流体输送机械

合集下载

化工原理第三章-流体输送与流体输送机械

化工原理第三章-流体输送与流体输送机械

3.1.1 直管阻力损失 注意:当量直径 de 仅用于阻力损失和雷诺数的计算式 中,即
u =λ⋅ ⋅ hf de 2 l
2
Re =
ρud e µ
式中的速度 u 要用实际的平均速度,
u≠ V
πd e 2 4
3.1.2 局部阻力损失 局部阻力损失主要是由于流道的急剧变化使流动边界 层分离,所产生的大量漩涡消耗了机械能。
z2
2 2
p2
吸 收 塔
1
p1
1
z1
若已知阻力损失服从平方或一次方定律时,可将关系 式直接代入柏努利方程计算流速,不需进行试差。
3.3 流体输送管路计算
无论实际管路有多复杂,总是可以分解为简单管路、并联 管路与分支管路三种基本类型的组合。
3.3.1 简单管路 简单管路即无分支的管路,既可以是等径、也可以由 不同管径或截面形状的管道串联组成。
H
p真
D 1.5m
V =
π
4
D 2 (1.5 − H ) = 0.785 × 1.0 2 × (1.5 − 0.27 ) = 0.966m 3
0.5m
设 dt 时间内液面下降高 u π d 2dt = − π D 2dH 0 4 4 度为 dH,由物料衡算得
⌠ 2 t D − dH 2D 2 t = ∫ dt = 2 = 0 d gd 2 − p真 ⌡1.5 2 ρ + gH 2 ×1.0 2 = × 12.05 − 0 = 556s 2 9.81× 0.03
第三章 流体输送与流体输送机械
概 述
化工生产系统中流体输送的主要任务: 满足对工艺流体的流量和压强的要求。 流体输送系统包括: 流体输送管路、流体输送机械、流动参数测控装 置。 流体流动与输送有其共同的规律。各种流体输送 机械也有共通的原理,所以有通用机械之称。 流体输送计算以描述流体流动基本规律的传递理 论为基础。

化工原理第二章-流体输送机械

化工原理第二章-流体输送机械

w2 w2 w2 c2小,泵内流动阻力损失小
c2 c2
c2
uuu222
前径后弯向弯叶叶叶片片片
3) 理论流量
H T
u22 g
u2ctg2 gD2b2
若离心泵的几何尺寸(b2、D2、β2)和转速n一定,则式可表示

表示HT∞与QT呈线性关系,该直线的斜率与叶 片形状β2有关,即 β2>90°时,B<0, HT∞随QT的增加而增大。 β2=90°时,B=0, HT∞与QT的无关。 β2<90°时,B>0, HT∞随QT的增加而减少。
Ne
轴功率 N :电机输入到泵轴的功率,由于泵提供给流 体的实际扬程小于理论扬程,故泵由电机获得的轴功并不 能全部有效地转换为流体的机械能。
N Ne
有效功率 Ne:流体从泵获得的实际功率,可直
接由泵的流量和扬程求得
Ne = HgQρ
N QH 102
电机

2. 离心泵特性曲线及其换算
用20C清水测定
包括 :H~Q曲线(平坦型、陡降型、 驼峰型) N~Q曲线、 ~Q曲线
QgH
N
由图可见: Q,H ,N,
有最大值。
思考: ➢ 离心泵启动时均关闭 出口阀门,why? ➢为什么Q=0时,N0?
02
高效区
与最高效率相比, 效率下降5%~8%
设计点
3.离心泵性能的改变和换算
1)液体性质的影响 (1)密度:
思考:泵壳的主要作用是什么?
①汇集液体,并导出液体; ②能量转换装置
轴封装置:离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵 壳之间的密封。
作用:防止高压液体从泵壳内沿间隙漏出,或外界空气 漏入泵内。

