安平县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
安平县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1.设f(x)在定义域内可导,y=f(x)的图象如图所示,则导函数y=f′(x)的图象可能是()
A.B.C.
D.
2.高一新生军训时,经过两天的打靶训练,甲每射击10次可以击中9次,乙每射击9次可以击中8次.甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为()
A.B.C.D.
3.已知集合A={0,1,2},则集合B={x﹣y|x∈A,y∈A}的元素个数为()
A.4 B.5 C.6 D.9
4.设偶函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集为()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣2,0)∪(0,2)
5.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()
A.4 B.5 C.D.
6. 设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x <<
7. 双曲线的焦点与椭圆
的焦点重合,则m 的值等于( )
A .12
B .20
C .
D .
8. 函数y=f ′(x )是函数y=f (x )的导函数,且函数y=f (x )在点p (x 0,f (x 0))处的切线为l :y=g (x )=f ′(x 0)(x ﹣x 0)+f (x 0),F (x )=f (x )﹣g (x ),如果函数y=f (x )在区间[a ,b]上的图象如图所示,且a <x 0<b ,那么( )
A .F ′(x 0)=0,x=x 0是F (x )的极大值点
B .F ′(x 0)=0,x=x 0是F (x )的极小值点
C .F ′(x 0)≠0,x=x 0不是F (x )极值点
D .F ′(x 0)≠0,x=x 0是F (x )极值点
9. 给出下列两个结论:
①若命题p :∃x 0∈R ,x 02+x 0+1<0,则¬p :∀x ∈R ,x 2+x+1≥0;
②命题“若m >0,则方程x 2+x ﹣m=0有实数根”的逆否命题为:“若方程x 2+x ﹣m=0没有实数根,则m ≤0”;
则判断正确的是( ) A .①对②错
B .①错②对
C .①②都对
D .①②都错
10.在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )
A .
725
B .725- C. 725± D .2425
11.若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )
A5 B4 C3 D2
12.在复平面内,复数Z=+i 2015对应的点位于( )
A .第四象限
B .第三象限
C .第二象限
D .第一象限
二、填空题
13.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1
sin 3
BAM ∠=
,则AC 的长为_________. 14.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.
15.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .
16.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 17.函数y=sin 2x ﹣2sinx 的值域是y ∈ .
18.已知一个算法,其流程图如图,则输出结果是 .
三、解答题
19.(本小题满分10分)选修4-4:坐标系与参数方程.
在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos α
y =2+3sin α
(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐
标系,C 2的极坐标方程为ρ=
2
sin (θ+π
4
)
.
(1)求C 1,C 2的普通方程;
(2)若直线C 3的极坐标方程为θ=3π
4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面
积.
20.若{a n }的前n 项和为S n ,点(n ,S n )均在函数y=的图象上.
(1)求数列{a n }的通项公式;
(2)设,T n 是数列{b n }的前n 项和,求:使得
对所有n ∈N *
都成立的最大正整数m .
21.己知函数f (x )=lnx ﹣ax+1(a >0). (1)试探究函数f (x )的零点个数;
(2)若f (x )的图象与x 轴交于A (x 1,0)B (x 2,0)(x 1<x 2)两点,AB 中点为C (x 0,0),设函数f (x )的导函数为f ′(x ),求证:f ′(x 0)<0.
22.已知函数f(x)=xlnx+ax(a∈R).
(Ⅰ)若a=﹣2,求函数f(x)的单调区间;
(Ⅱ)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,求正整数k的值.(参考数据:ln2=0.6931,ln3=1.0986)
23.已知函数f(x)=x3+ax+2.
(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;
(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.
24.设A(x0,y0)(x0,y0≠0)是椭圆T:+y2=1(m>0)上一点,它关于y轴、原点、x轴的对称点依次为B,C,D.E是椭圆T上不同于A的另外一点,且AE⊥AC,如图所示.
(Ⅰ)若点A横坐标为,且BD∥AE,求m的值;
(Ⅱ)求证:直线BD与CE的交点Q总在椭圆+y2=()2上.
