的视角分析图形,也为后续进一步主动运用图形变化视角认识几何图形,运用图形变换思想解决综合性问题奠定基础. 2.培养思维的有序性、多样性满足特定条件下的图形的变化可能有多种情况,开放性问题有助于学生体验解决问题方法的多样性.与此同时,通过增加限定条件,从两种图形变化的组合,到只用一种图形变化,将任务探究的思维过程结构化,形成解决问题的方法思路.同时,渗透用运动变化的眼光观察图形的思想方法.本节课的教学目标定位在落实画图和识图能力,渗透几何直观能力,理解轴对称、平移、旋转之间的联系,加深对运动变化的认识;在问题探究的过程中,逐步形成用图形的变化视角思考解决问题的意识,渗透图形变化思想.在实际授课过程中,知识与技能落实得比较到位,而思想性体现不够充分,还需要深入研究,在思想性上多做文章.参考文献:[1]中华人民共和国教育部制定.义务教育数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]教育部基础教育课程教材专家工作委员会.《义务教育数学课程标准(2011年版)》解读[M].北京:北京师范大学出版社,2012.[3]章建跃.章建跃数学教育随想录[M].杭州:浙江教育出版社,2017.[4]任华中,傅海伦,邵亚娜.初中数学基本活动经验的教学目标层次划分[J].中国数学教育(初中版),2018(6):30-32.。
《图形的变换》数学教案设计
《图形的变换》數學教案設計主题:《图形的变换》数学教案设计一、教学目标:1. 学生能够理解和掌握基本的图形变换概念,包括平移、旋转和对称。
2. 学生能够通过实践活动,运用所学知识进行简单的图形变换操作。
3. 通过学习,提高学生的空间观念和逻辑思维能力。
二、教学内容:1. 图形变换的基本概念2. 平移、旋转和对称的定义与特点3. 实践活动:进行简单的图形变换三、教学过程:1. 导入新课:教师展示一些经过变换后的图形,让学生观察并思考这些图形是如何变化的。
然后引出今天的主题——图形的变换。
2. 新课讲解:(1) 基本概念:教师讲解什么是图形的变换,以及变换的三种基本形式:平移、旋转和对称。
(2) 平移、旋转和对称:分别讲解这三种变换的特点和方法,并通过实例来说明。
3. 实践活动:教师分发给学生一些图形,让他们尝试进行平移、旋转和对称的操作,体验图形变换的过程。
4. 小结:教师总结本节课的学习内容,强调图形变换的概念和方法。
四、教学评价:1. 过程评价:在实践活动中,教师可以观察学生的操作过程,了解他们是否掌握了图形变换的方法。
2. 结果评价:教师可以通过提问或者小测试的方式,检查学生对图形变换的理解程度。
五、教学反思:在教学过程中,教师需要关注每个学生的反应,及时调整教学方法和节奏。
同时,也需要反思自己的教学效果,以便改进教学策略,提高教学质量。
六、家庭作业:布置一些图形变换的练习题,让学生在家进行复习和巩固。
七、扩展阅读:推荐一些关于图形变换的课外读物或网络资源,供学生自学和深入研究。
安徽中考数学总复习教学案:第七章图形的变化
第七章图形的变化第28讲图形的轴对称1.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做__轴对称图形__,这条直线就是它的__对称轴__.把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做__对称轴__,折叠后重合的点是对应点.2.图形轴对称的性质如果两个图形关于某条直线对称,那么对称轴是任意一对对应点所连线段的__垂直平分线__.轴对称图形的对称轴,是任意一对对应点所连线段的__垂直平分线__.对应线段、对应角__相等__.3.由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全一样;新图形上的每一点,都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴__垂直平分__.这样,由一个平面图形得到它的轴对称图形叫做__轴对称变换__.一个轴对称图形可以看作以它的一部分为基础,经轴对称变换而成.4.几何图形都可以看作由点组成,只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点),连接这些对称点,就可以得到原图形的轴对称图形.轴对称与轴对称图形轴对称图形和图形的轴对称之间的的区别是:轴对称图形是一个具有特殊性质的图形,而图形的轴对称是说两个图形之间的位置关系.镜面对称原理(1)镜中的像与原来的物体成轴对称.(2)镜子中的像改变了原来物体的左右位置,即像与物体左右位置互换.建立轴对称模型在解决实际问题时,首先把实际问题转化为数学模型,再根据实际以某直线为对称轴,把不是轴对称的图形通过轴对称变换补添为轴对称图形.有关几条线段之和最短的问题,都是把它们转化到同一条直线上,然后利用“两点之间线段最短”来解决.1.(·龙东)下列交通标志图案是轴对称图形的是( B )2.(·成都)下列图形中,不是轴对称图形的是( A )3.(·牡丹江)下列对称图形中,是轴对称图形,但不是中心对称图形的有( B )A .1个B .2个C .3个D .4个4.(·安徽)如图,Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( C )A .53B .52C .4D .55.(·聊城)如图,点P 是∠AOB 外的一点,点M ,N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在MN 的延长线上.若PM =2.5 cm ,PN =3 cm ,MN =4 cm ,则线段QR 的长为( A )A . 4.5 cmB . 5.5 cmC . 6.5 cmD .7 cm识别轴对称图形【例1】 (·蚌埠模拟)下列图案中,不是轴对称图形的是( A )【点评】判断图形是否是轴对称图形,关键是理解、应用轴对称图形的定义,看是否能找到至少1条合适的直线,使该图形沿着这条直线对折后,两旁能够完全重合.若能找到,则是轴对称图形;若找不到,则不是轴对称图形.,第七章图形与变换)(这是边文,请据需要手工删加)1.(1)(·永州)永州的文化底蕴深厚,永州人民的生活健康向上,如瑶族长鼓舞,东安武术,宁远举重等,下面的四幅简笔画是从永州的文化活动中抽象出来的,其中是轴对称图形的是( C )(2)(·芜湖模拟)下列图形中是轴对称图形但不是中心对称图形的是( B )作已知图形的轴对称图形【例2】(·厦门)在平面直角坐标系中,已知点A(-3,1),B(-1,0),C(-2,-1),请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.解:如图所示:△DEF即与△ABC关于y轴对称的图形【点评】画轴对称图形,关键是先作出一条对称轴,对于直线、线段、多边形等特殊图形,一般只要作出直线上的任意两点、线段端点、多边形的顶点等的对称点,就能准确作出图形.2.如图,在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案.(注:①不得与原图案相同;②黑、白方块的个数要相同)(1)是轴对称图形,又是中心对称图形;(2)是轴对称图形,但不是中心对称图形;(3)是中心对称图形,但不是轴对称图形.解:设计方案有多种,在设计时注意每一种图案的具体要求.(1)既是轴对称图形,还应关于中心点对称,有一定的对称及审美要求即可:(2)可不受中心对称的限制,只要是轴对称图形,且黑白数量相等即可:(3)只关于中心对称即可:轴对称性质的应用【例3】(·龙东)如图,菱形ABCD中,对角线AC=6,BD=8,M,N分别是BC,CD的中点,P是线段BD上的一个动点,则PM+PN的最小值是__5__.【点评】求两条线段之和为最小,可以利用轴对称变换,使之变为求两点之间的线段,因为线段间的距离最短.3.(·成都)如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是__7-1__.折叠问题【例4】(1)(·)如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是( A )A.15B.215C.17D.217(2)(·黔西南州)如图,将矩形纸片ABCD折叠,使边AB,CD均落在对角线BD上,得折痕BE,BF,则∠EBF=__45__°.【点评】折叠的过程实际上就是一个轴对称变换的过程,轴对称变换前后的图形是全等图形,对应边相等,对应角相等.4.(·黔东南州)如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠,使点C与点A重合,则折痕EF的长为( D )A.6 B.12 C.2 5 D.4 5第29讲图形的平移~安徽中考命题分析安徽中考命题预测本部分内容在近几年中考中都有涉及,题目以作图题为主,把几何图形放进网格中进行考察,不但考察了考生对这部分知识的掌握程度,还考察了考生动手操作的能力,图案设计的能力,题目难度中等,预计安徽中考对本节内容的考察依然是平移变换的作图题.年份考察内容题型题号分值图形的平移变换作图题17(1) 4图形的平移变换作图题17(2) 4图形的平移变换作图题18(1) 41.把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后所得到的,这两个点是对应点.连接各组对应点的线段__平行且相等__.图形的这种移动叫做平移变换,简称__平移__.2.确定一个平移运动的条件是__平移的方向和距离__.3.平移的规则:图形上的每一个点都沿同一个方向移动相同的距离.4.平移的性质:(1)平移不改变图形的形状与大小;(2)连接各组对应点的线段平行且相等;(3)__对应线段平行(或在同一直线上)且相等__;(4)__对应角相等__.5.画平移图形,必须找出平移方向和距离,其依据是平移的性质.一个防范线段、角、三角形的平移是最简单的平移问题之一,其中关键的条件是平移的方向和平移的距离.图形平移的要领是抓住关键点进行平移.一个作图以局部带整体,先找出图形的关键点,将原图中的关键点与移动后的对应点连接起来,确定平移距离和平移方向,过其他关键点分别作线段与前面所连接的线段平行且相等,得到关键点的对应点,将对应点连接,所得的图形就是平移后的新图形.一个联系图形经过两次轴对称(两对称轴相互平行)得到的图形,可以看作是由原图形经过平移得到的,也就是说两次翻折相当于一次平移.1.(·朝阳)下列图形中,由如图经过一次平移得到的图形是( C )2.(·钦州)如图,△A′B′C′是△ABC经过某种变换后得到的图形,如果△ABC中有一点P的坐标为(a,2),那么变换后它的对应点Q的坐标为__(a+5,-2)__.,第2题图),第3题图) 3.(·江西)如图,在△ABC中,AB=4,BC=6,∠B=60°,将三角形ABC沿着射线BC的方向平移2个单位后,得到三角形△A′B′C′,连接A′C,则△A′B′C的周长为__12__.4.(·济南)如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于__4或8__.判断图形的平移【例1】(·淮南模拟)在6×6方格中,将图①中的图形N平移后位置如图②所示,则图形N的平移方法中,正确的是( D )A.向下移动1格B.向上移动1格C.向上移动2格D.向下移动2格【点评】平移前后图形的形状、大小都不变,平移得到的对应线段与原线段平行且相等,对应角相等,平移时以局部带整体,考虑某一特殊点的平移情况即可.1.(·安庆模拟)如图,在方格纸中,△ABC经过变换得到△DEF,正确的变换是( B ) A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B.把△ABC绕点C顺时针方向旋转90°,再向下平移5格C.把△ABC向下平移5格,再绕点C逆时针方向旋转180°D.把△ABC向下平移5格,再绕点C顺时针方向旋转180°作已知图形的平移图形【例2】(·阜阳模拟)在图示的方格纸中.(1)作出△ABC关于MN对称的图形△A1B1C1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?解:(1)△A1B1C1如图所示:(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位)【点评】对于直线、线段、多边形等特殊图形,将原图中的关键点与移动后的对应点连接起来,就能准确作出图形.2.(·安徽)如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标.若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.解:(1)略(2)B2点的坐标为(2,-1);h的取值范围为2<h<3.5第30讲图形的旋转~安徽中考命题分析安徽中考命题预测本部分内容在近几年中考中都有涉及,题目以作图题为主,把几何图形放到网格中进行考察,不但考察了考生对这部分知识的掌握程度,还考察了考生动手操作的能力,图案设计的能力,题目难度中等,预计安徽中考对本节内容的考察依然以网格中图形的变换作图来考查旋转变换,题目难度中等.年份考察内容题型题号分值----图形的旋转变换作图题17(1) 4图形的旋转变换作图题18(2) 41.把一个图形绕着某一个点O转动一定角度的图形变换叫做__旋转__,如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.2.