化工原理流体输送机械

化工原理流体输送机械

化工原理流体输送机械1. 引言化工过程中,涉及到大量的流体输送工作。

流体输送机械是一类用于输送、泵送、搅拌、混合等操作的设备。

本文将介绍化工原理中常用的流体输送机械,包括离心泵、齿轮泵、隔膜泵、搅拌器等。

2. 离心泵离心泵是一种常用的流体输送机械,它利用离心力将流体从低压区域输送到高压区域。

离心泵的工作原理是通过转子的旋转使得流体在离心力的作用下产生压力差,从而实现输送效果。

离心泵具有结构简单、造价低廉、输送流量大的优点,广泛应用于化工领域。

2.1 离心泵的结构离心泵主要由叶轮、泵壳、轴和轴承等部分组成。

叶轮是离心泵中最关键的部件,它负责将流体由低压区域吸入并输出到高压区域。

泵壳是离心泵的外壳,起到固定叶轮和导向流体的作用。

轴和轴承用于传输转子的动力,并保证转子的平稳运转。

2.2 离心泵的工作原理离心泵的工作原理是基于离心力的作用。

当叶轮旋转时,流体将沿着叶轮的轴向方向进入泵壳,然后受到叶轮的离心力的作用,沿着辐射方向产生压力差。

高压区域的流体将通过出口管道输出,形成流动。

离心泵的输出流量取决于叶轮的转速和叶片的数目,可以通过调节叶轮的转速和叶片的数目来控制流量大小。

3. 齿轮泵齿轮泵是一种常用的流体输送机械,它利用齿轮的旋转来实现流体的输送。

齿轮泵的工作原理是通过两个或多个齿轮的啮合来产生压力差,从而将流体从低压区域输送到高压区域。

齿轮泵具有结构紧凑、输送流量稳定的优点,适用于输送高粘度的流体。

3.1 齿轮泵的结构齿轮泵由齿轮、泵体和轴等部分组成。

齿轮是齿轮泵中最关键的部件,它负责将流体从低压区域吸入并输出到高压区域。

泵体是齿轮泵的外壳,起到固定齿轮和导向流体的作用。

轴用于传输齿轮的旋转动力。

3.2 齿轮泵的工作原理齿轮泵的工作原理是基于齿轮的旋转和啮合作用。

当齿轮旋转时,流体将被齿轮齿槽所包围,形成封闭的空间。

齿轮的旋转使得空间逐渐缩小,流体被压缩,并在齿轮齿槽的作用下产生压力差。

高压区域的流体将通过出口管道输出,形成流动。

流体输送设备

流体输送设备

流体输送设备第2章流体输送设备2.1 概述流体输送机械:为流体提供能量的机械或装置流体输送机械在化⼯⽣产的作⽤:从低位输送到⾼位,从低压送⾄⾼压,从⼀处送⾄另⼀处。

2.1.1 对流体输送机械的基本要求(1)满⾜⼯艺上对流量和能量的要求(最为重要);(2)结构简单,投资费⽤低;(3)运⾏可靠,效率⾼,⽇常维护费⽤低;(4)能适应被输送流体的特性,如腐蚀性、粘性、可燃性等。

2.1.2 流体输送机械的分类按输送流体的种类不同泵(液体):离⼼泵、往复泵、旋转泵风机(⽓体):通风机、⿎风机、压缩机,真空泵按作⽤原理不同:离⼼式、往复式、旋转式等本章主要讲解:流体输送机械的基本构造、作⽤原理、性能及根据⼯艺要求选择合适的输送设备。