安平县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】D
【解析】解:根据函数与导数的关系:可知,当f′(x)≥0时,函数f(x)单调递增;当f′(x)<0时,函数f(x)单调递减
结合函数y=f(x)的图象可知,当x<0时,函数f(x)单调递减,则f′(x)<0,排除选项A,C
当x>0时,函数f(x)先单调递增,则f′(x)≥0,排除选项B
故选D
【点评】本题主要考查了利用函数与函数的导数的关系判断函数的图象,属于基础试题
2.【答案】
D
【解析】【解答】解:由题意可得,甲射中的概率为,乙射中的概率为,
故两人都击不中的概率为(1﹣)(1﹣)=,
故目标被击中的概率为1﹣=,
故选:D.
【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题.
3.【答案】B
【解析】解:①x=0时,y=0,1,2,∴x﹣y=0,﹣1,﹣2;
②x=1时,y=0,1,2,∴x﹣y=1,0,﹣1;
③x=2时,y=0,1,2,∴x﹣y=2,1,0;
∴B={0,﹣1,﹣2,1,2},共5个元素.
故选:B.
4.【答案】B
【解析】解:∵f(x)是偶函数
∴f(﹣x)=f(x)
不等式,即
也就是xf (x )>0
①当x >0时,有f (x )>0
∵f (x )在(0,+∞)上为减函数,且f (2)=0 ∴f (x )>0即f (x )>f (2),得0<x <2; ②当x <0时,有f (x )<0
∵﹣x >0,f (x )=f (﹣x )<f (2), ∴﹣x >2⇒x <﹣2
综上所述,原不等式的解集为:(﹣∞,﹣2)∪(0,2) 故选B
5. 【答案】D 【解析】
试题分析:因为根据几何体的三视图可得,几何体为下图,,AD AB AG 相互垂直,面AEFG ⊥面
,//,3,1ABCDE BC AE AB AD AG DE ====,根据几何体的性质得:AC GC ==
GE ===4,BG AD EF CE ====所以最长为GC =
考点:几何体的三视图及几何体的结构特征. 6. 【答案】B
考
点:函数的奇偶性与单调性.
【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 7. 【答案】A
【解析】解:椭圆的焦点为(±4,0),
由双曲线的焦点与椭圆的重合,可得=4,解得m=12.
故选:A.
8.【答案】B
【解析】解:∵F(x)=f(x)﹣g(x)=f(x)﹣f′(x0)(x﹣x0)﹣f(x0),
∴F'(x)=f'(x)﹣f′(x0)
∴F'(x0)=0,
又由a<x0<b,得出
当a<x<x0时,f'(x)<f′(x0),F'(x)<0,
当x0<x<b时,f'(x)<f′(x0),F'(x)>0,
∴x=x0是F(x)的极小值点
故选B.
【点评】本题主要考查函数的极值与其导函数的关系,即当函数取到极值时导函数一定等于0,反之当导函数等于0时还要判断原函数的单调性才能确定是否有极值.
9.【答案】C
【解析】解:①命题p是一个特称命题,它的否定是全称命题,¬p是全称命题,所以①正确.
②根据逆否命题的定义可知②正确.
故选C.
【点评】考查特称命题,全称命题,和逆否命题的概念.
10.【答案】A
【解析】
考点:正弦定理及二倍角公式.
【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理
R C
c
B b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 11.【答案】C
【解析】由已知,得{z|z =x +y ,x ∈A ,y ∈B}={-1,1,3},所以集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为3. 12.【答案】A
【解析】解:复数Z=+i 2015=
﹣i=
﹣i=﹣
.
复数对应点的坐标(),在第四象限.
故选:A .
【点评】本题考查复数的代数形式的混合运算,复数的几何意义,基本知识的考查.
二、填空题
13.【解析】
考点:1、正弦定理及勾股定理;2诱导公式及直角三角形的性质.
【方法点睛】本题主要考查正弦定理及勾股定理、诱导公式及直角三角形的性质,属于难题,高考三角函数的考查主要以三角恒等变形,三角函数的图象和性质,利用正弦定理、余弦定理解三角形为主,难度中等,因此只要掌握基本的解题方法与技巧即可,对于三角函数与解三角形相结合的题目,要注意通过正余弦定理以及面积公式实现边角互化,求出相关的边和角的大小,有时也要考虑特殊三角形的特殊性质(如正三角形,直角三角形等).
14.【答案】60°°.