旋转变换的性质(1)对应点到旋转中心的距离__相等__;(2)对应点与旋转中心所连线段的夹角等于__旋转角__;(3)旋转前、后的图形全等.3.把一个图形绕着某一个点旋转__180°__,如果它能够与另一个图形重合,那么就说这两个图形关于这个点成中心对称,这个点叫做__对称中心__,这两个图形中的对应点叫做关于中心的对称点.关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心平分.关于中心对称的两个图形是__全等图形__.4.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__中心对称图形__,这个点就是它的__对称中心__.5.确定一个旋转运动的条件是要确定__旋转中心、旋转方向和旋转角度__.中心对称与中心对称图形中心对称与中心对称图形的区别:中心对称是两个图形的位置关系,必须涉及两个图形,中心对称图形是指一个图形.旋转作图(1)旋转作图的依据是旋转的特征.(2)旋转作图的步骤如下:①确定旋转中心、旋转方向和旋转角度;②确定图形的关键点(如三角形的三个顶点),并标上相应字母;③将这些关键点沿旋转方向转动一定的角度;④按照原图形的连接方式,顺次连接这些对应点,得到旋转后的图形,写出结论.1.(·遵义)观察下列图形,是中心对称图形的是( C )2.(·济南)下列图案既是轴对称图形又是中心对称图形的是( D )3.(·随州)在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是( B ) A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是94.(·哈尔滨)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C 可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A,B′,A′在同一条直线上,则AA′的长为( A )A.6B.43C.33D.35.(·绵阳)如图,在正方形ABCD中,E,F分别是边BC,CD上的点,∠EAF=45°,△ECF的周长为4,则正方形ABCD的边长为__2__.识别中心对称图形【例1】(·绵阳)下列四个图案中,属于中心对称图形的是( D )【点评】把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,这样的图形才是中心对称图形.1.(·安顺)下列四个图形中,既是轴对称图形又是中心对称图形的是( B )A .1个B .2个C .3个D .4个根据旋转的性质解决问题【例2】 (1)(·兰州)如图,在△ABC 中,∠ACB =90°,∠ABC =30°,AB =2.将△ABC 绕直角顶点C 逆时针旋转60°得△A′B′C ,则点B 转过的路径长为( B )A .π3B .3π3C .2π3D .π (2)如图,在△ABC 和△CDE 中,AB =AC =CE ,BC =DC =DE ,AB >BC ,∠BAC =∠DCE =∠α,点B ,C ,D 在直线l 上,按下列要求画图:(保留画图痕迹)①画出点E 关于直线l 的对称点E′,连接CE′,DE ′;②以点C 为旋转中心,将(1)中所得△CDE′按逆时针方向旋转,使得CE″与CA 重合,得到△CD′E″(A),画出△CD′E″(A),解决下面问题:线段AB 和线段CD′的位置关系是__AB ∥CD ′__,并说明理由.解:(2)解 1)画对称点E′.2)画△CD′E″(A).平行.理由如下:∵∠DCE =∠DCE′=∠D′CA =∠α,∴∠BAC =∠D′CA =∠α,∴AB ∥CD ′【点评】 (1)抓住旋转中的“变”与“不变”;(2)找准旋转前后的对应点和对应线段、旋转角等;(3)充分利用旋转过程中线段、角之间的关系.2.(1)(·海南)如图,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形,若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是__60°__.(2)(·池州模拟)如图,在平面直角坐标系xOy 中,点A 的坐标为(-2,0),等边三角形AOC 经过平移或轴对称或旋转都可以得到△OBD.①△AOC 沿x 轴向右平移得到△OBD ,则平移的距离是__2__个单位长度;△AOC 与△BOD 关于直线对称,则对称轴是__y 轴__;△AOC 绕原点O 顺时针旋转得到△DOB ,则旋转角度可以是__120__度;②连接AD ,交OC 于点E ,求∠AEO 的度数.解:(1)(1)60°解析:∵△COD是△AOB绕点O顺时针旋转40°后得到的图形,∴∠AOC=∠BOD=40°,AO=CO,∵∠AOD=90°,∴∠BOC=90°-40°×2=10°,∠ACO=∠A=12(180°-∠AOC)=12(180°-40°)=70°,由三角形的外角性质得,∠B=∠ACO-∠BOC=70°-10°=60°.故答案为60°(2)2;y轴;120解析:①∵点A的坐标为(-2,0),∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形,∴∠AOC =∠BOD=60°,∴∠AOD=120°,∴△AOC绕原点O顺时针旋转120°得到△DOB②如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB,∴OA=OD,∵∠AOC=∠BOD=60°,∴∠DOC=60°,即OE为等腰△AOD的顶角的平分线,∴OE垂直平分AD,∴∠AEO=90°与旋转有关的作图【例3】(·宁夏)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-4,5),C(-5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.解:(1)△A1B1C1如图所示(2)△A2B2C2如图所示【点评】本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.3.(·眉山)如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线l对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在(2)的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π)解:(1)△A1B1C1如图所示(2)△A2B2C如图所示(3)根据勾股定理,BC=12+42=17,所以,点B旋转到B2所经过的路径的长=90π×17180=17 2π第31讲图形的相似~安徽中考命题分析安徽中考命题预测本部分内容是中学几何中的重点知识,是安徽历年中考的热点,对本部分的考查主要有成比例线段的性质、相似图形的性质、判定与应用,考查时常与其他知识相结合,考查考生的综合能力.题型有选择题、填空题、作图题和解答题,解答题以计算和证明为主,难度中等偏上,预计安徽中考对本节内容的考查有:相似与勾股定理相结合求线段的长,利用相似三角形的性质和判定与四边形相结合进行有关证明,作位似图形等.年份考察内容题型题号分值通过图形的相作图题17(2) 4似变化作图相似三角形的性质解答题19(1) 5相似三角形解答题23(1) 5的判定与性质相似三角形的性质解答题22(3) 5 1.比和比例的有关概念(1)表示两个比相等的式子叫做__比例式__,简称比例.(2)第四比例项:若ab=cd或a∶b=c∶d,那么d叫做a,b,c的__第四比例项__.(3)比例中项:若ab=bc或a∶b=b∶c,那么b叫做a,c的__比例中项__.(4)黄金分割:把一条线段(AB)分成两条线段,使其中较长线段(AC)是原线段(AB)与较短线段(BC)的比例中项,就叫做把这条线段__黄金分割__.即AC2=__AB·BC__,AC=__5-12__AB≈__0.618__AB.一条线段的黄金分割点有__两__个.2.比例的基本性质及定理(1)ab=cd⇒ad=bc;(2)ab=cd⇒a±bb=c±dd;(3)ab=cd=…=mn(b+d+…+n≠0)⇒a+c+…+mb+d+…+n=ab.3.平行线分线段成比例定理(1)三条平行线截两条直线,所得的对应线段成__比例__;(2)平行于三角形一边截其他两边(或两边的延长线),所得的对应线段成__比例__;(3)如果一条直线截三角形的两边(或两边的延长线),所得的对应线段成__比例__,那么这条直线平行于三角形的第三边;(4)平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形三边对应成比例.4.相似三角形的定义:对应角相等、对应边成比例的三角形叫做__相似三角形__.相似比:相似三角形的对应边的比,叫做两个相似三角形的__相似比__.5.相似三角形的判定(1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截得的三角形与原三角形相似;(2)两角对应相等,两三角形相似;(3)两边对应成比例且夹角相等,两三角形相似;(4)三边对应成比例,两三角形相似;(5)两个直角三角形的斜边和一条直角边对应成比例,两直角三角形相似;(6)直角三角形中被斜边上的高分成的两个三角形都与原三角形相似.6.相似三角形性质相似三角形的对应角相等,对应边成比例,对应高、对应中线、对应角平分线的比都等于相似比,周长比等于相似比,面积比等于相似比的平方.7.射影定理:如图,△ABC中,∠ACB=90°,CD是斜边AB上的高,则有下列结论.(1)AC2=AD·AB;(2)BC2=BD·AB;(3)CD 2=AD·BD ;(4)AC 2∶BC 2=AD ∶BD ; (5)AB·CD =AC·BC. 8.相似多边形的性质(1)相似多边形对应角__相等__,对应边__成比例__.(2)相似多边形周长之比等于__相似比__,面积之比等于__相似比的平方__. 9.位似图形(1)概念:如果两个多边形不仅__相似__,而且对应顶点的连线相交于__一点__,这样的图形叫做位似图形.这个点叫做__位似中心__.(2)性质:位似图形上任意一对对应点到位似中心的距离之比等于__位似比__.五种基本思路(1)条件中若有平行线,可采用相似三角形的基本 定理;(2)条件中若有一对等角,可再找一对等角(用判定定理1)或再找夹边成比例(用判定定理2);(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例; (5)条件中若有等腰三角形,可找顶角相等,或找一对底角相等,或找底和腰对应成比例.1.(·厦门)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,若DE ∥BC ,DE =2,BC =3,则AE AC =__23__.,第1题图) ,第2题图)2.(·长沙)如图,△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积为8,则△ABC 的面积为__18__.3.(·凉山)如果两个相似多边形面积的比为1∶5,则它们的相似比为( D )A .1∶25B .1∶5C .1∶2.5D .1∶ 5 4.(·玉林)△ABC 与△A ′B′C′是位似图形,且△ABC 与△A′B′C′的位似比是1∶2,已知△ABC 的面积是3,则△A′B′C′的面积是( D )A .3B .6C .9D .125.(·莱芜)如图,在△ABC 中,D ,E 分别是AB ,BC 上的点,且DE ∥AC ,若S △BDE ∶S △CDE =1∶4,则S △BDE ∶S △ACD =( C )A .1∶16B .1∶18C .1∶20D .1∶24比例的基本性质、黄金分割【例1】 (·宿州模拟)已知b a =513,则a -b a +b 的值是( D )A .23B .32C .94D .49【点评】 此题考查了比例的性质.此题比较简单,解题的关键是注意掌握比例的性质与比例变形.1.(1)若a 2a -b =23,则b a =__12__.(2)已知a 2=b 5=c7,且a +b +c ≠0,则2a +3b -2c a +b +c 的值为( A )A .514B .511C .145D .1617三角形相似的性质及判定 【例2】 (·宜昌)已知:如图,四边形ABCD 为平行四边形,以CD 为直径作⊙O ,⊙O 与边BC 相交于点F ,⊙O 的切线DE 与边AB 相交于点E ,且AE =3EB.(1)求证:△ADE ∽△CDF ;(2)当CF ∶FB =1∶2时,求⊙O 与▱ABCD 的面积之比.解:(1)证明:∵CD 是⊙O 的直径,∴∠DFC =90°,∵四边形ABCD 是平行四边形,∴∠A =∠C ,AD ∥BC ,∴∠ADF =∠DFC =90°,∵DE 为⊙O 的切线,∴DE ⊥DC ,∴∠EDC =90°,∴∠ADF =∠EDC =90°,∴∠ADE =∠CDF ,∵∠A =∠C ,∴△ADE ∽△CDF (2)解:∵CF ∶FB =1∶2,∴设CF =x ,FB =2x ,则BC =3x ,∵AE =3EB ,∴设EB =y ,则AE =3y ,AB =4y ,∵四边形ABCD 是平行四边形,∴AD =BC =3x ,AB =DC =4y ,∵△ADE ∽△CDF ,∴AE AD =CF CD ,∴3y 3x =x4y ,∵x ,y 均为正数,∴x =2y ,∴BC =6y ,CF =2y ,在Rt △DFC 中,∠DFC =90°,由勾股定理得DF =DC 2-FC 2=(4y )2-(2y )2=23y ,∴⊙O 的面积为π·(12DC)2=14π·DC 2=14π(4y)2=4πy 2,四边形ABCD 的面积为BC·DF =6y·23y =123y 2,∴⊙O 与四边形ABCD 的面积之比为4πy 2:123y 2=π∶3 3【点评】 本题考查了相似三角形的性质和判定、平行四边形的性质、勾股定理的应用,主要考查学生综合运用性质进行推理和计算的能力.2.