2.2 离⼼泵离⼼泵是化⼯⽣产中最常⽤的⼀种液体输送机械,它的使⽤约占化⼯⽤泵的80~90%。

2.2.1 离⼼泵的⼯作原理和主要部件基本结构:蜗形泵壳,泵轴(轴封装置),叶轮启动前:将泵壳内灌满被输送的液体(灌泵)。

输送原理:泵轴带动叶轮旋转→液体旋转→离⼼⼒(p,u)→泵壳,A↑u↓p↑→液体以较⾼的压⼒,从压出⼝进⼊压出管,输送到所需的场所。

→中⼼真空→吸液⽓缚现象:启动前未灌泵,空⽓密度很⼩,离⼼⼒也很⼩。

吸⼊⼝处真空不⾜以将液体吸⼊泵内。

虽启动离⼼泵,但不能输送体。

此现象称为“⽓缚”。

说明离⼼泵⽆⾃吸能⼒。

防⽌:灌泵。

⽣产中⼀般把泵放在液⾯以下。

底阀(⽌逆阀),滤⽹是为了防⽌固体物质进⼊泵内。

2.2.2 离⼼泵的主要部件1. 叶轮叶轮是离⼼泵的最重要部件。

其作⽤是将原动机的机械能传给液体,使液体的静压能和动能都有所提⾼。

按结构可分为以下三种:开式叶轮:叶轮两侧都没有盖板,制造简单,效率较低。

它适⽤于输送含杂质较多的液体。

半闭式叶轮:叶轮吸⼊⼝⼀侧没有前盖板,⽽另⼀侧有后盖板,它适⽤于输送含固体颗粒和杂质的液体。

闭式叶轮:闭式叶轮叶⽚两侧都有盖板,这种叶轮效率较⾼,应⽤最⼴。

第二章 流体输送机械

第二章  流体输送机械

26
N一定
24
22
20
18
16
14
12
10
η
H P
80
70 60
50
8 40 6 30 4 20 2 10 00
0 20 40 60 80 100120 qv m3/s
离心泵的特性曲线
1.流量的影响
1)qv
, He
; qv
0,
H
也只能达到一定值。
e
2)qv ,Pa ;qv 0,Pa最小, 离心泵启动时,应关闭出口阀门。
ha
p1
g
u12 2g
pV
g
有效气蚀余量:与吸入管路条件有关,与泵的结构尺寸无关。
必需汽蚀余量(Δhr):表示液体从泵入口流到叶轮内最低压 力处的全部压头损失。
泵入口处压头
p1
g
u12 2g
有效汽蚀余量ha 必需汽蚀余量hr
叶轮压力最低处压头 pk
g
饱和蒸汽压头
pV
g
必需汽蚀余量越小,泵越不易发生汽蚀现象。
※泵向管路提供能量用以提高流体的势能和克服管路阻力损失。
2.2.3离心泵的流量调节和组合操作
管路特性方程:
H H0 Kqv2
泵的特性方程: He (qv ) C Dqv2
泵------供方 管路------需方
H
两特性曲线的交点即 为泵的工作点。
qV 工作点
2.流量调节
方法:改变管路特性曲线;
Q
4)离心泵的组合操作
A. 泵的并联
两台相同的离心泵并联,理论上讲在同 样的压头下,其提供的流量应为单泵的 两倍。
H H并 流量增加,使管路流动阻力增加 H

《流体输送输送机械》课件

《流体输送输送机械》课件

安全操作:操作人员应熟悉通风 机的操作规程,确保安全操作
管道系统的运行与维护
定期检查:检 查管道是否有 泄漏、腐蚀等
现象
定期清洗:清 洗管道,防止
堵塞和污染
定期润滑:润 滑管道,防止
磨损和生锈
定期维护:维 护管道,确保
其正常运行
流体输送输送机械的故障 诊断与处理
章节副标题
泵的故障诊断与处理
故障诊断方法:如观察、听 诊、测量等
THEME TEMPLATE
感谢观看
泵的常见施:如更换零件、 调整参数、维修等
预防措施:如定期检查、维 护、更换易损件等
压缩机的故障诊断与处理
故障类型:机 械故障、电气 故障、液压故
障等
故障原因:磨 损、腐蚀、堵
塞、泄漏等
故障诊断方法: 观察、听声音、 测量、分析等
故障处理措施: 更换零件、调 整参数、清洗、
流体输送输送机械的应用
石油、天然气等能源输送 化工、制药、食品等行业的物料输送 城市供水、排水、污水处理等市政工程 农业灌溉、排涝等农业工程 船舶、飞机等交通工具的燃料输送 热力、电力等能源输送
流体输送输送机械的组成 与结构
章节副标题
泵的组成与结构
泵体:容纳 流体,承受 压力
叶轮:将流 体加速,产 生压力
章节副标题
流体输送输送机械概述
章节副标题
定义与分类
定义:流体输送输送机械是一 种用于输送流体的机械设备, 包括泵、压缩机、风机等。
分类:根据流体输送输送机械 的工作原理和用途,可以分为 泵、压缩机、风机等类型。
泵:用于输送液体,包括离心 泵、轴流泵、混流泵等。
压缩机:用于压缩气体,包括 离心压缩机、轴流压缩机、混 流压缩机等。

化工原理第二章 流体输送机械

化工原理第二章 流体输送机械
的状态参数。
注意:在选用离心泵时,应使离心泵在该点附近工作。
一般要求操作时的效率应不低于最高效率的92%。
例2-1 离心泵特性曲线的测定 附图为测定离心泵特性曲线的实验装置, 实验中已测出如下一组数据:泵进口处真 空表读数 p1=2.67×104 Pa(真空度) ,泵出 口处压强表读数 p2=2.55×105 Pa(表压) , 泵的流量 q=12.5×10-3 m3 /s ,功率表测 得电动机所消耗功率为 6.2kW ,吸入管 直径 d1=80mm,压出管直径 d2=60mm , 两测压点间垂直距离 Z2-Z1=0.5m,泵由 电动机直接带动,传动效率可视为 1,电 动机的效率为 0.93 ,实验介质为 20℃的 清水,试计算在此流量下泵的压头 H、轴 功率 N 和效率 η。
1
1
p K z g
u 2 0 2g

He K H f
压头损失—取决于管内布局及管内流速的大小
2 l le u H f d 2g
在管路中,通常用流量反应生产任务 u
l le 8 H f 2 4 qv2 d d g
转速
当液体的粘度不大且转速n变化不大时(小于20%),利用
出口速度三角形相似的近似假定,若不变,可推知:
q' n q n H n H n
2
H
转速增大
比例定律
n
n
p' n p n
3
0
Q
叶轮直径
当叶轮直径因切割而变小时,若变化程度小于20%,不 变,则
理论压头、实际压头及各种压头损失与流量的关系为 H
q-H
实际压 头