【解析】解:连结BC1、A1C1,
∵在正方体ABCD﹣A1B1C1D1中,A1A平行且等于C1C,
∴四边形AA1C1C为平行四边形,可得A1C1∥AC,
因此∠BA1C1(或其补角)是异面直线A1B与AC所成的角,
设正方体的棱长为a,则△A
B1C中A1B=BC1=C1A1=a,
1
∴△A1B1C是等边三角形,可得∠BA1C1=60°,
即异面直线A1B与AC所成的角等于60°.
故答案为:60°.
【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.
15.【答案】.
【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,
所以甲胜出的概率为
故答案为.
【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.16.【答案】(﹣4,0].
【解析】解:当a=0时,不等式等价为﹣4<0,满足条件;
当a≠0时,要使不等式ax2﹣2ax﹣4<0恒成立,
则满足,
即,
∴
解得﹣4<a<0,
综上:a的取值范围是(﹣4,0].
故答案为:(﹣4,0].
【点评】本题主要考查不等式恒成立问题,注意要对二次项系数进行讨论.
17.【答案】[﹣1,3].
【解析】解:∵函数y=sin2x﹣2sinx=(sinx﹣1)2﹣1,﹣1≤sinx≤1,
∴0≤(sinx﹣1)2≤4,∴﹣1≤(sinx﹣1)2﹣1≤3.
∴函数y=sin2x﹣2sinx的值域是y∈[﹣1,3].
故答案为[﹣1,3].
【点评】熟练掌握正弦函数的单调性、二次函数的单调性是解题的关键.
18.【答案】5.
【解析】解:模拟执行程序框图,可得 a=1,a=2
不满足条件a 2
>4a+1,a=3
不满足条件a 2
>4a+1,a=4
不满足条件a 2
>4a+1,a=5
满足条件a 2
>4a+1,退出循环,输出a 的值为5.
故答案为:5.
【点评】本题主要考查了循环结构的程序框图,依次正确写出每次循环得到的a 的值是解题的关键,属于基本知识的考查.
三、解答题
19.【答案】
【解析】解:(1)由C 1:⎩
⎪⎨⎪⎧x =1+3cos α
y =2+3sin α(α为参数)
得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9. 即C 1的普通方程为(x -1)2+(y -2)2=9, 由C 2:ρ=
2sin (θ+π
4
)
得
ρ(sin θ+cos θ)=2, 即x +y -2=0,
即C 2的普通方程为x +y -2=0.
(2)由C 1:(x -1)2+(y -2)2=9得 x 2+y 2-2x -4y -4=0,
其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0, 将θ=3π
4代入上式得
ρ2-2ρ-4=0, ρ1+ρ2=2,ρ1ρ2=-4,
∴|MN |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=3 2.
C 3:θ=3
4
π(ρ∈R )的直角坐标方程为x +y =0,
∴C 2与C 3是两平行直线,其距离d =2
2
= 2.
∴△PMN 的面积为S =12|MN |×d =1
2
×32×2=3.
即△PMN的面积为3.
20.【答案】
【解析】解:(1)由题意知:S n=n2﹣n,
当n≥2时,a n=S n﹣S n﹣1=3n﹣2,
当n=1时,a1=1,适合上式,
则a n=3n﹣2;
(2)根据题意得:b n===﹣,T n=b1+b2+…+b n=1﹣+﹣+…+
﹣=1﹣,
∴{T n}在n∈N*上是增函数,∴(T n)min=T1=,
要使T n>对所有n∈N*都成立,只需<,即m<15,
则最大的正整数m为14.
21.【答案】
【解析】解:(1),
令f'(x)>0,则;令f'(x)<0,则.
∴f(x)在x=a时取得最大值,即
①当,即0<a<1时,考虑到当x无限趋近于0(从0的右边)时,f(x)→﹣∞;当x→+∞时,f (x)→﹣∞
∴f(x)的图象与x轴有2个交点,分别位于(0,)及()
即f(x)有2个零点;
②当,即a=1时,f(x)有1个零点;
③当,即a>1时f(x)没有零点;
(2)由得(0<x1<x2),
=,令
,设,t∈(0,1)且h(1)=0
则,又t∈(0,1),∴h′(t)<0,∴h(t)>h(1)=0
即,又,
∴f'(x0)=<0.