(·玉林)如图,在正方形ABCD 中,点M 是BC 边上的任一点,连接AM 并将线段AM 绕点M 顺时针旋转90°得到线段MN ,在CD 边上取点P 使CP =BM ,连接NP ,BP.(1)求证:四边形BMNP 是平行四边形;(2)线段MN 与CD 交于点Q ,连接AQ ,若△MCQ ∽△AMQ ,则BM 与MC 存在怎样的数量关系?请说明理由.解:(1)证明:在正方形ABCD 中,AB =BC ,∠ABC =∠C ,在△ABM 和△BCP 中,⎩⎨⎧AB =BC ,∠ABC =∠C ,CP =BM ,∴△ABM ≌△BCP(SAS ),∴AM =BP ,∠BAM =∠CBP ,∵∠BAM +∠AMB =90°,∴∠CBP +∠AMB =90°,∴AM ⊥BP ,∵线段AM 绕M 顺时针旋转90°得到线段MN ,∴AM ⊥MN ,且AM =MN ,∴MN ∥BP ,∴四边形BMNP 是平行四边形 (2)解:BM =MC.理由如下:∵∠BAM +∠AMB =90°,∠AMB +∠CMQ =90°,∴∠BAM =∠CMQ ,又∵∠ABM =∠C =90°,∴△ABM ∽△MCQ ,∴ABMC=AM MQ ,∵△MCQ ∽△AMQ ,∴△AMQ ∽△ABM ,∴AB BM =AM MQ ,∴AB MC =ABBM,∴BM =MC相似三角形综合问题【例3】 (·安顺)如图,已知AB 是⊙O 的直径,BC 是⊙O 的弦,弦ED ⊥AB 于点F ,交BC 于点G ,过点C 的直线与ED 的延长线交于点P ,PC =PG.(1)求证:PC 是⊙O 的切线;(2)当点C 在劣弧AD 上运动时,其他条件不变,若BG 2=BF ·BO.求证:点G 是BC 的中点;(3)在满足(2)的条件下,AB =10,ED =46,求BG 的长.解:(1)证明:连接OC,如图,∵ED⊥AB,∴∠FBG+∠FGB=90°,又∵PC=PG,∴∠1=∠2,而∠2=∠FGB,∠4=∠FBG,∴∠1+∠4=90°,即OC⊥PC,∴PC是⊙O的切线(2)证明:连OG,如图,∵BG2=BF·BO,即BG∶BO=BF∶BG,而∠FBG=∠GBO,∴△BGO∽△BFG,∴∠OGB=∠BFG=90°,即OG⊥BG,∵OB=OC,∴BG =CG,即点G是BC的中点(3)解:连OE,如图,∵ED⊥AB,∴FE=FD,而AB=10,ED=46,∴EF=26,OE=5,在Rt△OEF中,OF=OE2-EF2=52-(26)2=1,∴BF=5-1=4,∵BG2=BF·BO,∴BG2=BF·BO=4×5,∴BG=2 5【点评】本题考查了切线的判定、垂径定理、勾股定理以及三角形相似的判定与性质等知识的综合运用.3.(·绍兴)课本中有一道作业题:有一块三角形余料ABC,它的边BC=120 mm,高AD=80 mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少毫米?小颖解得此题的答案为48 mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图①,此时,这个矩形零件的两条边长又分别为多少毫米?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图②,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.解:(1)设矩形的边长PN =2y mm ,则PQ =y mm ,由条件可得△APN ∽△ABC ,∴PNBC =AE AD ,即2y 120=80-y 80,解得y =2407,∴PN =2407×2=4807(mm ),答:这个矩形零件的两条边长分别为2407 mm ,4807 mm (2)设PN =x mm ,由条件可得△APN ∽△ABC ,∴PNBC=AE AD ,即x 120=80-PQ 80,解得PQ =80-23x.∴S =PN·PQ =x(80-23x)=-23x 2+80x =-23(x -60)2+2400,∴S 的最大值为2400 mm 2,此时PN =60 mm ,PQ =80-23×60=40(mm )相似多边形与位似图形【例4】 (·安徽)如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A 1B 1C 1和△A 2B 2C 2;(1)将△ABC 先向右平移4个单位,再向上平移1个单位,得到△A 1B 1C 1;(2)以图中的点O 为位似中心,将△A 1B 1C 1作位似变换且放大到原来的两倍,得到△A 2B 2C 2.解:如图:【点评】 本题考查了平移、位似的作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.4.(·南通)如图,点E 是菱形ABCD 对角线CA 的延长线上任意一点,以线段AE 为边作一个菱形AEFG ,且菱形AEFG ∽菱形ABCD ,连接EB ,GD.(1)求证:EB=GD;(2)若∠DAB=60°,AB=2,AG=3,求GD的长.解:(1)证明:∵菱形AEFG∽菱形ABCD,∴∠EAG=∠BAD,∴∠EAG+∠GAB=∠BAD+∠GAB,∴∠EAB=∠GAD,∵AE=AG,AB=AD,∴△AEB≌△AGD,∴EB =GD(2)解:连接BD交AC于点P,则BP⊥AC,∵∠DAB=60°,∴∠PAB=30°,∴BP=12AB=1,AP=AB2-BP2=3,∵AE=AG=3,∴EP=23,∴EB=EP2+BP2=12+1=13,∴GD=13第32讲用坐标表示图形变换1.平面直角坐标系在平面内具有__公共原点__而且__互相垂直__的两条数轴,就构成了平面直角坐标系,简称坐标系.建立了直角坐标系的平面叫坐标平面,x轴与y轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限.各象限内和坐标轴上的点的坐标规律第一象限:(+,+);第二象限:(-,+);。
中考一轮复习教案:图形的轴对称、平移与旋转
图形的轴对称、平移与旋转辅导教案 课前热身1.下列图形中,既是轴对称图形,又是中心对称图形的有( )A 、1个B 、2个C 、3个D 、4个2.如图,∠AOB 内一点P ,,分别是P 关于OA 、OB 的对称点,交OA 于点M ,交OB 于点N .若△PMN 的周长是5cm ,则的长为( ).A .3cmB .4cmC .5cmD .6cm 1P 2P 1P 2P 1P 2P3.如图,在△ABC 中,∠CAB=70°.在同一平面内,将△ABC 绕点A 旋转到△ABC′的位置,使得CC′∥AB ,则∠BAB′=( )A .30°B .35°C .40°D .50°4.在平面直角坐标系中,已知直线y=-x+3与x 轴、y 轴分别交于A 、B 两点,点C(0,n)是y 轴上一点,把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A.(0,)B.(0,)C.(0,3)D.(0,4) 5.如图,在△ABC 中,∠ACB=90°,AC=2,BC=4,E 为边AB 的中点,点D是BC 边上的动点,把△ACD 沿AD 翻折,点C 落在C′处,若△AC′E 是直角三角形,则CD 的长为 .6.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是 .遗漏分析知识精讲343443【基础知识重温】一.平移1.定义:在平面内,将一个图形沿某个___ ____移动一定的__ __,这样的图形移动称为平移.2.平移的性质:(1)对应线段平行(或共线)且___,对应点所连的线段________,图形上的每个点都沿同一个方向移动了相同的距离;(2)对应角分别________,且对应角的两边分别平行、方向一致;(3)平移变换后的图形与原图形_______二. 轴对称与轴对称图形1.轴对称(1)定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形_ ___,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴.折叠后重合的点是对应点,叫对称点.(2)性质:①对应点的连线被对称轴____;②对应线段_______;③成轴对称的两个图形_________2.轴对称图形:定义:如果一个图形沿某一条直线对折后,直线两旁的部分能够互相重合,这个图形叫做___ __,这条直线叫做它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.3.轴对称图形与轴对称的区别与联系:(1)区别:轴对称是指_______全等图形之间的相互位置关系;轴对称图形是指具有特殊形状的____图形.(2)联系:①如果把成轴对称的两个图形看成一个整体(一个图形),那么这个图形是轴对称图形;②如果把一个轴对称图形中对称的部分看成是两个图形,那么它们成轴对称.4. 平移与轴对称的坐标特征(1)平移的坐标特征:①点(x,y)向右(或向左)平移a个单位长度后,对应点的坐标为_________;②点(x,y)向上(或向下)平移a个单位长度后,对应点的坐标为_ ________.(2)轴对称的坐标特征:①关于x轴对称的两个图形中,点(x,y)的对称点的坐标为________;②关于y轴对称的两个图形中,点(x,y)的对称点的坐标为_ _____.三.旋转1.旋转的定义:在平面内,把一个图形绕着某一个定点沿着某个方向旋转一定的角度,这样的图形运动称为旋转.这个定点叫做____,转动的角叫做_____2. 图形的旋转有三个基本条件:(1);(2);(3).3.旋转的性质:(1)对应点到旋转中心的距离__;(2)对应点与旋转中心所连线段的夹角等于______;(3)旋转前后的图形___4. 中心对称与中心对称图形(1)中心对称的定义:把一个图形绕着某一点旋转_____后,如果它能与另一个图形_______,那么就说这两个图形关于这个点成中心对称,该点叫做_____ (2)中心对称的性质:①成中心对称的两个图形,对应点所连线段都经过对称中心,而且被对称中心_______;②成中心对称的两个图形______③中心对称图形的定义:把一个图形绕着某一点旋转____,如果旋转后的图形能够与原来的图形重合,那么我们把这个图形叫中心对称图形,这个点叫做___ 四、例题分析题型一、平移 【例1】如图,△ABC 中,BC=5cm ,将△ABC 沿BC 方向平移至△A’B’C’的位置时,A’B’恰好经过AC 的中点O ,则△ABC 平移的距离为 cm.【趁热打铁】如图,如果把△ABC 的顶点A 先向下平移3格,再向左平移1格到达A′点,连接A′B ,则线段A′B 与线段AC 的关系是( )A .垂直B .相等C .平分D .平分且垂直题型二、旋转【例2】(2016吉林长春)如图,在Rt △ABC 中,∠BAC=90°,将Rt △ABC绕点C 按逆时针方向旋转48°得到Rt △A′B′C′,点A 在边B′C 上,则∠B′的大小为( )A .42°B .48°C .52°D .58°【趁热打铁】如图,已知△ABC 中,∠C=90°,AC=BC=,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )OB A A'B'C C'A .B .C .D .1 题型三、轴对称图形与中心对称图形【例3】(2016四川眉山)下列既是轴对称图形又是中心对称图形的是( )A .B .C .D .【趁热打铁】 下列对称图形中,是轴对称图形,但不是中心对称图形的有( )A .1个B .2 个C .3 个D .4个题型四、图形的折叠与轴对称【例4】(2016浙江金华)如图,Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D,AB′与边BC 交于点E .若△DEB′为直角三角形,则BD 的长是_______.【趁热打铁】已知:如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点D 处,如果CD 恰好与AB 垂22-3231-直,那么∠A的度数是()A.30°B.40°C.50°D.60°题型五平移、旋转的作图【例5】(2016贵州黔南州)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;②把△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2,如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.【趁热打铁】如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C 的图形.(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形.