化工原理流体输送机械

化工原理流体输送机械
减小能量损失。
③轴封装置: 泵轴与泵壳之间旳密封称为轴封。 作用:预防高压液体漏出或分界空气漏入泵内 填料密封: 盘根:为浸油或涂石墨旳石棉绳
机械密封: 适合于密封要求较高旳场合。 优点:密封性能好,使用寿命长、轴不易磨损、功耗小。 缺陷:加工程度高、构造复杂、安装要求高、价格高。
三、离心泵旳类型:
第二章 流体输送机械
第一节:概述:
流体输送机械驱动流体经过多种设备,将流体从一处送到他处,不论 是提升其位置或是使其压力升高或只需克服沿路旳阻力,都能够经过向流 体提供机械能旳措施来实现。
流体从输送机械取得机械能后,其直接体现是净压头旳增大。新增旳 净压头在输送过程中再转变为其他压头或消耗克服流动阻力,所以,流体 输送就是向流体作功并提升其机械能。
阻力加大,要多 耗一部分能量,不经济 ②变化泵旳转速: 实质是变化泵旳特征曲线 优:保持管路特征曲线不变,动力消耗少 缺:需变速装置或价格昂贵旳变速原动机,流量不能连续。
三、离心泵旳安装高度
1.离心泵旳气蚀现象:
定义:当叶片入口附近旳最低压强等于或不大于输送温度下液体旳饱
和蒸气压时,液体就在该处发愤怒化并产愤怒泡,随同液体从低压区流向
三、离心泵性能旳影响原因:
离心泵特征曲线是在一定转速和常压下,以常温旳清水为工质做 试验测得旳。
1. 密度旳影响 作离心泵旳速度三角形,最终推得可旳:(离心泵基本方程式)
HT∞=
u
2
c2Cos
2
g
u1c1Co31
HT∞
= u22 g
u2ctg 2 gD2b2
QT
令:A = u22
g
B = u2cty2 gD2b2
机械损失:泵运转时,泵轴与轴承之间、泵轴与填料函之间, 叶轮盖外表面与液体之间均产生摩擦,而引起能量损失。

《化工原理》第2章 流体输送机械

《化工原理》第2章 流体输送机械

22
第2章 流体输送机械
2.3 其他类型泵
2.3.1 往复泵
1.往复泵的工作原理 往复泵的装置如图2-15所示,当活塞自 左向右运动时,工作室容积增大,泵体 内压强降低,排出阀受排出管内液体的 压力作用而关闭,吸入阀则受贮槽液面 与泵内压差作用而打开,液体进入泵内, 这就是吸液过程。活塞移至右死点时, 吸液过程结束。当活塞自右向左运动时, 工作室容积减小,泵体内液体压强增大, 吸入阀受压关闭,而排出阀则受缸体内 1.泵缸 2.活塞 3.活塞杆 液体压力开启,将液体排出泵外,这就 4.吸入阀 5.排出阀 是排液过程。 图2-12 往复泵装置简图
图2-11 改变转速时流量变化 的示意图
19
第2章 流体输送机械
2.2.4 离心泵的类型和选用
1.离心泵的类型 化工厂中所用离心泵的种类繁多,按所输送液体的性 质,离心泵可分为清水泵、耐腐蚀泵、油泵、杂质泵等; 按叶轮的吸入方式,可分为单吸泵和双吸泵;按叶轮数目 又可分为单级泵和多级泵。为使各种离心泵能够区别开来, 我国制造的离心泵均用汉语拼音字母作为泵的系列代号, 而在每一个系列内又有各种不同的规格,因此又以不同的 字母和数字加以区别。
4
第2章 流体输送机械
(2)气缚现象 当离心泵启动时,若泵内未能充满液体而存在大量空 气,则由于空气的密度远小于液体的密度,叶轮旋转产生 的惯性离心力很小,在叶轮中心处形成的低压不足以形成 吸入液体所需要的压强差(真空度),这种虽启动离心泵 但不能输送液体的现象称为气缚。可见,离心泵是一种没 有自吸能力的液体输送机械,在启动前必须向泵壳内灌满 液体。
图2-6 离心泵特性曲线
12
第2章 流体输送机械
3.影响离心泵性能的因素 化工生产中,所输送的液体是多种多样的,同一台离 心泵用于输送不同液体时,由于液体的性质不同,泵的性 能就要发生变化。此外,若改变泵的转速和叶轮直径,也 会使泵的性能改变。 (1)密度的影响。 (2)粘度的影响。 (3)转速的影响。 (4)叶轮直径的影响。

