新高考数学高考数学压轴题 等差数列选择题专项训练分类精编附答案(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333
122n n n a a a ++=+,则10a 等于
( )
A .10
B
C .64
D .4
解析:D 【分析】
利用等差中项法可知,数列{}
3n a 为等差数列,根据11a =,22a =可求得数列{}
3
n a 的公
差,可求得3
10a 的值,进而可求得10a 的值. 【详解】
对*n N ∀∈都有3
3
3
122n n n a a a ++=+,由等差中项法可知,数列{}
3
n a 为等差数列,
由于11a =,22a =,则数列{}
3n a 的公差为33
217d a a =-=,
所以,33
101919764a a d =+=+⨯=,因此,104a .
故选:D.
2.已知数列{}n a 中,12(2)n n a a n --=≥,且11a =,则这个数列的第10项为( ) A .18 B .19
C .20
D .21
解析:B 【分析】
由已知判断出数列{}n a 是以1为首项,以2为公差的等差数列,求出通项公式后即可求得
10a .
【详解】
()122n n a a n --=≥,且11a =,
∴数列{}n a 是以1为首项,以2为公差的等差数列,
通项公式为()12121n a n n =+-=-,
10210119a ∴=⨯-=,
故选:B.
3.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S > D .70S <,且80S <
解析:A 【分析】
根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】
依题意,有170a a +>,180a a +< 则()177702a a S +⋅=
>
()()1881884
02
a a S a a +⋅=
=+<
故选:A .
4.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则9
9
S a =( ) A .9 B .5
C .1
D .
59
解析:B 【分析】
由已知条件,结合等差数列通项公式得1a d =,即可求9
9
S a . 【详解】
4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,
∴1999()
452
a a S d ⨯+=
=,99a d =,且0d ≠, ∴9
9
5S a =. 故选:B
5.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4 B .6
C .7
D .8
解析:A 【分析】
由525S =求出1a ,从而可求出数列的通项公式,进而可求出m 的值 【详解】 解:由题意得154
52252
a ⨯+
⨯=,解得11a =, 所以1(1)12(1)21n a a n d n n =+-=+-=-, 因为215m a =,所以22115m ⋅-=,解得4m =, 故选:A
6.设等差数列{}n a 的前n 项和为n S ,且71124a a -=,则5S =( ) A .15 B .20
C .25
D .30
解析:B 【分析】
设出数列{}n a 的公差,利用等差数列的通项公式及已知条件,得到124a d +=,然后代入
求和公式即可求解 【详解】
设等差数列{}n a 的公差为d ,则由已知可得()()111261024a d a d a d +-+=+=, 所以()51154
55254202
S a d a d ⨯=+=+=⨯= 故选:B
7.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( ) A .
1
2
尺布 B .
5
18
尺布 C .
16
31
尺布 D .
16
29
尺布 解析:D 【分析】
设该女子第()
N n n *∈尺布,前()
N n n *
∈天工织布n S 尺,则数列{}n a 为等差数列,设其公
差为d ,根据15a =,30390S =可求得d 的值. 【详解】
设该女子第()
N n n *∈尺布,前()
N n n *
∈天工织布n S 尺,则数列{}n a 为等差数列,设其公
差为d ,
由题意可得30130293015015293902
S a d d ⨯=+=+⨯=,解得16
29d =.
故选:D.
8.《周碑算经》有一题这样叙述:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影长之和为八丈五尺五寸,则后五个节气日影长之和为( )(注:一丈=十尺,一尺=十寸) A .一丈七尺五寸 B .一丈八尺五寸 C .二丈一尺五寸 D .二丈二尺五寸
解析:D 【分析】
由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,已知条件为
985.5S =,14731.5a a a ++=,由等差数列性质即得5a ,4a ,由此可解得d ,再由等差
数列性质求得后5项和. 【详解】
由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和, 则()
19959985.52
a a S a +=
==(尺),所以59.5a =(尺),由题知
1474331.5a a a a ++==(尺),
所以410.5a =(尺),所以公差541d a a =-=-, 则()8910111210555522.5a a a a a a a d ++++==+=(尺). 故选:D .
9.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为( ) A .2 B .
43
C .4
D .4-
解析:C 【分析】
由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:
()111116
11111322
a a S a
+⨯=
==,
612a ∴=,

5620a a +=,
58a ∴=,
654d a a ∴=-=.
故选:C .
10.已知数列{}n a 的前n 项和为n S ,11
2
a =,2n ≥且*n ∈N ,满足120n n n a S S -+=,数列1n S ⎧⎫

⎬⎩⎭
的前n 项和为n T ,则下列说法中错误的是( ) A .21
4
a =-
B .
648
211S S S =+ C .数列{}12n n n S S S +++-的最大项为712
D .1121
n n n n n
T T T n n +-=
++ 解析:D 【分析】
当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ⎧⎫