(3)若将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.五、牛刀小试1、下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.2.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)3.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A .6B .6C .3D .3+34.如图,正△ABC 的边长为2,过点B 的直线l ⊥AB ,且△ABC 与△A′BC′关于直线l 对称,D 为线段BC′上一动点,则AD+CD 的最小值是( )A .4B .3C .2D .2+5.如图,Rt △ABC 中,∠C =90°,∠ABC =30°,AC =2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A .B .C .3D .6.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (2,﹣1),B (3,﹣3),C (0,﹣4)(1)画出△ABC 关于原点O 成中心对称的△A 1B 1C 1;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2.222233722237.已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.巩固练习1.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.(1,7)C.(1,1)D.(2,1)2.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A .1条B .2条C .3条D .4条3.为了迎接杭州G20峰会,某校开展了设计“YJG20”图标的活动,下列图形中是轴对称图形又是中心对称图形的是( )A .B .C .D .4.将含有30°角的直角三角板OAB 如图放置在平面直角坐标系中,OB 在x轴上,若OA=2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A′的坐标为( )A .(,﹣1)B .(1,﹣)C .(,﹣)D .(﹣,)5.如图,在Rt △AOB 中,∠AOB=90°,OA=3,OB=2,将Rt △AOB 绕点O顺时针旋转90°后得Rt △FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是( )A .πB .C .3+πD .8﹣π 332222546.在平面直角坐标系中,将△AOB绕原点O顺时针旋转180°后得到△A1OB1,若点B的坐标为(2,1),则点B的对应点B1的坐标为()A.(1,2)B.(2,﹣1)C.(﹣2,1)D.(﹣2,﹣1)7.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)8.如图,在△A BC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()102225 A.B.C.3 D.9.如图所示,将一个含30°角的直角三角板ABC绕点A旋转,使得点B,A,C′在同一条直线上,则三角板ABC旋转的角度是()A.60°B.90°C.120°D.150°10.如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°课堂小结强化提升1.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,则BD的长为.2.如图,已知正方形A BCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM 的长为.3.如图,将△ABC绕点C按顺时针方向旋转至△A′B′C,使点A′落在BC的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=度.4.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B 3的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为.5.如图,将△ABC绕点A逆时针旋转的到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD= .6.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为.课后作业1.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.2.在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.3.在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F与点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,判断线段AF与线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.。
中考数学【图形知识初步】考点专项复习教案(含例题、习题、答案)
第四章图形认识初步本章小结小结1 本章内容概览本章的主要内容是多姿多彩的图形,直线、射线、线段以及角等有关的概念及其性质.其课标要求是:(1)理解线段、直线和射线的区别与联系,会比较线段的大小,并进行计算.(2)理解角的概念,会比较角的大小,会进行角的度数的计算.(3)了解互余、互补的概念,理解它们的性质.小结2 本章重点、难点:本章的重点是线段和角的概念及其相关的性质;难点是对平面图形的概念及其相关性质的理解.小结3 本章学法点津1.要通过直观感知,具体操作、确认等实践活动,区分图形,探索出图形的特征和性质,培养空间想象能力.2.要注意多观察、多分析实物,勤动手操作、勤动脑联想,同时又要注意对图形语言的理解和符号语言的运用.3.要淡化概念识记、不能机械地套用公式模式,达到“在做中学,在学中做”.4.要注重“简单说理”推理能力的培养,养成言之有据的良好习惯.知识网络结构图重点题型总结及应用题型一计算几何图形的数量1.数直线条数例1 已知n(n≥2)个点P1,P2,P3,…,P n在同一平面上,且其中没有任何三点在同一直线上.设S n表示过这n个点中的任意2个点所作的所有直线的条数,显然,S2=1,S3=3,S4=6,S6=10,…,由此推断,S n=.n n答案:(1)2点拨经过第一个点可以引出(n-1)条直线,经过第二个点可以新引出(n -2)条直线,经过第三个点可以新引出(n-3)条直线,…,所以n个点一共可以引出S n = (n -1)+(n -2)+(n -3)+ (1)(1)2n n -条直线.2.数线段条数例2 如图4—4—1所示,C 、D 为线段AB 上的任意两点,那么图中共有多少条线段?;).6 握手次数 1 2+1=33+2+1=6 4+3+2+1=10 … 请你根据上面图表归纳出参加人数与握手次数之间关系的一般结论.分析:本题研究的是握手次数问题,但可以将此问题转化成研究平面上的点构成线段的条数问题.这里把每个人看作一个点,根据图表中的信息,通过探究推理可得到问题的答案.解:若有6人参加,则共握手15次.结论:若有n(n≥2,且n为整数)人参加,则共握手(n-1)+(n-点拨在截一个几何体之前应充分想象截面可能的形状,然后实际操作,在比较想象结果与实际结果的差异的过程中,可以丰富我们的几何直觉,积累数学活动经验,同时培养我们的空间观察能力.题型二两角互补、互余定义及其性质的应用例5 一个角的补角是这个角的4倍,求这个角的度数.解:设这个角是x°,则它的补角是(180-x)°.由题意,得180-x=4 x,解得x=36.所以这个角是36°.点拨本题主要考查补角定义的应用,数学中利用方程、转化思想,可将“形”的问题转化为“数”的问题研究,从而简捷解决问题.例6 如果一个角的补角是120°,那么这个角的余角是( ) A.30°B.60°C.90°D.150°解析:本题是对余角、补角的综合考查,先根据这个角的补角是120°,求出这个角是60°,再求出它的余角是30°.答案:A 例7 根据补角的定义和余角的定义可知,10°的角的补角是170°,余角是80°;15°的角的补角是165°,余角是75°;32°的角的补角是148°,余角是58°.…. 观察以上各组数据,你能得出怎样的结论?请用任意角α代替题中的10°、15°、32°的角来说明你的结论.解:结论为:一个角的补角比这个角的余角大90°.说明:设任意角是α(0<α<90°),α的补角是180°-α,α的余角是90°-α,则(180°-α)-(90°-α)=90°.题型三角的有关运算例8 如图4—4—3所示,AB和CD都是直线,∠AOE=90°,∠3°=∠FOD,∠1=27°20′,求∠2、∠3的度数.解:因为∠AOE=90°,所以∠2=90°-∠1=90°-27°20′=62°40′.(2)32°44′24″等于多少度?(3)计算:133°22′43″÷3.解:(1)因为0.12°=60′×0.12=7.2′,0.2′=60″×0.2=12″,所以54.12°=54°7′12″.(2)因为24″=(160)′×24=0.4′,44.4′=(160)°×44.4=0.74°,所以32°44′24″=32.74°.(3)133°22′43″÷3=(132°+82′)÷3+43″÷3=44°+82′÷3+43″÷3=44°+(81′+1′)÷3+43″÷3=44°+27′+1′÷3+43″÷3=44°+27′+103″÷3≈44°+27′+3″=44°27′3″.方法总结角的有关运算是指角的单位换算和角的加、减、乘、除运算.角度制的单位是60进制的,和计量时间的时、分、秒一样.加减时,要将度、分、秒分别相加、相减,分、秒逢60要进位,而相减不够时要借1作60;度、分、秒形式乘一个数时,要将度、分、秒分别乘这个数,分、秒逢60进位;度、分、秒形式除以一个数时,也是将度、分、秒分别除以这个数,不过要将高位的余数转化成低位,与原位上的数相加后再除以这个数.题型四钟表的时针与分针夹角问题例1115:25时钟面上时针和分针所构成的角是度.解析:起始时刻定为15:00(下午3点整时,时针和分针构成的角是90°),终止时刻为15:25,从图4—4—5中可以看出分针从12转到5用了25分钟,转了6°×25=150°,时针转了0.5°×25=12.5°,所以15:25时钟面上时针和分针所构成的角为150°-90°- 12.5°=47.5°. 答案:47.5点拨解决此类问题时要选择恰当的起始时刻,注意时针和分针同时在运动,并牢记时针每分钟转=o .53060︒=0.5,分针每分钟转36060︒=6°. 题型五 图形的转化例12 下列图形中不是正方体的平面展开图的是( )解析:通过折叠验证四个选项,可得正确答案. 答案:C 点拨立体图形的平面展开图是沿着立体图形的一些棱将它剪开,把立体图形展开成一个平面图形.一个正方体的平面展开图中,在同一直线上相邻的三个正方形中,首尾两个正方形是正方体中相对的两个面.例13 如图4—4—6所示,将标号为A 、B 、C 、D 的正方形沿图中虚线剪开后,得到标号为P 、Q 、M 、N 的四组图形,试按照“哪个正方形剪开后得到哪组图形”的对应关系填空:A 与 对应;B 与 对应;C 与 对应;D 与 对应.解析:按照剪开的形状,找出对应的图形.答案:M,P,Q,N题型六方位角例14如图4—4—7所示,我海军的两艘军舰(分别在A、B两处)同时发现了一艘敌舰,其中A舰发现它在北偏东15°的方向上,B舰发现它在东北方向上,试画出这艘敌舰的位置(用字母C表示).解:如图4—4—8所示,分别以点A、点B为中心建立方位图,表示东北方向的射线BE与表示北偏东15°方向的射线AD的交点C 即为这艘敌舰的位置.点拨利用角度来描述方位,以正北、正南的方向为基准,先确定是北还是南,然后确定东、西方向,最后确定偏东(或西)的角度,注意东北方向是北偏东45°.思想方法归纳1.分类讨论思想分类讨论,就是对问题所给对象的条件、结论、图形等不能进行统一研究时,就需要将研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答.注意分类时要做到按同一标准且不重不漏.例1 已知线段AB=8cm,在直线AB上画线段BC,使它等于3cm,求线段AC的长.解:本题分两种情况:如图4—4—9所示,当点C在线段AB的延长线上时,AC=AB+BC=8+3=11(crn);如图4—4—10所示,当点C在线段AB上时,AC=AB-BC=8—3=5(cm).所以线段AC的长为11 cm或5cm.例2 经过任意三点中的两点共可以画出的直线条数是( )A.1或3 B.3 C.2 D.1解析:这道题要分两种情况考虑:一是这三点都在一条直线上时,就只能画出一条直线;二是这三点不在同一条直线上时,此时共可以画出三条直线.答案:A2.数形结合思想数形结合思想就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”,即通过抽象思维与形象思维的结合,可以使复杂问题简单化、抽象问题具体化,从而起到优化解题途径的目的,线段、直线、角的重要性质也都是通过数形结合的思想体现的.