2020-2021初中数学投影与视图难题汇编含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021初中数学投影与视图难题汇编含答案
一、选择题
1.一个几何体的三视图如图所示,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为()
A.6πB.8πC.10πD.12π
【答案】B
【解析】
【分析】
根据三视图得到这个几何体为圆锥,且圆锥的母线长为4,底面圆的直径为4,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.
【详解】
这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,
所以这个几何体的侧面展开图的面积=1
448
2
ππ⨯⨯=.
故选:B.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了三视图.
2.下面四个几何体中,俯视图是圆的几何体共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
题目中的四个几何体,俯视图是圆的几何体为圆柱和球,共2个,故选B.
3.如图所示的几何体是由5个相同的小正方体组成的,下列有关三视图面积的说法中正确的是()
A.左视图面积最大
B.俯视图面积最小
C.左视图与主视图面积相等
D.俯视图与主视图面积相等
【答案】D
【解析】
【分析】
利用视图的定义分别得出三视图进而求出其面积即可.
【详解】
解:如图所示:
则俯视图与主视图面积相等.
故选:D.
【点睛】
此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.
4.如图是由几个相同的小正方形搭成的几何体,搭成这个几何体需要()个小正方体,在保持主视图和左视图不变的情况下,最多可以拿掉()个小正方体
A.10:2B.9:2
C.10:1D.9:1
【答案】C
【解析】
【分析】
由已知条件可知这个几何体由10个小正方体组成,主视图有3列,每列小正方形数目分别为3、1、2;左视图又列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,据此即可得出答案.
【详解】
解:这个几何体由10个小正方体组成;
∵主视图有3列,每列小正方形数目分别为3、1、2;左视图有3列,每列小正方形的数目分别为3、2、1;俯视图有3列,每列小正方形数目分别为3、2、1,
∴在保持主视图和左视图不变的情况下,只能拿掉俯视图的第2列中减少1个小正方体,因此,最多可以拿掉1个小正方体.
故选:C.
【点睛】
本题考查的知识点是三视图,需注意被其他部分遮挡而看不见的小正方体.
5.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A.B.C.D.
【答案】B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
考点:三视图.
6.如图是某几何体的三视图及相关数据,则下面判断正确的是()
A.a>c B.b>c C.a2+4b2=c2D.a2+b2=c2
【答案】D
【解析】
【分析】
由三视图可知该几何体是圆锥,圆锥的高是a,母线长是c,底面圆的半径是b,刚好组成一个以c为斜边的直角三角形,由勾股定理,可得解.
【详解】
由题意可知该几何体是圆锥,根据勾股定理得,a2+b2=c2
故选:D.
【点睛】
本题考查三视图和勾股定理,关键是由三视图判断出几何体是圆锥.
7.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )
A.B.
C.D.
【答案】D
【解析】
【分析】
找到从左面看到的图形即可.
【详解】
从左面上看是D项的图形.故选D.
【点睛】
本题考查三视图的知识,左视图是从物体左面看到的视图.
8.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有( )种.
A .8种
B .9种
C .10种
D .11种
【答案】C
【解析】
【分析】 先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.
【详解】
由最下层放了9个小立方块,可得俯视图,如图所示:
若a 为2,则d 、g 可有一个为2,其余均为1,共有两种情况
若b 为2,则a 、c 、d 、e 、f 、g 均可有一个为2,其余为1,共有6种情况
若c 为2,则d 、g 可有一个为2,其余均为1,共有两种情况
综上,共有26210++=种情况
故选:C .
【点睛】
本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.
9.如图是某几何体的三视图及相关数据,则该几何体的表面积是( )
A .(822π+
B .11π
C .(922π+
D .12π
【答案】D
【解析】
【分析】
先根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=圆柱的底面直径=2,圆锥的母线长为3,圆柱的高=4,然后根据圆锥的侧面积等于它展开后的扇形的面
积,即S=1
2
LR,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;圆柱侧面积等
于展开后矩形的面积,矩形的长为圆柱的高,宽为底面圆的周长;而该几何体的表面积=圆锥的侧面积+圆柱的侧面积+圆柱的底面积.