⎬⎩⎭
为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫

⎬⎩⎭
的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误.
【详解】
当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得11111
2020n n n n n n
S S S S S S ----+=⇒
-+=, 整理得
1
112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫
⎨⎬⎩⎭
为以2为首项,以2为公差的等差数列
()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111
424
a S S =-=
-=-,A 选项正确; B 中,1n S ⎧⎫
⎨⎬⎩⎭
为等差数列,显然有
648
211S S S =+,B 选项正确; C 中,记()()
1212211221n n n n b S S n n n S ++=+-=
+-++, ()()()
1123111
212223n n n n b S S S n n n ++++=+-=+-+++,
()()()
1111602223223n n n b b n n n n n n ++∴-=
--=-<++++,故{}n b 为递减数列, ()1123max 1117
24612
n b b S S S ∴==+-=
+-=,C 选项正确; D 中,
12n n S =,()()2212
n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()11112112111n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222
122212n n n n n n T =-++=+-≠,D 选项错误.
故选:D . 【点睛】
关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1
,2n n
n S n a S S n -=⎧=⎨
-≥⎩来求解,在变形
过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解.
11.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且
713n n S n T n -=,则5
5
a b =( )
A .
3415
B .
2310
C .
317
D .
62
27
解析:D 【分析】
利用等差数列的性质以及前n 项和公式即可求解. 【详解】 由
713n n S n T n
-=, ()()1955199195519992791622923927
2
a a a a a a S
b b b b b b T ++⨯-======++⨯. 故选:D
12.已知等差数列{}n a 中,5470,0a a a >+<,则{}n a 的前n 项和n S 的最大值为( ) A .4S B .5S
C . 6S
D . 7S
解析:B 【分析】
根据已知条件判断0n a >时对应的n 的范围,由此求得n S 的最大值. 【详解】
依题意55647560
0000
a a a a a a a d >⎧>⎧⎪
⇒<⎨
⎨+=+<⎩⎪<⎩
,所以015n a n >⇒≤≤, 所以{}n a 的前n 项和n S 的最大值为5S . 13.已知数列{}n a 的前n 项和n S 满足()
12n n n S +=,则数列11n n a a +⎧⎫⎨⎬⎩⎭
的前10项的和为
( ) A .
89
B .
910
C .10
11
D .
1112
解析:C 【分析】
首先根据()12n n n S +=得到n a n =,设1
1111n n n b a a n n +==-+,再利用裂项求和即可得到答案. 【详解】
当1n =时,111a S ==, 当2n ≥时,()()11122
n n n n n n n a S S n -+-=-=
-=.
检验111a S ==,所以n a n =. 设()11111
11
n n n b a a n n n n +=
==-++,前n 项和为n T , 则10111111101122310111111T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
…. 故选:C
14.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161 B .155
C .141
D .139
解析:B 【分析】
画出图形分析即可列出式子求解. 【详解】
所给数列为高阶等差数列,设该数列的第8项为x ,根据所给定义:用数列的后一项减去前一项得到一个新数列,得到的新数列也用后一项减去前一项得到一个新数列,即得到了一个等差数列,如图:
由图可得:3612107y x y -=⎧⎨-=⎩ ,解得155
48x y =⎧⎨=⎩
.
故选:B.
15.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21
2
,则该数列的项数是( ) A .8 B .4
C .12
D .16
解析:A 【分析】
设项数为2n ,由题意可得()21
212
n d -⋅=,及6S S nd -==奇偶可求解. 【详解】
设等差数列{}n a 的项数为2n , 末项比首项大
212

()212121;2
n a a n d ∴-=-⋅=① 24S =奇,30S =偶,
30246S S nd ∴-=-==奇偶②.
由①②,可得3
2
d =,4n =, 即项数是8, 故选:A.
二、等差数列多选题
16.已知数列{}n a 满足()
*11
1n n
a n N a +=-∈,且12a =,则( ) A .31a =-
B .201912
a =
C .332
S = D . 2 0192019
2
S =
解析:ACD 【分析】
先计算出数列的前几项,判断AC ,然后再寻找规律判断BD .
【详解】
由题意211122a =-=,31
1112a =-=-,A 正确,313
2122
S =+-=,C 正确;
41
121
a =-
=-,∴数列{}n a 是周期数列,周期为3. 2019367331a a a ⨯===-,B 错;
201932019
67322
S =⨯=,D 正确.
故选:ACD . 【点睛】
本题考查由数列的递推式求数列的项与和,解题关键是求出数列的前几项后归纳出数列的性质:周期性,然后利用周期函数的定义求解.
17.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记S n 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =
B .733S =
C .135********a a a a a ++++=
D .
222
122019
20202019
a a a a a +++= 解析:ABD 【分析】
根据11a =,21a =,21n n n a a a ++=+,计算可知,A B 正确;根据12a a =,
342a a a =-,564a a a =-,786a a a =-,,201920202018a a a =-,累加可知C 不正
确;根据2121a a a =,222312312()a a a a a a a a =-=-,2
33423423()a a a a a a a a =-=-,244534534()a
a a a a a a a =-=-,
,2
20192019202020182019202020182019()a a a a a a a a =-=-,
累加可知D 正确. 【详解】
依题意可知,11a =,21a =,21n n n a a a ++=+,
312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确; 7565813a a a =+=+=,所以
712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;
由12a a =,342a a a =-,564a a
a =-,786a a a =-,,201920202018a a a =-,
可得
13572019a a a a a ++++
+=242648620202018a a a a a a a a a +-+-+-++-2020a =,
故C 不正确;
2121a a a =,222312312()a a a a a a a a =-=-,2
33423423()a a a a a a a a =-=-,244534534()
a a a a a a a a =-=-,
,2
20192019202020182019202020182019()a a a a a a a a =-=-,
所以
2222
2
12342019
a a a a a ++++
+122312342345342019202020182019a a a a a a a a a a a a a a a a a a =+-+-+-+- 20192020a a =,
所以
222
122019
20202019
a a a a a +++=,故D 正确. 故选:ABD. 【点睛】
本题考查了数列的递推公式,考查了累加法,属于中档题. 18.(多选题)已知数列{}n a 中,前n 项和为n S ,且2
3
n n n S a +=,则1n n a a -的值不可能为
( ) A .2
B .5
C .3
D .4
解析:BD 【分析】
利用递推关系可得12
11
n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵2
3
n n n S a +=
, ∴2n ≥时,1121
33
n n n n n n n a S S a a --++=-=
-, 化为:112
111
n n a n a n n -+==+--, 由于数列21n ⎧⎫