例3 如图4—4—11所示放置的三角板,把三角板较长的直角边从水平状态开始,在平面上沿着直线BC滚动一周,求B点转动的角度.解:三角板转动的路线如图4—4—12所示.由图可知第一次转动90°,第二次转动120°,第三次没动,所以B点转动了210°.点拨解决本题的关键是明确角的变化情况,因此,可根据题意画出从起点到终点转动一圈的示意图,然后根据图形就很容易确定出B点转动的角度了.3.转化思想解决一个问题,往往是由未知向已知转化,由陌生向熟悉转化,由复杂向简单转化,转化思想贯穿整个数学学习的始终.例4 将下列选项中的平面图形绕直线l旋转一周,可以得到如图4—4—13所示立体图形的是( )解析:分析立体图形可知,直线l应为初始旋转的直角梯形垂直于两底的腰所在直线.答案:B点拨本题主要考查了同学们识别图形的能力.对于类似的图形识别问题我们要能从所给立体图形入手,分析形成它的基本图形,把复杂的立体图形转化为平面图形去认识、解决.中考热点聚焦考点1 线段考点突破:线段问题在中考题中一般难度不大,解题时要结合图形,认真分析,问题便会迎刃而解.例1 (2011广东佛山,12,3分)已知线段AB=6,若C为AB 中点,则AC=3.考点两点间的距离分析由题意可知,线段AB=6,C为AB中点,所以,AC=BC,即AC=3;解答解:如图,线段AB=6,C为AB中点,∴AC=BC,∴AC=3.故答案为:3.点评本题考查了两点间的距离,牢记两点间的中点到两端点的距离相等.(2011广西崇左,5,2分)在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是.考点:线段的性质:两点之间线段最短.分析:根据线段的性质:两点之间线段最短解答.解答:解:在修建崇钦高速公路时,有时需要将弯曲的道路改直,依据是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了两点之间线段最短的性质,是基础题,比较简单.如图4—4—14所示,点A、B、C是直线l上的三个点,图中共有线段的条数是( )A.1 B.2 C.3解析:图中有线段AB、BC、AC.答案:C考点2 余角和补角考点突破:此类题在中考中的考查为基础性题目,一般为选择题或填空题,只要牢记余角和补角的定义,便能准确求解.例2 (2011清远,6,3分)已知∠α=35°,则∠α的余角是()A.35°B.55°C.65°D.145°考点:余角和补角.专题:计算题.分析:根据互为余角的两个角的和为90度作答.解答:解:根据定义∠α的余角度数是90°﹣35°=55°.故选.点评:本题考查角互余的概念:和为90度的两个角互为余角.属于基础题,较简单.(2011•南通)已知∠α=20°,则∠α的余角等于70°.考点:余角和补角。
2020年九年级数学中考复习学案:正方形的蝴蝶三角形模型的构建,应用及其变式
正方形的蝴蝶三角形模型的构建,应用及其变式摘要:建模解题是数学学习一种最基本的学习途径和最有效的学习方法,是基于构建主义理论的一种主动学习过程,是对现象和过程进行合理的抽象和量化,然后应用数学公式进行模拟和验证的一种模式化思维。
不同知识,不同条件,不同特点,可以构建不同数学模型,为数学灵活解题提供灵活解题方法。
正方形是一种重要的特殊四边形,也是重要的考题载体之一,而正方形中的一个重要的图形---蝴蝶三角形也日益成为考题的焦点,下面就结合2019年的考题构建一种正方形解题模型--蝴蝶三角形模型,并通过模型的应用,模型的变式,掌握模型的特点,为其他模型的构建提供模本。
关键词:构建主义,建模思想,变式。
《义务教育数学课程标准(2011边版)》第7页中给出了建立数学模型思想的地位:模型思想是学生体会和理解数学与外部世界联系的基本途径[1]。
鉴于数学建模的重要性,学会构建模型,并灵活运用模型解题成为数学学习的重要手段。
下面就向大家介绍一种正方形解题模型的构建,应用和变式,供学习时借鉴。
一、正方形蝴蝶三角形模型的构建如图1,在正方形ABCD中,点E,F分别在BC,CD 上,BE=CF,连接AE,BF二线交于点G,称△ABE和△BCF构成的图形为正方形ABCD的蝴蝶三角形。
蝴蝶三角形具有如下性质:性质1:蝴蝶三角形是全等三角形即△ABE≌△BCF。
性质2:斜边AE,BF的关系是AE=BF且AE⊥BF。
性质3:三角形ABG的面积等于四边形GECF的面积。
性质4:四边形ABFD的面积等于四边形AECD的面积。
性质5:设正方形的边长为a,BE=CF=b,则AE=BF=√a2+b2;BG=√a2+b2,GF=√a2+b2-√a2+b2。
二、蝴蝶三角形性质的证明(1)因为四边形ABCD是正方形,所以AB=BC,∠ABE=∠BCF=90°,因为BE=CF,所以△ABE≌△BCF;(2)因为△ABE≌△BCF,所以AE=BF,∠BAE=∠CBF ,因为∠BAE+∠BEA=90°,所以∠CBF+∠BEA=90°,所以∠BGE=90°即AE⊥BF。
中考一轮复习 数学专题15 图形变换(平移、旋转、对称)(学生版) 教案
专题15 图形变换(平移、旋转、对称)一.选择题1.(2022·山东威海)图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点2.(2022·湖南永州)剪纸是我国具有独特艺术风格的民间艺术,反映了劳动人民对现实生活的深刻感悟.下列剪纸图形中,是中心对称图形的有( )① ② ③ ④A .①②③B .①②④C .①③④D .②③④3.(2022·江苏无锡)雪花、风车….展示着中心对称的美,利用中心对称,可以探索并证明图形的性质,请思考在下列图形中,是中心对称图形但不一定是轴对称图形的为( )A .扇形B .平行四边形C .等边三角形D .矩形4.(2022·贵州遵义)在平面直角坐标系中,点(),1A a 与点()2,B b -关于原点成中心对称,则a b +的值为( ) A .3- B .1- C .1 D .35.(2022·内蒙古赤峰)下列图案中,不是轴对称图形的是( )A .B .C .D .6.(2022·山东青岛)如图,将ABC 先向右平移3个单位,再绕原点O 旋转180︒,得到A B C ''',则点A 的对应点A '的坐标是( )A .(2,0)B .(2,3)--C .(1,3)--D .(3,1)--7.(2022·四川内江)如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,点C 的坐标为(0,1),AC =2,Rt △ODE 是Rt △ABC 经过某些变换得到的,则正确的变换是( )A .△ABC 绕点C 逆时针旋转90°,再向下平移1个单位B .△ABC 绕点C 顺时针旋转90°,再向下平移1个单位C .△ABC 绕点C 逆时针旋转90°,再向下平移3个单位D .△ABC 绕点C 顺时针旋转90°,再向下平移3个单位8.(2022·广西)如图,在△ABC 中,点A (3,1),B (1,2),将△ABC 向左平移2个单位,再向上平移1个单位,则点B 的对应点B ′的坐标为( )A .(3,-3)B .(3,3)C .(-1,1)D .(-1,3)9.(2022·湖南郴州)下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .10.(2022·广西贵港)若点(,1)A a -与点(2,)B b 关于y 轴对称,则-a b 的值是( )A .1-B .3-C .1D .211.(2022·江苏常州)在平面直角坐标系xOy 中,点A 与点1A 关于x 轴对称,点A 与点2A 关于y 轴对称.已知点1(1,2)A ,则点2A 的坐标是( )A .(2,1)-B .(2,1)--C .(1,2)-D .(1,2)--12.(2022·北京)图中的图形为轴对称图形,该图形的对称轴的条数为( )A .1B .2C .3D .513.(2022·山东临沂)剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题,以下关于鱼的剪纸中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .14.(2022·山东聊城)如图,在直角坐标系中,线段11A B 是将ABC 绕着点()3,2P 逆时针旋转一定角度后得到的111A B C △的一部分,则点C 的对应点1C 的坐标是( )A .(-2,3)B .(-3,2)C .(-2,4)D .(-3,3)15.(2022·湖南)如图,点O 是等边三角形ABC 内一点,2OA =,1OB =,OC =AOB ∆与BOC ∆的面积之和为( )AB C D16.(2022·内蒙古呼和浩特)如图,ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到EDC △,使点B 的对应点D 恰好落在AB 边上,AC 、ED 交于点F .若BCD α∠=,则EFC ∠的度数是(用含α的代数式表示)( )A .1902α︒+B .1902α︒-C .31802α︒-D .32α 17.(2022·内蒙古赤峰)如图,点()2,1A ,将线段OA 先向上平移2个单位长度,再向左平移3个单位长度,得到线段''O A ,则点A 的对应点'A 的坐标是( )A .()3,2-B .()0,4C .()1,3-D .()3,1-18.(2022·黑龙江绥化)如图,线段OA 在平面直角坐标系内,A 点坐标为()2,5,线段OA 绕原点O 逆时针旋转90°,得到线段OA ',则点A '的坐标为( )A .()5,2-B .()5,2C .()2,5-D .()5,2-19.(2022·海南)如图,点(0,3)(1,0)A B 、,将线段AB 平移得到线段DC ,若90,2ABC BC AB ∠=︒=,则点的坐标是( )A .(7,2)B .(7,5)C .(5,6)D .(6,5)20.(2022·广西)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是( )A .B .C .D .21.(2022·广西)如图,在ABC 中,4,CA CB BAC α==∠=,将ABC 绕点A 逆时针旋转2α,得到AB C '',连接B C '并延长交AB 于点D ,当B D AB '⊥时,'BB 的长是( )A B C D 22.(2022·内蒙古包头)如图,在Rt ABC 中,90,30,2ACB A BC ∠=︒∠=︒=,将ABC 绕点C 顺时针旋转得到A B C '',其中点A '与点A 是对应点,点B '与点B 是对应点.若点B '恰好落在AB 边上,则点A 到直线A C '的距离等于( )A .B .C .3D .223.(2022·内蒙古通辽)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为( )A .B .C .D .24.(2022·四川内江)2022年2月第24届冬季奥林匹克运动会在我国北京成功举办,以下是参选的冬奥会会徽设计的部分图形,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .25.(2022·广西河池)如图,在Rt △ABC 中,90ACB ∠︒=,6AC =,8BC =,将Rt ABC 绕点B 顺时针旋转90°得到Rt A B C '''.在此旋转过程中Rt ABC 所扫过的面积为( )A .25π+24B .5π+24C .25πD .5π26.(2022·上海)有一个正n 边形旋转90后与自身重合,则n 为( )A .6B .9C .12D .1527.(2022·贵州毕节)矩形纸片ABCD 中,E 为BC 的中点,连接AE ,将ABE △沿AE 折叠得到AFE △,连接CF .若4AB =,6BC =,则CF 的长是( )A .3B .175C .72D .185二.填空题 28.(2022·山东临沂)如图,在平面直角坐标系中,ABC 的顶点A ,B 的坐标分别是()0,2A ,()2,1B -.平移ABC 得到A B C ''',若点A 的对应点A '的坐标为()1,0-,则点B 的对应点B '的坐标是_____________.29.(2022·广西贵港)如图,将ABC 绕点A 逆时针旋转角()0180αα︒<<︒得到ADE ,点B 的对应点D 恰好落在BC 边上,若,25DE AC CAD ⊥∠=︒,则旋转角α的度数是______.30.(2022·广西贺州)如图,在平面直角坐标系中,OAB 为等腰三角形,5OA AB ==,点B 到x 轴的距离为4,若将OAB 绕点O 逆时针旋转90︒,得到OA B ''△,则点B '的坐标为__________.31.(2022·四川泸州)点()2,3-关于原点的对称点的坐标为________.32.(2022·吉林)第二十四届北京冬奥会入场式引导牌上的图案融入了中国结和雪花两种元素.如图,这个图案绕着它的中心旋转角()0360αα︒<<︒后能够与它本身重合,则角α可以为_______度.(写出一个即可)33.(2022·贵州铜仁)如图,在边长为2的正方形ABCD 中,点E 为AD 的中点,将△CDE 沿CE 翻折得△CME ,点M 落在四边形ABCE 内.点N 为线段CE 上的动点,过点N 作NP //EM 交MC 于点P ,则MN +NP 的最小值为________.34.(2022·山东潍坊)小莹按照如图所示的步骤折叠A 4纸,折完后,发现折痕AB ′与A 4纸的长边AB 恰好重合,那么A 4纸的长AB 与宽AD 的比值为___________.35.