【详解】
根据几何体的三视图可得:该几何体由圆锥和圆柱组成,圆锥的底面直径=2,圆锥的母线
长为3,∴圆锥的侧面积=1
2
•2π•1•3=3π,
圆柱的侧面积=2π•1•4=8π,
圆柱的底面积=π•12=π,∴该几何体的表面积=3π+8π+π=12π.
故选D.
【点睛】
本题考查了圆锥的侧面积的计算方法:圆锥的侧面积等于它展开后的扇形的面积,扇形的弧长为底面圆的周长,扇形的半径为圆锥的母线长;也考查了看三视图和求圆柱的侧面积的能力.
10.下列几何体中,主视图与俯视图不相同的是()
A.B.
C.D.
【答案】B
【解析】
【分析】
根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.
【详解】
解:四棱锥的主视图与俯视图不同.
故选B.
【点睛】
考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.11.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()
A.B.C.D.
【答案】A
【解析】
【分析】
主视图:从物体正面观察所得到的图形,由此观察即可得出答案.
【详解】
从物体正面观察可得,
左边第一列有2个小正方体,第二列有1个小正方体.
故答案为:A.
【点睛】
本题考查三视图的知识,主视图是从物体的正面看得到的视图.
12.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是()
A.B.C.D.
【答案】C
【解析】
试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.
故选C.
考点:三视图
13.发展工业是强国之梦的重要举措,如图所示零件的左视图是()
A.B.C.D.
【答案】D
【解析】
【分析】
根据从左边看得到的图形是左视图,可得答案.
【详解】
如图所示零件的左视图是.
故选D.
【点睛】
本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.
14.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()
A.B.C.D.
【答案】B
【解析】
【分析】
【详解】
解:根据题意画主视图如下:
故选B.
考点:由三视图判断几何体;简单组合体的三视图.
15.如图所示几何体的左视图是()
A.B.C.D.
【答案】B
【解析】
【分析】
根据左视图是从左边看得到的图形,可得答案.
【详解】
从左边看是:
故选B.
【点睛】
本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.16.如图所示的几何体,它的主视图是()
A.B.C.D.
【答案】B
【解析】
【分析】
找到从几何体的正面看所得到的图形即可.
【详解】
解:从正面看有两列,从左到右每列正方形的个数分别为:3、1,所以选项B符合题意.故选:B.
【点睛】
此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.
17.如图是由几个相同的小方块搭成的几何体,关于它的三视图,下列说法正确的()
A.主视图面积最大B.左视图面积最大C.俯视图面积最大D.三个视图面积一样大
【答案】A
【解析】
【分析】
可先假设小正方形的边长为1,再把从主视图、左视图、俯视图的面积分别算出来,再进行比较,从而得到正确答案.
【详解】
假设小正方形的边长是1,
主视图是第一层三个小正方形,第二层两个小正方形,所以主视图的面积是5;
左视图是第一层两个小正方形,第二层一个小正方形,所以主视图的面积是3;
俯视图是第一层左边1个小正方形,中间一个小正方形,第二层左边一个小正方形,右边一个小正方形,所以主视图的面积是4;
因此,主视图的面积最大.
故答案为A.
【点睛】
本题主要考查了空间几何体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上面看得到的图形是俯视图.
18.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()
A.B.C.D.
【答案】A
【解析】
【分析】
根据俯视图即从物体的上面观察得得到的视图,进而得出答案.
【详解】
该几何体的俯视图是:.
故选A.
【点睛】
此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.
19.下面四个几何体中,左视图是四边形的几何体共有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
简单几何体的三视图.
【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.
20.如图所示的几何体,上下部分均为圆柱体,其左视图是()
A.B.C.D.
【答案】C
【解析】
试题分析:∵该几何体上下部分均为圆柱体,∴其左视图为矩形,故选C.
考点:简单组合体的三视图.。