⎬-⎩⎭
单调递减, 可得:2n =时,
2
1
n -取得最大值2. ∴1
n n a a -的最大值为3. 故选:BD . 【点睛】
本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题.
19.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( ) A .
1
5
B .
25
C .
45
D .
65
解析:ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=,32225a a ==,43425a a ==,5413215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234,
,,5555
. 故选:ABC.
【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题. 20.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( )
A .0d >
B .70a =
C .95S S >
D .6S 与7S 均为n S 的最大值
解析:BD
【分析】
设等差数列{}n a 的公差为d ,依次分析选项即可求解.
【详解】
根据题意,设等差数列{}n a 的公差为d ,依次分析选项: {}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;
又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误;
而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>,
又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.
∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确;
故选:BD.
【点睛】
本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.
21.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( )
A .45n a n =-
B .23n a n =+
C .223n S n n =-
D .24n S n n =+
解析:AC
【分析】
由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式
【详解】
由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232
n n n S n n --==-.
故选:AC.
【点睛】
本题考查等差数列,考查运算求解能力.
22.设等差数列{}n a 的前n 项和为n S ,若39S =,47a =,则( )
A .2n S n =
B .223n S n n =-
C .21n a n =-
D .35n a n =-
解析:AC
【分析】
利用等差数列{}n a 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出n a 与n S .
【详解】
等差数列{}n a 的前n 项和为n S .39S =,47a =, ∴31413239237
S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,
1(1)221n a n n ∴+-⨯=-=.
()21212
n n n S n +-== 故选:AC .
【点睛】
本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.
23.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,现有下列4个命题中正确的有( )
A .若100S =,则280S S +=;
B .若412S S =,则使0n S >的最大的n 为15
C .若150S >,160S <,则{}n S 中8S 最大
D .若78S S <,则89S S <
解析:BC
【分析】
根据等差数列的性质,以及等差数列的求和公式,逐项判断,即可得答案.
【详解】
A 选项,若1011091002
S a d ⨯=+=,则1290a d +=, 那么()()2811128281029160S S a d a d a d d +=+++=+=-≠.故A 不正确;
B 选项,若412S S =,则()5611128940a a a a a a ++++=+=,
又因为10a >,所以前8项为正,从第9项开始为负,
因为()()116168916802
a a S a a +==+=, 所以使0n S >的最大的n 为15.故B 正确;
C 选项,若()115158151502
a a S a +==>,()()116168916802a a S a a +==+<, 则80a >,90a <,则{}n S 中8S 最大.故C 正确;
D 选项,若78S S <,则80a >,而989S S a -=,不能判断9a 正负情况.故D 不正确. 故选:BC .
【点睛】
本题考查等差数列性质的应用,涉及等差数列的求和公式,属于常考题型.
24.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( )
A .0d <
B .70a >
C .{}n S 中5S 最大
D .49a a < 解析:AD
【分析】
先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.
【详解】
解:根据等差数列前n 项和公式得:()111111102a a S +=
>,()112121202
a a S +=< 所以1110a a +>,1120a a +<,
由于11162a a a +=,11267a a a a +=+,
所以60a >,760a a <-<,
所以0d <,{}n S 中6S 最大,
由于11267490a a a a a a +=+=+<,
所以49a a <-,即:49a a <.
故AD 正确,BC 错误.
故选:AD.
【点睛】
本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.
25.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )
A .320n a n =-
B .325n a n =-+
C .当4n =时,n T 取最小值
D .当6n =时,n T 取最小值
解析:AC
【分析】 由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值.
【详解】
解:在递增的等差数列{}n a 中,
由5105a a +=,得695a a +=,
又6914a a =-,联立解得62a =-,97a =, 则967(2)3963
a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.
故A 正确,B 错误;
12(320)(317)(314)n n n n b a a a n n n ++==---
可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.
∴当4n =时,n T 取最小值,故C 正确,D 错误.
故选:AC .
【点睛】
本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。

相关文档
最新文档