第二章流体输送机械

第二章流体输送机械
油泵
用于输送石油产品,油泵系列代号为Y。因油类液体具有易燃、易爆旳特点, 所以对此类泵密封性能要求较高。输送200℃以上旳热油时,还需设冷却装 置。
杂质泵
用于输送悬浮液及稠厚旳浆液等,其系列代号为P,又可分为污水泵、 砂泵、泥浆泵等。此类泵旳主要构造特点是叶轮上叶片数目少,叶片 间流道宽,有旳型号泵壳内还衬有耐磨材料。
离心泵旳并联 离心泵旳串联
离心泵旳类型与选择
离心泵旳类型
清水泵
用于输送物理、化学性质类似于水旳清洁液体。最简朴旳清水泵为单级单吸 式,系列代号为“IS”,构造简图如图,若需要旳扬程较高,则可选D系列 多级离心泵。若需要流量很大,则可选用双吸式离心泵,其系列代号为 “Sh” 。
防腐蚀泵
当输送酸、碱等腐蚀性液体时应采用耐腐蚀泵。耐腐蚀泵全部与液体介质接 触旳部件都采用耐腐蚀材料制作。离心耐腐蚀泵有多种系列,其中常用旳系 列代号为F。
6
2
3
1
4 5
离心泵旳性能参数
1.流量(Q) : 离心泵在单位时间送到管路系统旳液体体
积,常用单位为L/s或m3/h;
2.压头(H) :离心泵对单位重量旳液体所能提供旳有
效能量,其单位为m;
3.
液体所取得,一般用效率来反应能量损失;
4.轴功率(N): [指离心泵旳泵轴所需旳功率,单位为
1-泵体;2-泵盖;3-叶轮;4-轴;5-密封环;6-叶轮螺母;7-止动垫圈; 8-轴盖;9-填料压盖;10-填料环;11-填料;12-悬架轴承部件
离心泵旳选择
(1)拟定输送系统旳流量与压头
液体旳输送量一般为生产任务所要求,假如流量在一定范围内 波动,选泵时应按最大流量考虑。根据输送系统管路旳安排, 用柏努力方程计算在最大流量下管路所需旳压头。

化工原理内容概要-第2章

化工原理内容概要-第2章

《化工原理》内容提要第二章流体输送机械1. 基本概念1)离心泵的主要构件:叶轮和蜗壳2)泵的流量q v:指泵的单位时间内送出的液体体积,等于管路中的流量,这是输送任务所规定必须达到的输送量。

3)泵的压头(又称扬程)He是指泵向单位重量流体提供的能量。

4)流体输送机械的分类:动力式(叶轮式)、容积式(正位移式)、其他类型。

5)离心泵的主要构件:叶轮和蜗壳。

6)离心泵的主要性能参数:流量、扬程、效率、轴功率。

7)离心泵特性曲线:描述压头、轴功率、效率与流量关系的曲线。

8)离心泵的工作点:泵特性曲线与管路特性曲线的交点。

9)离心泵的调节:改变管路特性(阀门的开大关小,改变K值);改变泵的特性(改变D、n,调节工作点)。

10)往复泵的结构:由泵缸、活塞、活塞杆、吸入和排出单向阀(活门)构成,有电动和汽动两种驱动形式。

2. 基本原理1)离心泵的工作原理:电动机经泵轴带动叶轮旋转,叶片间的液体在离心力作用下,沿叶片间的通道从叶轮中心进口处甩向叶轮外围,以很高速度汇入泵壳;液体经泵壳将大部分动能转变为静压能,以较高压力从压出口进入排出管。