【点评】本题在导数的综合应用中属于难题,题目中的两个小问都有需要注意之处,如(1)中,在对0<a<1进行研究时,一定要注意到f(x)的取值范围,才能确定零点的个数,否则不能确定.(2)中,代数运算
比较复杂,特别是计算过程中,令的化简和换元,使得原本比较复杂的式子变得简单化而可解,这对学
生的综合能力有比较高的要求.
22.【答案】
【解析】解:(I)a=﹣2时,f(x)=xlnx﹣2x,则f′(x)=lnx﹣1.
令f′(x)=0得x=e,
当0<x<e时,f′(x)<0,当x>e时,f′(x)>0,
∴f(x)的单调递减区间是(0,e),单调递增区间为(e,+∞).
(II)若对任意x∈(1,+∞),f(x)>k(x﹣1)+ax﹣x恒成立,
则xlnx+ax>k(x﹣1)+ax﹣x恒成立,即k(x﹣1)<xlnx+ax﹣ax+x恒成立,
又x﹣1>0,则k<对任意x∈(1,+∞)恒成立,
设h(x)=,则h′(x)=.
设m(x)=x﹣lnx﹣2,则m′(x)=1﹣,
∵x∈(1,+∞),∴m′(x)>0,则m(x)在(1,+∞)上是增函数.
∵m(1)=﹣1<0,m(2)=﹣ln2<0,m(3)=1﹣ln3<0,m(4)=2﹣ln4>0,
∴存在x0∈(3,4),使得m(x0)=0,
当x∈(1,x0)时,m(x)<0,即h′(x)<0,
当x∈(x0,+∞)时,m(x)>0,h′(x)>0,
∴h(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增,
∴h(x)的最小值h min(x)=h(x0)=.
∵m(x0)=x0﹣lnx0﹣2=0,∴lnx0=x0﹣2.∴h(x0)==x0.
∴k<h min(x)=x0.
∵3<x0<4,
∴k≤3.
∴k的值为1,2,3.
【点评】本题考查了利用导数研究函数的单调性,函数的最值,函数恒成立问题,构造函数求出h(x)的最小值是解题关键,属于难题.
23.【答案】
【解析】(Ⅰ)证明:f(x)的导数f′(x)=x2+a,
即有f(1)=a+,f′(1)=1+a,
则切线方程为y﹣(a+)=(1+a)(x﹣1),
令x=0,得y=为定值;
(Ⅱ)解:由xe x+m[f′(x)﹣a]≥m2x对x≥0时恒成立,
得xe x+mx2﹣m2x≥0对x≥0时恒成立,
即e x+mx﹣m2≥0对x≥0时恒成立,
则(e x+mx﹣m2)min≥0,
记g(x)=e x+mx﹣m2,
g′(x)=e x+m,由x≥0,e x≥1,
若m≥﹣1,g′(x)≥0,g(x)在[0,+∞)上为增函数,
∴,
则有﹣1≤m≤1,
若m<﹣1,则当x∈(0,ln(﹣m))时,g′(x)<0,g(x)为减函数,
则当x∈(ln(﹣m),+∞)时,g′(x)>0,g(x)为增函数,
∴,
∴1﹣ln(﹣m)+m≥0,
令﹣m=t,则t+lnt﹣1≤0(t>1),
φ(t)=t+lnt﹣1,显然是增函数,
由t>1,φ(t)>φ(1)=0,则t>1即m<﹣1,不合题意.
综上,实数m的取值范围是﹣1≤m≤1.
【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.
24.【答案】
【解析】(Ⅰ)解:∵BD∥AE,AE⊥AC,
∴BD⊥AC,可知A(),
故,m=2;
(Ⅱ)证明:由对称性可知B(﹣x0,y0),C(﹣x0,﹣y0),D(x0,﹣y0),四边形ABCD为矩形,
设E(x1,y1),由于A,E均在椭圆T上,则
,
由②﹣①得:(x1+x0)(x1﹣x0)+(m+1)(y1+y0)(y1﹣y0)=0,
显然x1≠x0,从而=,
∵AE⊥AC,∴k AE•k AC=﹣1,
∴,
解得,
代入椭圆方程,知.
【点评】本题主要考查圆锥曲线的定义的应用,关键是利用椭圆的对称性寻求点的坐标间的关系,体现了整体运算思想方法,是中档题.。