(2022·山东潍坊)如图,在直角坐标系中,边长为2个单位长度的正方形ABCO 绕原点O 逆时针旋转75︒,再沿y 轴方向向上平移1个单位长度,则点B ''的坐标为___________.36.(2022·湖南永州)如图,图中网格由边长为1的小正方形组成,点A 为网格线的交点.若线段OA 绕原点O 顺时针旋转90°后,端点A 的坐标变为______.三.解答题37.(2022·湖南)如图所示的方格纸(1格长为一个单位长度)中,AOB ∆的顶点坐标分别为(3,0)A ,(0,0)O ,(3,4)B .(1)将AOB ∆沿x 轴向左平移5个单位,画出平移后的△111AO B (不写作法,但要标出顶点字母); (2)将AOB ∆绕点O 顺时针旋转90︒,画出旋转后的△222A O B (不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B 绕点O 旋转到点2B 所经过的路径长(结果保留)π.38.(2022·湖北荆州)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC 为格点三角形.请按要求作图,不需证明.....(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.39.(2022·黑龙江哈尔滨)如图,方格纸中每个小正方形的边长均为1,ABC的顶点和线段EF的端点均在小正方形的顶点上.(1)在方格纸中面出ADC,使ADC与ABC关于直线AC对称(点D在小正方形的顶点上);(2)在方格纸中画出以线段EF为一边的平行四边形EFGH(点G,点H均在小正方形的顶点上),且平行四边形EFGH的面积为4.连接DH,请直接写出线段DH的长.40.(2022·吉林)图①,图②均是44⨯的正方形网格,每个小正方形的顶点称为格点.其中点A ,B ,C 均在格点上.请在给定的网格中按要求画四边形.(1)在图①中,找一格点D ,使以点A ,B ,C ,D 为顶点的四边形是轴对称图形;(2)在图②中,找一格点E ,使以点A ,B ,C ,E 为顶点的四边形是中心对称图形.41.(2022·四川广安)数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)42.(2022·江苏常州)如图,点A 在射线OX 上,OA a =.如果OA 绕点O 按逆时针方向旋转(0360)<≤︒n n 到OA ',那么点A '的位置可以用(),︒a n 表示.(1)按上述表示方法,若3a =,37n =,则点A '的位置可以表示为______;(2)在(1)的条件下,已知点B 的位置用()3,74︒表示,连接A A '、A B '.求证:A A A B ''=.43.(2022·黑龙江)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标;(3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).44.(2022·湖北武汉)已知四边形ABCD 为矩形.点E 是边AD 的中点.请仅用无刻度的直尺完成下列作图,不写作法,保留作图痕迹.(1)在图1中作出矩形ABCD 的对称轴m ,使m AB ∥;(2)在图2中作出矩形ABCD 的对称轴n :使n AD ∥.45.(2022·广西河池)如图、在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(4,1),B(2,3),C(1,2).(1)画出与△ABC关于y轴对称的△A1B1C1;(2)以原点O为位似中心,在第三象限内画一个△A2B2C2,使它与△ABC的相似比为2:1,并写出点B2的坐标.46.(2022·广西桂林)如图,在平面直角坐标系中,形如英文字母“V”的图形三个端点的坐标分别是A(2,3),B(1,0),C(0,3).(1)画出“V”字图形向左平移2个单位后的图形;(2)画出原“V”字图形关于x轴对称的图形;(3)所得图形与原图形结合起来,你能从中看出什么英文字母?(任意答一个即可)。
初中数学图形变换平移教案
初中数学图形变换平移教案教学目标:1. 知识与技能:让学生经历图形平移的观察、操作、欣赏及抽象概括的过程,发现图形平移的性质,并能够灵活运用平移的性质解决实际问题。
2. 数学思考:培养学生变化的眼光看待图形,善于在运动变化的过程中发现图形不变的几何性质,培养学生的审美意识和数学应用意识。
3. 问题解决:使学生理解平移的基本性质,能够从整体和局部角度把握平移的关键特征,借助平移将未知转化为已知,从而解决问题。
4. 情感态度:在数学学习中培养学生与同伴合作交流的能力,既能理解、尊重他人意见,又能独立思考,大胆质疑,体验成功的喜悦。
教学重点:图形平移的概念、平移的基本性质。
教学难点:平移性质的探索及灵活应用。
教学过程:一、导入(5分钟)1. 利用多媒体展示一些生活中的平移现象,如滑滑梯、升国旗等,引导学生观察并思考这些现象与数学中的图形变换有什么关系。
2. 学生分享观察到的平移现象,教师总结并引出本节课的主题——图形平移。
二、新课讲解(15分钟)1. 教师通过展示图形平移的动画,引导学生直观地感受图形的平移变换。
2. 教师提出问题:“图形平移后,它的位置和形状会发生什么变化?”,让学生进行思考和讨论。
3. 学生回答问题,教师根据学生的回答总结出图形平移的性质:平移前后图形全等,对应点连线平行或在同一直线上且相等。
4. 教师引导学生通过实际操作,验证图形平移的性质。
三、例题讲解(15分钟)1. 教师展示例题,引导学生运用平移的性质解决问题。
2. 学生独立思考,教师进行讲解和指导。
四、巩固练习(10分钟)1. 教师布置练习题,让学生运用平移的性质进行解答。
2. 学生互相讨论,教师进行巡回指导。
五、课堂小结(5分钟)1. 教师引导学生回顾本节课所学内容,总结图形平移的性质及运用。
2. 学生分享自己在课堂上的收获和感受。
六、作业布置(5分钟)1. 教师布置课后作业,让学生进一步巩固图形平移的知识。
教学反思:本节课通过引导学生观察生活中的平移现象,引出图形平移的概念,并通过讲解、例题和练习,使学生掌握图形平移的基本性质。
中考数学复习几何专题复习教案1
中考数学专题复习六几何(一)【教学笔记】题型一:图像的几何变换1、主视图、左视图、府视图2、图形旋转、折叠3、求最短途径问题题型二:平面几何根底1、平行线、相交线题型三:三角形(全等、相像、三角函数)1、勾股定理1、题型一:图像的几何变换【例1】(2016•资阳)如图是一个正方体纸盒的外外表绽开图,则这个正方体是( )A .B .C .D .【解答】解:∵由图可知,实心圆点及空心圆点肯定在紧相邻的三个侧面上,∴C 符合题意. 故选C .【例2】(2015•资阳)如图1是一个圆台,它的主视图是 ( ) A . B . C . D . 解:B .【例3】(2015达州)如图,直径AB 为12的半圆,绕A 点逆时针旋转60°,此时点B 旋转到点B ′,则图中阴影局部的面积是( ) A .12π B.24π C.6π D.36π【例4】(2014年四川资阳)如图,在Rt△ABC 中,∠BAC=90°.假如将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处.那么旋转的角度等于( )A .55°B . 60°C . 65°D . 80°解答:∵在Rt△ABC 中,∠BAC=90°,将该三角形绕点A 按顺时针方向旋转到△AB 1C 1的位置,点B 1恰好落在边BC 的中点处,∴AB 1=BC ,BB 1=B 1C ,AB=AB 1,∴BB 1=AB=AB 1,∴△ABB 1是等边三角形,∴∠BAB 1=60°,∴旋转的角度等于60°.故选:B .【例5】(2015自贡)如图,在矩形ABCD 中,AB=4,AD=6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB′F,连接B′D,则B ′D 的最小值是( )A .2102-B .6C .2132-D .4解析:【课后练习】1、(2014年四川资阳)下列立体图形中,俯视图是正方形的是( )A .B .C .D .解答: 解;A 、的俯视图是正方形,故A 正确;2、(2015内江)如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( B ) A 3 B .3.6 D 6解:连接BD,及AC交于点F.∵点B及D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=23=BE3、(2015甘孜州)下列图形中,是中心对称图形的为()A. B. C. D.解:A、是轴对称图形,不是中心对称图形.故A错误;B、不是轴对称图形,是中心对称图形.故B正确;C、是轴对称图形,不是中心对称图形.故C错误;D、是轴对称图形,不是中心对称图形.故D错误.故选B.4、(2015遂宁)在正方形、矩形、菱形、平行四边形、等腰梯形中,其中中心对称图形的个数是( C )A.2 B.3 C.4 D.5解:平行四边形是中心对称图形,矩形、菱形、正方形既是中心对称图形,又是轴对称图形,符合题意;而等腰梯形是轴对称图形,但不是中心对称图形,故中心对称图形的有4种.5、(2015泸州)如图,在△ABC中,AB=AC,BC=24,tanC=2,假如将△ABC沿直线l 翻折后,点B落在边AC的中点E处,直线l及边BC交于点D,那么BD的长为( A )A.13 B.152C.272D.12解:过点A作AQ⊥BC于点Q,∵AB=AC,BC=24,tanC=2,∴A Q/QC=2,QC=BQ=12,∴A Q=24,∵将△ABC沿直线l翻折后,点B落在边AC的中点处,过E点作EF⊥BC于点F,设BD=x,则DE=x,∴DF=24-x-6=18-x,∴x2=(18-x)2+122,得:x=13,则BD=13.故选A.6、(2015绵阳)如图,D是等边△ABC边AB上的一点,且AD:DB=1:2,现将△ABC折叠,使点C及D重合,折痕为EF,点E,F分别在AC和BC上,则CE:CF=( B )A.34B.45C.56D.677、(2015广元)如图,把RI△ABC放在直角坐标系内,其中∠CAB=90°,BC=5.点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线26y x=-上时,线段BC扫过的面积为( C )A.4 B.8 C.16 D.82解:∵∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),∴AC=4,当点C落在直线y=2x﹣6上时,如图,∴四边形BB'C'C是平行四边形,∴A'C'=AC=4,把y=4代入直线y=2x﹣6,解得x=5,即OA'=5,∴AA'=BB'=4,∴平行四边形BB'C'C的面积=BB' ×A'C'=44=16;故答案为:16.8、(2015成都)如图,在平行四边形ABCD中,AB=13,AD=4,将平行四边形ABCD沿AE翻折后,点B恰好及点C重合,则折痕AE的长为_______.试题分析:点B恰好及点C重合,且四边形ABCD是平行四边形,依据翻折的性质,则AE⊥BC,BE=CE=2,在Rt△ABE中,.故答案为:3.由勾股定理得9、(2015达州)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,点D落在D′处,C′D′交AE于点M.若AB=6,BC=9,则AM的长为.10、(2015内江)如图,在四边形ABCD中,AD∥BC,∠C=90°,E为CD上一点,分别以EA,EB为折痕将两个角(∠D,∠C)向内折叠,点C,D恰好落在AB边的点F处.若AD=2,BC=3,则EF的长为.11、(2015宜宾)如图,一次函数的图象及x轴、y轴分别相交于点A、B,将△AOB沿直线AB翻折,得△ACB.若C(32,32),则该一次函数的解析式为.12、(2015凉山州)菱形ABCD在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,﹣1),当EP+BP最短时,点P的坐标为.13、(2015绵阳)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A 点逆时针旋转,使AB及AC重合,点D旋转至点E,则∠CDE的正切值为.14、(2015攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.15、(2015乐山)如图,已知A (23,2)、B (23,1),将△AOB 围着点O 逆时针旋转,使点A 旋转到点A′(﹣2,23)的位置,则图中阴影局部的面积为 .16、(2015南充)(10分)如图,点P 是正方形ABCD 内一点,点P 到点A 、B 和D 的间隔 分别为1,22,10,△ADP 沿点A 旋转至△ABP ′,连结PP ′,并延长AP 及BC 相交于点Q .(1)求证:△APP ′是等腰直角三角形;(2)求∠BPQ 的大小;(3)求CQ 的长.17、(2015自贡)(14分)在△ABC 中,AB=AC=5,cos∠ABC=53,将△ABC 绕点C 顺时针旋转,得到△A 1B 1C .(1)如图①,当点B 1在线段BA 延长线上时.①求证:BB 1∥CA 1;②求△AB 1C 的面积;(2)如图②,点E 是BC 边的中点,点F 为线段AB 上的动点,在△ABC 绕点C 顺时针旋转过程中,点F 的对应点是F 1,求线段EF 1长度的最大值及最小值的差.