2)泵的汽蚀现象:当水泵叶轮中心进口出压力低于操作温度下被输送液体的饱和蒸汽压时,液体将发生沸腾部分汽化。

所生成的汽泡,在随液体从叶轮进口向叶轮外围流动时,因压强升高,气泡立即凝聚。

高速度冲向原空间,在冲击点处产生高频高压强冲击。

当气泡的凝结发生在叶轮表面时,气泡周围液体在高压作用下如细小的高频水锤撞击叶片,加之气泡中可能带有氧气等对金属材料发生化学腐蚀作用,将导致叶片过早损坏。

3)离心泵的选用原则:①根据被输送液体的性质确定泵的类型;②确定输送系统的流量和所需压头;③根据所需流量和压头确定泵的型号。

4)往复泵的工作原理:活塞往复运动,在泵缸中造成容积的变化并形成负压和正压,完成一次吸入和排出。

5)气体输送的特点:气体的密度相对液体很小,①动力消耗大;②气体输送机械体积一般都很庞大;③输送机械内部气体压力变化的同时,体积和温度也将随之发生变化。

2流体输送机械

2流体输送机械

ha hr ha hr ha hr
不发生汽蚀 开始发生汽蚀 严重汽蚀
2.1 离心泵
2 流体输送机械
(3) 离心泵的最大安装高度
pg1 pg0 Hg2u1g2 Hf
ha pg1 2u1g2 pgv
Hgpg0pgv ha Hf
Hgma xpg 0pg vhr Hf
2.1 离心泵
2 流体输送机械
量与压头(H-Q),应与管路所要的流量与压头 (He-Qe)相一致。若将(H-Q)与(He-Qe)绘于同一 图中,则两曲线的交点即为工作点。
2.1 离心泵
2 流体输送机械
3、 离心泵的流量调节
对一台泵而言,其特性曲线H-Q是不会变的, 而管路特性曲线可变。当原工作点所提供的流 量不满足新条件下所需要的送液量时,即应设 法改变原工作点的位置,即需要进行流量调节。
2.1 离心泵
• 2.1.3 离心泵的主要性能参数
2 流体输送机械
2.1 离心泵
2 流体输送机械
H~qv关系的实验测定 在1、2 两截面间列柏努利方程得
z1p g v2 u1 g 2Hz2pM g2 ug 2 2 H f
整理得
Hh0pM gpvu2 22 gu1 2 Hf
不计动压头差及压头损失,则有
2.1 离心泵
2.1.1 离心泵的结构和工作原理
2 流体输送机械
主要结构:叶轮 泵壳 泵轴和轴封装置
2.1 离心泵
2 流体输送机械
1— 叶轮 2— 泵壳 3— 叶片 4— 吸 入管 5— 底阀 6— 排出管 7— 泵轴
2.1 离心泵
2 流体输送机械
• 气缚现象:若在离心泵启 动前没向泵壳内灌满被输 送的液体,则泵壳内存在 空气,由于空气密度低, 叶轮旋转后产生的离心力 小,叶轮中心区不足以形 成吸入贮槽内液体的低压, 因而虽启动离心泵也不能 输送液体。此现象称为气 缚。这表明离心泵无自吸 能力。