题型二:平面几何根底【例1】(2015资阳)如图,已知AB ∥CD ,∠C =70°,∠F =30°,则∠A 的度数为( C ) A .30° B.35° C.40° D.45°【例2】(2015广安)如图,半径为r 的⊙O 分别绕面积相等的等边三角形、正方形和圆用一样速度匀速滚动一周,用时分别为1t 、2t 、3t ,则1t 、2t 、3t 的大小关系为 .解:设面积相等的等边三角形、正方形和圆的面积为3.14,等边三角型的边长为a≈2, 等边三角形的周长为6;正方形的边长为b≈1.7,正方形的周长为1.7×4=6.8; 圆的周长为3.14×2×1=6.28,∵6.8>6.28>6,∴t 2>t 3>t 1.【例3】(2016•资阳)如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB= 36° .【解答】解:正多边形内角和;∵五边形ABCDE是正五边形,∴∠B=108°,AB=CB,∴∠ACB=(180°﹣108°)÷2=36°;故答案为:36°.【课后练习】1、(2015内江)如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°2、(2015凉山州)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()m]A.52° B.38° C.42° D.60°3、(2015泸州)如图,AB∥CD,CB平分∠ABD.若∠C=40°,则∠D的度数为()A.90° B.100° C.110° D.120°4、(2015成都)如图,直线m∥n,△ABC为等腰直角三角形,∠BAC=90°,则∠1=________度.5、(2015遂宁)下列命题:①对角线相互垂直的四边形是菱形;②点G是△ABC的重心,若中线AD=6,则AG=3;③若直线y kx b=+经过第一、二、四象限,则k<0,b>0;④定义新运算:a*b=22a b-,若(2x)*(x﹣3)=0,则x=1或9;⑤抛物线2243y x x=-++的顶点坐标是(1,1).其中是真命题的有(只填序号)6、(2015宜宾)如图,A B∥CD,AD及BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .[来7、(2015绵阳)如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .题型三:三角形(全等、相像、三角函数)【例1】(2016•资阳)如图6,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB 上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=2;②当点E及点B重合时,MH=12;③AF+BE=EF;④MG•MH=12,其中正确结论为( C )A.①②③B.①③④C.①②④D.①②③④解答:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E及点B重合时,点H及点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CE=AF=BF,∴FG是△ACB 的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠EBD=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴AE/BC=,∴A E•BF=AC•BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG ,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF ,∴MG•MH=AE×BF=AE•BF=AC•BC=,故④正确.故选:C.【例2】(2016•资阳)如图5,透亮的圆柱形容器(容器厚度忽视不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短途径是()图5 A.13cm B.261cm C.61cm D.234cm考点:平面绽开-最短途径问题..解答:解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm及饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面绽开,作A关于EF的对称点A′,连接A′B,则A′B即为最短间隔,A′B===13(Cm).故选:A.【例3】(2016•资阳)如图,在等腰直角△ABC中,∠ACB=90°,CO⊥AB于点O,点D、E分别在边AC、BC上,且AD=CE,连结DE交CO于点P,给出以下结论:①△DOE是等腰直角三角形;②∠CDE=∠COE;③若AC=1,则四边形CEOD的面积为;④AD2+BE2﹣2OP2=2DP•PE,其中全部正确结论的序号是①②③④.【解答】解:①正确.如图,∵∠ACB=90°,AC=BC,CO⊥AB∴AO=OB=OC,∠A=∠B=∠ACO=∠BCO=45°,在△ADO和△CEO中,,∴△ADO≌△CEO,∴DO=OE,∠AOD=∠COE,∴∠AOC=∠DOE=90°,∴△DOE是等腰直角三角形.故①正确.②正确.∵∠DCE+∠DOE=180°,∴D、C、E、O四点共圆,∴∠CDE=∠COE,故②正确.③正确.∵AC=BC=1,∴S△A B C=×1×1=,S四边形D C E O =S△D O C+S△C E O=S△C D O+S△A D O=S△A O C=S△A B C=,故③正确.④正确.∵D、C、E、O四点共圆,∴OP•PC=DP•PE,∴2OP2+2DP•PE=2OP2+2OP•PC=2OP(OP+PC)=2OP•OC,∵∠OEP=∠DCO=∠OCE=45°,∠POE=∠COE,∴△OPE∽△OEC,∴=,∴OP•OC=OE2,∴2OP2+2DP•PE=2OE2=DE2=CD2+CE2,∵CD=BE,CE=AD,∴AD2+BE2=2OP2+2DP•PE,∴AD2+BE2﹣2OP2=2DP•PE.故④正确.【例4】(2016•资阳)在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.(1)如图1,若点F及点A重合,求证:AC=BC;(2)若∠DAF=∠DBA,①如图2,当点F在线段CA的延长线上时,推断线段AF及线段BE的数量关系,并说明理由;②当点F在线段CA上时,设BE=x,请用含x的代数式表示线段AF.【解答】解:(1)由旋转得,∠BAC=∠BAD,∵DF⊥AC,∴∠CAD=90°,∴∠BAC=∠BAD=45°,∵∠ACB=90°,∴∠ABC=45°,∴AC=CB,(2)①由旋转得,AD=AB,∴∠ABD=∠ADB,∵∠DAF=∠ABD,∴∠DAF=∠ADB,∴AF∥BB,∴∠BAC=∠ABD,∵∠ABD=∠FAD由旋转得,∠BAC=∠BAD,∴∠FAD=∠BAC=∠BAD=×180°=60°,由旋转得,AB=AD,∴△ABD是等边三角形,∴AD=BD,在△AFD和△BED中,,∴△AFD≌△BED,∴AF=BE,②如图,由旋转得,∠BAC=∠BAD,∵∠ABD=∠FAD=∠BAC+∠BAD=2∠BAD,由旋转得,AD=AB,∴∠ABD=∠ADB=2∠BAD,∵∠BAD+∠ABD+∠ADB=180°,∴∠BAD+2∠BAD+2∠BAD=180°,∴∠BAD=36°,设BD=x,作BG平分∠ABD,∴∠BAD=∠GBD=36°∴AG=BG=BC=x,∴DG=AD﹣AG=AD﹣BG=AD﹣BD,∵∠BDG=∠ADB,∴△BDG∽△ADB,∴.∴,∴,∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED,∴,∴AF==x.【课后练习】1、(2015成都)如图,在△ABC中,DE//BC,AD=6,BD=3,AE=4,则EC的长为()A.1 B.2 C.3 D.42、(2015达州)如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48° B.36° C.30° D.24°3、(2015遂宁)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为()A.1cm B.2cm C.3cm D.4cm4、(2015宜宾)如图,△OAB及△OCD是以点O为位似中心的位似图形,相像比为1:2,∠OCD=90°,CO=CD.若B(1,0),则点C的坐标为()A.(1,2) B.(1,1) C.(2,2) D.(2,1)5、(2015泸州)在平面直角坐标系中,点A(2,2),B(32,32),动点C 在x轴上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为()A.2 B.3 C.4 D.56、(2015眉山)如图,A.B是双曲线上的两点,过A点作AC⊥x轴,交OB 于D 点,垂足为C .若△ADO 的面积为1,D 为OB 的中点,则k 的值为( )A .34B .38C .3D .47、(2015眉山)如图,AD ∥BE ∥CF ,直线l 1、l 2这及三条平行线分别交于点A 、B 、C和点D 、E 、F .已知AB =l ,BC =3,DE =2,则EF '的长为( )A .4B .5C .6D .88、(2015绵阳)如图,D 是等边△ABC 边AB 上的一点,且AD :DB =1:2,现将△ABC 折叠,使点C 及D 重合,折痕为EF ,点E ,F 分别在AC 和BC 上,则CE :CF =( )A .34B .45C .56D .67 9、(2015绵阳)如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为( )A .6B .12C .20D .2410、(2015绵阳)如图,在△ABC 中,∠B 、∠C 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC =( )A .118° B.119° C.120° D.121°11、(2015广安)一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长A.12 B.9 C.13 D.12或912、(2015甘孜州)如图,在△ABC中,∠B=40°,∠C=30°,延长BA至点D,则∠CAD 的大小为()A.110° B.80° C.70° D.60°13、(2015乐山)如图,1l∥2l∥3l,两条直线及这三条平行线分别交于点A、B、C和D、E、F.已知,则DEDF的值为()A.32B.23C.25D.3514、(2015成都)如图,在平行四边形ABCD中,AB=13,AD=4,将平行四边形ABCD 沿AE翻折后,点B恰好及点C重合,则折痕AE的长为________.15、(2015南充)如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.16、(2015自贡)将一副三角板按图叠放,则△AOB及△DOC的面积之比等于.17、(2015宜宾)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD及CF相交于点H.给出下列结论:①△ABE≌△DCF;②;③2DP PH PB=⋅;④.其中正确的是.(写出全部正确结论的序号)18、(2015宜宾)如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的间隔为.19、(2015宜宾)如图,AB∥CD,AD及BC交于点E.若∠B=35°,∠D=45°,则∠AEC= .20、(2015凉山州)在▱ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD :S△COB= .21、(2015泸州)如图,在矩形ABCD中,BC=2AB,∠ADC的平分线交边BC于点E,AH⊥DE于点H,连接CH并延长交边AB于点F,连接AE交CF于点O.给出下列命题:①∠AEB=∠AEH;②DH=22EH;③HO=12AE;④BC﹣BF=2EH.其中正确命题的序号是(填上全部正确命题的序号).22、(2015眉山)如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=1200时,四边形AEFD是正方形.其中正确的结论是________.(请写出正确结论的番号).23、(2015绵阳)如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A 点逆时针旋转,使AB及AC重合,点D旋转至点E,则∠CDE的正切值为.24、(2015广元)一个等腰三角形两边的长分别为2m 、5cm .则它的周长为________cm . 25、(2015巴中)如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连结DH ,则线段DH 的长为 . 