流体机械实训报告

流体机械实训报告

一、实训目的通过本次实训,使学生了解流体机械的基本原理、结构、性能和操作方法,掌握流体机械的使用和维护技能,提高学生对流体机械的认识和操作能力。

二、实训内容1. 离心泵实训(1)离心泵的原理与结构离心泵是一种常用的流体输送机械,利用离心力将液体从进口处吸入,通过叶轮旋转产生的离心力将液体输送到出口。

实训中,我们了解了离心泵的工作原理、结构特点及主要部件。

(2)离心泵的性能测试实训中,我们对离心泵进行了性能测试,包括扬程、流量、效率、功率等参数的测量。

通过测试,掌握了离心泵的性能指标,并分析了影响离心泵性能的因素。

(3)离心泵的安装与调试实训中,我们学习了离心泵的安装步骤,包括设备就位、管道连接、电机安装等。

同时,我们还了解了离心泵的调试方法,确保离心泵正常运行。

2. 水泵实训(1)水泵的原理与结构水泵是一种将液体从低处抽送到高处的流体输送机械。

实训中,我们了解了水泵的工作原理、结构特点及主要部件。

(2)水泵的性能测试实训中,我们对水泵进行了性能测试,包括扬程、流量、效率、功率等参数的测量。

通过测试,掌握了水泵的性能指标,并分析了影响水泵性能的因素。

(3)水泵的安装与调试实训中,我们学习了水泵的安装步骤,包括设备就位、管道连接、电机安装等。

同时,我们还了解了水泵的调试方法,确保水泵正常运行。

3. 风机实训(1)风机的原理与结构风机是一种利用旋转叶轮产生气流的流体输送机械。

实训中,我们了解了风机的分类、工作原理、结构特点及主要部件。

(2)风机的性能测试实训中,我们对风机进行了性能测试,包括流量、风压、效率、功率等参数的测量。

通过测试,掌握了风机的性能指标,并分析了影响风机性能的因素。

(3)风机的安装与调试实训中,我们学习了风机的安装步骤,包括设备就位、管道连接、电机安装等。

同时,我们还了解了风机的调试方法,确保风机正常运行。

三、实训总结1. 通过本次实训,我们了解了流体机械的基本原理、结构、性能和操作方法,提高了对流体机械的认识和操作能力。

流体输送机械的分类

流体输送机械的分类

流体输送机械的分类
1. 离心泵呀,就像大力士一样,能把液体快速地“举”起来!比如家里的水泵就是离心泵,它可太重要啦,要是没它,水咋能乖乖到我们需要的地方呢?
2. 轴流泵呢,就如同风一样,推动液体直直地往前跑!像那些大型的排水泵很多就是轴流泵,哇塞,那排水的威力可不小!
3. 往复泵就像一个倔强的家伙,一下一下地把液体挤出去!比如在一些小型化工厂就常能看到它,在默默工作着呢!
4. 齿轮泵啊,多像一组精密的小轮子在努力工作呀,把液体稳稳地送出去!像在加油机里不就有它的身影嘛!
5. 螺杆泵像是一个有条不紊的工作者,慢慢地但很靠谱地输送着液体!在一些需要精确输送的场合它可少不了呀!
6. 滑片泵,嘿,就像灵活的滑片在跳舞一样,带动着液体一起动起来!在某些特殊的液体输送中它可立了大功呢!
7. 漩涡泵呀,如同制造漩涡的小能手,让液体跟着漩涡转动起来输送走!好多工业设备里都有它的存在哦!
8. 气动隔膜泵就像个神奇的小魔法师,用气压来推动液体!在一些比较复杂的环境里它可厉害着呢!
9. 磁力泵如同一个无声的卫士,安静又可靠地进行着液体输送!在一些对环境要求高的地方它发挥着巨大作用啊!我觉得流体输送机械的分类可真是太有意思啦,每一种都有着独特的魅力和用途!。

化工原理-2章流体输送机械——总结

化工原理-2章流体输送机械——总结

e、平衡孔 ——闭式或半闭式叶轮
后盖板与泵壳之间空腔液 体的压强较吸入口侧高
→轴向推力 →磨损 如何 解决? 平衡孔
平衡孔
F
平衡孔可以有效地减小轴向推力,但同时也降低了泵的效率。
2.2.2 离心泵的特性曲线 泵内造成功率损失的原因:
①阻力损失(水力损失) ——产生的摩擦阻力和局部阻力导致的损失。 ②流量损失(容积损失)
标准规定,离心泵实际汽蚀余量要比必须汽蚀余量大0.5m以上。
NPSH = (NPSH)r + 0.5
三、允许安装高度[Hg]
最大允许安装高度为:
2.2.5离心泵的类型与选用
一、离心泵的类型
按叶轮数目分类:单级、多级; 按吸液方式分类:单吸、双吸; 按输送液体性质分类:清水泵、耐腐蚀泵、油泵、杂质泵; 1) 清水泵---化工生产中最常用的泵型 (IS型、D型、Sh型) IS型-单级、单吸; 以IS100-80-125为例: IS—国际标准单级单吸清水离心泵; 100—吸入管内径,mm; 80—排出管内径,mm; 125—叶轮直径,mm
P 2 H Kqv g
1—低阻管路系统 2—高阻管路系统
由图得:需向流体提供的能量高于提高流体势能和克服 管道的阻力损失,其中阻力损失跟流体流量有 关。
(2)流体输送机械的压头(扬程)和流量
①扬程和升举高度是否相同?
扬程-能量概念;非升举高度 升举高度-泵将流体从低位升至高位 时,两液面间的高度差。
2.3.1往复泵的作用原理和类型
(1)作用原理
如图所示为曲柄连杆机构带动的往复
泵,它主要由泵缸、活柱(或活塞)和活 门组成。活柱在外力推动下作往复运动, 由此改变泵缸内的容积和压强,交替地打 开和关闭吸入、压出活门,达到输送液体 的目的。由此可见,往复泵是通过活柱的 往复运动直接以压强能的形式向液体提供

流体输送设备

流体输送设备

第二章 流体输送设备§1 概述 2-1 流体输送概述气体的输送和压缩,主要用鼓风机和压缩机。

液体的输送,主要用离心泵、漩涡泵、往复泵。

固体的输送,特别是粉粒状固体,可采用流态化的方法,使气-固两相形成液体状物流,然后输送,即气力输送。

流体输送在化工中用处十分广泛,有化工厂的地方,就有流体输送。

流体输送机械主要分为三大类:(1)离心式。

靠离心力作用于流体,达到输送物料的目的。

有离心泵、多级离心泵、离心鼓风机、离心通风机、离心压缩机等。

(2)正位移式。

靠机械推动流体,达到输送流体的目的。

有往复泵、齿轮泵、螺杆泵、罗茨风机、水环式真空泵、往复真空泵、气动隔膜泵、往复压缩机等。

(3)离心-正位移式。

既有离心力作用,又有机械推动作用的流体输送机械。

有漩涡泵、轴流泵、轴流风机。

象喷射泵属于流体作用输送机械。

本章主要研究连续输送机械的原理、结构及设计选型。

§2 离心泵及其计算 2-2 离心泵构造及原理若将某池子热水送至高m 10的凉水塔,倘若外界不提供机械能,水能自动由低处向高处流吗?显然是不能的,如图2-1所示,我们在池面与凉水塔液面列柏努利方程得:图2-1 流体输送示意图f e h gu g p z h g u g p z +++=+++2222222111ρρ∵00211===p p z ,(表压),01012==u m z ,,若泵未有开动,则:0=e h代入上式得: gud l le 21010000022⎪⎭⎫ ⎝⎛++++=+++λ∴dl l gu e++⨯-=λ121022 2u 为虚数 此计算说明,泵不开动,热水就不可能流向凉水架,就需要外界提供机械能量。

能对流体提供机械能量的机器,称为流体输送机械。

离心泵是重要的输送液体的机械之一。

如图2-2 所示,离心泵主要由叶轮和泵壳所组成。

图2-2 离心泵构造示意图先将液体注满泵壳,叶轮高速旋转,将液体甩向叶轮外缘,产生高的动压头⎪⎪⎭⎫⎝⎛g u 22,由于泵壳液体通道设计成截面逐渐扩大的形状,高速流体逐渐减速,由动压头转变为静压头⎪⎪⎭⎫ ⎝⎛g P ρ,即流体出泵壳时,表现为具有高压的液体。

第二章流体输送机械

第二章流体输送机械
力,而且可以较好的消除轴向推
力。
二.离心泵主要构件的结构及功能
2.泵壳 呈蜗牛壳状
思考:泵壳的主要作用是什么? ①汇集液体,并导出液体; ②能量转换装置(动能变静压能)
3.导轮 请点击观看动画
为了减少液体直接进入蜗壳时的碰撞,在叶 轮与泵壳之间有时还装有一个固定不动的带有叶 片的圆盘,称为导轮。导轮上的叶片的弯曲方向 与叶轮上叶片的弯曲方向相反,其弯曲角度正好 与液体从叶轮流出的方向相适应,引导液体在泵 壳的通道内平缓的改变方向,使能量损失减小, 使动能向静压能的转换更为有效。
泵轴
思考: 为什么叶片弯曲? 泵壳呈蜗壳状? 答案见后面的内容
吸入导管
压出导管
泵壳
叶轮
底阀
一、离心泵构造及工作原理
2、离心泵的工作原理
思考: 流体在泵内都获得了哪几种能量? 其中哪种能量占主导地位? 请点击观看动画
答案:动能和静压能,其中静压能占主导
思考:泵启动前为什么要灌满液体
气缚现象 请点击观看动画
气 缚
离心泵启动时,如果泵壳内存在空气,由于空气的密度远
小于液体的密度,叶轮旋转所产生的离心力很小,叶轮中心
处产生的低压不足以造成吸上液体所需要的真空度,这样,
离心泵就无法工作,这种现象称作气缚。
为了使启动前泵内充满液体,在吸入管道底部装一止
逆阀。此外,在离心泵的出口管路上也装一调节阀,用于
开停车和调节流量。
u2
u u 1 2 2 2 r2 r1 2 2
2 2


2 1
w1
1
c1
u
理论压头H
在1与2之间列伯努利方程式,得:
H
2 p 2 p1 c 2 c12 g 2g

化工原理第二章第一节(第三版)

化工原理第二章第一节(第三版)


hf1 2
J/kg
气体具有可压缩性,在输送和压缩过程中,体积减小温度 上升,故气体输送机械与液体输送机械有较大差异。
泵:液体输送机械。
风机及压缩机:气体输送机械。
因为流体种类的多样性,故有不同类型、不同尺寸的气体和
液体输送机械。
离心式
输送机械的分类 (据作用原理)
往复式 旋转式 流体动力作用式
泵工作时,工作点应位于高效区。
例2-2 P73
若其中qV单位改为m3/h,即qV’——m3/h 。因1m3/s=3600m3/h, 即qV’=3600qV ,代入原式,
H

20

11930


qV 3600
2

20

9.205
10 4 qV 2
(式中qV’单位为m3/h)
(三)、流量调节

pM pV
g

u22 u12 2g
Hf
注意:pM——压力表读 数,Pa pV——真空表读数,Pa ∑Hf一般可忽略。
3、功率与效率
①轴功率P :泵轴所需的功率,即泵轴从电动机得到的功率,
②有效功率Pe :单位时间液体从泵得到的有效能量,
泵在运转过程中存在着种种损失,使输入泵的功率(轴功 率 P)比有效功率高。
*20*
允许汽蚀余量= hmin 0.3
不发生汽蚀时的汽蚀余量的最小值,列于泵性能表中。 只要汽蚀余量大于允许汽蚀余量,则不发生汽蚀。
hf hf
h 1
pv
g
u12
u12
2g
22g
pp00
gg
pv
h g
p1 p1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档