26、(2015巴中)若a 、b 、c 为三角形的三边,且a 、b 满意229(2)0a b -+-=,则第三边c 的取值范围是 .27、(2015攀枝花)如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE +DE 的最小值为 .28、(2015乐山)如图,在等腰三角形ABC 中,AB=AC ,DE 垂直平分AB ,已知∠ADE=40°,则∠DBC= °.29、(2015乐山)(10分)如图,将矩形纸片ABCD 沿对角线BD 折叠,使点A 落在平面上的F 点处,DF 交BC 于点E .(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE 的长.30、(2015南充)(8分)如图,矩形纸片ABCD ,将△AMP 和△BPQ 分别沿PM 和PQ 折叠(AP >AM ),点A 和点B 都及点E 重合;再将△CQD 沿DQ 折叠,点C 落在线段EQ 上点F 处.(1)推断△AMP ,△BPQ ,△CQD 和△FDM 中有哪几对相像三角形?(不需说明理由)(2)假如AM =1,sin ∠DMF =53,求AB 的长.31、(2015南充)(8分)如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE . 求证:(1)△AEF ≌△CEB ;(2)AF =2CD .32、(2015内江)(本小题满分9分)如图,将▱ABCD 的边AB 延长至点E ,使AB =BE ,连接DE ,EC ,DE 交BC 于点O .(1)求证:△ABD ≌△BEC ;(2)连接BD ,若∠BOD =2∠A ,求证:四边形BECD 是矩形.33、(2015广安)(6分)在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.解析:∵AD∥BC ∴∠CBD=∠ADB又∵∠EBD=∠CBD∴∠EBD=∠ADB∴OB=OD∵BC=BE AD=BC ∴BE=AD∴AD-OD=BE-OB∴OA=OE34、(2015巴中)(10分)如图,在菱形ABCD中,对角线AC及BD相交于点O,MN过点O且及边AD、BC分别交于点M和点N.(1)请你推断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学图形及其变换复习教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第四篇图形及其变换专题十五视图与投影一、考点扫描1、会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图),会判断简单物体的三视图.能根据三视图描述基本几何体或实物原型2、了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作立体模型。
3、了解基本几何体与其三视图、展开图(球除外)之间的关系;通过典型实例,知道这种关系在现实生活中的应用(如物体的包装)。
4、观察与现实生活有关的图片(如照片、简单的模型图、平面图、地图等),了解并欣赏一些有趣的图形(如雪花曲线、莫比乌斯带)。
5、通过背景丰富的实例,知道物体的阴影是怎样形成的,并能根据光线的方向辨认实物的阴影(如在阳光或灯火下,观察手的阴影或人的身影)。
6、了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示。
7、通过实例了解中心投影和平行投影。
二、考点训练1、在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为2、一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是()3、小明从正面观察图1所示的两个物体,看到的是下图中的()4、将如图所示放置的一个直角△ABC( ∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是图中四个图形中的_________(只填序号).5、如图4,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是图中的()6、如图,是由一些相同的小立方块搭成的立体图形的三种视图,则搭成这个立体图形的小立方块的个数是()A.5 B.6 C.7 D.87、如图6,阳光通过窗口照到仓库内,在地上留下2.7m宽的亮区,如图6,已知亮区一边到窗下的墙角的距离为CD=8.7m,窗口高AB=1.8m,那么窗口底边高地面的高BC=_________239、一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三边形、正四边形、正六边形.那么另外一个为( )A.正三边形B.正四边形C.正五边形 D .正六边形三、例题剖析1、如图所示,说出下列四个图形各是由哪些立体图形展开得到的? 2、4.如图所示,画出该物体的三视图3、如图,住宅区内的两幢楼,它们的高AB=CD=30m ,两楼间的距离AC=24cm ,现需了解甲楼对乙楼的采光的影响情况,当太阳光与水平线的夹角为30”时,求甲楼的影子在乙楼上有多高?4、由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图所示. (1)请你画出这个几何体的一种左视图; (2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能值.四、综合应用1、如图,某大厅一面墙的整个墙面上装着玻璃,镜子前的地面上有一盆花和一个木架,大厅天花板上有一盏电灯,晚上,镜子反射灯光形成了那盆花的影子,木架的影子是电灯光形成的,请你确定此时电灯光源的位置.4 C 'A B C D专题十六 轴对称 一、考点扫描 1、轴对称及轴对称图形的 联系:轴对称及轴对称图形可以相互转化 区别:轴对称是指两个图形之间的位置关系,而轴对称图形一个图形自身的性质;轴对称只有一条对称轴,轴对称图形可能有几条对称轴。
2、通过具体实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。
3、能够按要求作出简单平面图形经过一次或两次轴对称后的图形;探索简单图形之间的轴对称关系,并能指出对称轴。
4、探索基本图形(等腰三角形、矩形、菱形、等腰梯形、正多边形、圆)的轴对称性及其相关性质。
5、欣赏现实生活中的轴对称图形,结合现实生活中典型实例了解并欣赏物体的镜面对称,能利用轴对称进行图案设计。
二、考点训练1、下列图形是否是轴对称图形,找出轴对称图形的有几条对称轴。
2、小明的运动衣号在镜子中的像是 ,则小明的运动衣号码是……………( ) A. B. C. D3、在角、线段、等边三角形、平行四边形形中,轴对称图形有( ) A.1个 B.2个 C.3个 D.4个4、下面四个图形中,从几何图形的性质考虑,哪一个与其它三个不同?请指出这个图形,并简述你的理由.答:图形 ;理由是 :5、如图2(3),ΔABC 中,DF 是边AC 的垂直平分线AC=6cm ,ΔABD 的周长为13cm ,则ΔABC 的周长为______cm .6、如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,点C 落在点C '的位置,则C B '与BC 之间的数量关系是 .7、如图,平面镜A 与B 之间夹角为110°,光线经平面镜A 反射到平面镜B 上,再反射出去,若21∠=∠,则1∠的度数为 . 三、例题剖析51、观察下列一组图形,根据你所发现的规律下面一个应该是什么形状?2、如图,菱形ABCD 中,AB=2,∠BAD=60°,E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值是 .3、如图,P 在∠AOB 内,点M 、N 分别是点P 关于AO 、BO 的对称点,MN 分别交OA 、OB 于E 、F. ⑴若△PEF 的周长是20cm ,求MN 的长.⑵若∠AOB=30°试判断△MNO 的形状,并说明理由4、将一张长方形的纸对折,如图5所示可得到一条折痕(图中虚线).续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到 条折痕.如果对折n 次,可以得到 条折痕.四、综合应用 1、做一做: 用四块如图1的瓷砖拼成一个正方形,使拼成的图案成轴对称图形.请你在图2、图3、图4中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示). 2、(05福州)已知如图,在直角梯形ABCD 中,AD ∥BC , BC=5cm ,CD=6cm ,∠DCB=60º,∠ ABC=90º,等边三角形MNP (N 为不动点)的边长为a cm ,边MN 和直角梯形ABCD 的底边BC 都在直线l 上,NC=8 cm ,将直角梯形ABCD 向左翻折180º,翻折一次得图形①,翻折二次得图形②,如此翻折下去。
(1)、将直角梯形ABCD 向左翻折二次,如果此时等边三角形MNP 的边长a ≥2cm ,这时两图形重叠部分的面积是多少? (2)、将直角梯形ABCD 向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积就等于直角梯形ABCD 的面积,这时等边三角形MNP 的边长a 至少应为多少? (3)、将直角梯形ABCD 向左翻折三次,如果第三次翻折得到的直角梯形与等边三角形重叠部分的面积F E M A O B P6 等于直角梯形ABCD 的面积的一半,这时等边三角形MNP 的边长a 应为多少?专题十七 平移与旋转 一、考点扫描 1、图形的平移 ①通过具体实例认识平移,探索它的基本性质,理解对应点连线平行且相等的性质。
②能按要求作出简单平面图形平移后的图形。
③利用平移进行图案设计,认识和欣赏平移在现实生活中的应用。
2、图形的旋转①通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质。
②了解平行四边形、圆是中心对称图形。
中心对称的概念和性质。
③能够按要求作出简单平面图形旋转后的图形。
④欣赏旋转在现实生活中的应用。
⑤探索图形之间的变换关系(轴对称、平移、旋转及其组合)。
⑥灵活运用轴对称、平移和旋转的组合进行图案设计。
二、考点训练 1、下列说法正确的是( ) A .旋转后的图形的位置一定改变 B .旋转后的图形的位置一定不变 C .旋转后的图形的位置可能不变 D .旋转后的图形的位置和形状都发生变化 2、下列关于旋转和平移的说法错误的是( ) A .旋转需旋转中心和旋转角,而平移需平移方向和平移距离 B .旋转和平移都只能改变图形的位置 C .旋转和平移图形的形状和大小都不发生变化 D .旋转和平移的定义是相同的 3、在“党”“在”“我”“心”“中”五个汉字中,旋转180o 后不变的字是_____,在字母“X”、“V”、“Z”、“H”中绕某点旋转不超过180后能与原图形重合的是____。
4、△ABC 是等腰直角三角形,如图,A B=A C ,∠BA C =90°,D 是BC 上一点,△ACD 经过旋转到达△ABE 的位置,则其旋转角的度数为( )A .90°B .120°C .60°D .45°5、有以下图形:平行四边形、矩形、等腰三角形、线段、圆、菱形,其中既是轴对称图形又是中心对称图形的有( )A .4个B .5个C .6个D .3个 A B P M N ② ① D C7图图6、如图2的图案中,可以看出由图案自身的部分经过平移而得到的是( )图27、有以下现象:①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摆动;④传送带上瓶装饮料的移动,其中属于平移的是( )A 、①③B 、①②C 、②③D 、②④8、如图1,若将△ABC 绕点C 顺时针旋转90°后得到 △A B C ''',则A 点的对应点A ′的坐标是( )A 、(-3,-2)B 、(2,2)C 、(3,0)D 、(2,1)三、例题剖析1、如图,在△ABC 中,∠C=90°,AC=2cm ,把这个三角形在平面内绕点C 顺时针旋转90°,那么点A 移动所走过的路线长是 cm .(不取近似值)2、将两块含30°角且大小相同的直角三角板如图3摆放。
(1)将图3中△11A B C 绕点C 顺时针旋转45°得图4,点11P A C 是与AB 的交点,求证:112CP AP =; (2)将图4中△11A B C 绕点C 顺时针旋转30°到△22A B C (如图5),点22P A C 是与AB 的交点。
线段112CP P P 与之间存在一个确定的等量关系,请你写出这个关系式并说明理由; 图3 图4 (3)将图5中线段1CP 绕点C 顺时针旋转60°到3CP (如图6),连结32P P ,求证:32P P ⊥AB.AG(O)E C BF①四、综合应用1、把两个全等的等腰直角三角板ABC和EFG(其直角边长均为4)叠放在一起(如图①),且使三角板EFG的直角顶点G与三角板ABC的斜边中点O 重合.现将三角板EFG绕O点顺时针方向旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)在上述旋转过程中,BH与CK有怎样的数量关系?四边形CHGK的面积有何变化?证明你发现的结论;(2)连接HK,在上述旋转过程中,设BH=x,△GKH的面积为y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)在(2)的前提下,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的516若存在,求出此时x的值;若不存在,说明理由.8。