【好题】七年级数学下期末第一次模拟试题含答案(1)
初中数学人教版七年级下册期末-章节测试习题(1)
![初中数学人教版七年级下册期末-章节测试习题(1)](https://img.taocdn.com/s3/m/795af32c941ea76e59fa0472.png)
章节测试题1.【题文】已知关于的方程组(1)若求方程组的解;(2)若方程组的解满足求的取值范围.【答案】(1) ;(2) a>-.【分析】(1)将a=2代入方程组计算即可求出解;(2)将a看做已知数求出x与y,根据x大于y得到a的范围. 【解答】解:(1)当a=2时,方程组为,①-②得:3y=6,即y=2,将y=2代入①得:x=9,则方程组的解为;(2)方程组两方程相减得:3y=10-2a,即y=,将y=代入第一个方程得:x=,根据题意得:>,解得:a>-.2.【题文】为了了解某地区“雾霾天气的主要成因”,随机调查了该地区部分市民,并对调査结果随机调査了该市部分市民,并对调査结果进行整理,绘制了如下尚不完整的统计图表.根据图表中提供的信息解答下列问题:(1)求接受调查的总人数;(2)填空:扇形统计图中E组所占的百分比为______%;(3)扇形统计图中,C组所对应扇形圆心角的度数为________;(4)若该地区人口约有100万人,请你估计持D组观点的市民人数.【答案】(1)600人;(2)60,150,15%;(3)90°;(4)30万人.【分析】(1)根据A组的人数和所占的百分比可以求得接受调查的总人数;(2)根据接受调查的总人数和B组观点的百分比可以求得m,总人数减去其余各组的人数可以求得n的值,根据E组人数和总人数可求得所占的百分比;(3)根据C组观点的人数占的百分比可以求得C组所对应扇形圆心角的度数;(4)根据D组观点占的百分比可以求得持D组观点的市民人数.【解答】解:(1)由题意可得,接受调查的总人数是:120÷20%=600,即接受调查的一共有600人;(2)m=600×10%=60,n=600-180-120-90-60=150,扇形统计图中E组所占的百分比为:×100%=15%,故答案为:60,150,15%;(3)扇形统计图中,C组所对应扇形圆心角的度数为:360°×=90°,故答案为:90°;(4)100×=30(万人),答:持D组观点的市民有30万人.3.【题文】某体育器材公司最新推出A、B两种不同型号的跳绳,我区某学校第一次订购两种跳绳共计640条,该公司共获利2160元,两种跳绳的成本价、销售价如下表:(1)求学校第一次订购A、B两种跳绳各多少条?(2)第二次订购A、B两种跳绳的条数皆为第一次的2倍,销售时,A种跳绳按原售价销售,B种跳绳全部降价出售,该公司为使利润不小于4080元,则B种跳绳每条的最低销售价应为多少元?【答案】(1)学校第一次订购A种跳绳400条,B种跳绳240条;(2)第二次B 种跳绳每条的最低销售价应为9.5元.【分析】(1)设学校第一次订购A种跳绳x条B种跳绳y条,根据“两种跳绳共计640条,该公司共获利2160元”列出方程组进行求解;(2)设第二次B种跳绳每条的最低销售价应为a元,根据“该公司的利润不少于4080元”列出不等式,继而即可求解.【解答】解:(1)设学校第一次订购A种跳绳x条,B种跳绳y条,根据题意得:,解得:.答:学校第一次订购A种跳绳400条,B种跳绳240条.(2)设第二次B种跳绳每条的最低销售价应为a元,根据题意得:(8-5)×400×2+(a-6)×240×2≥4080,解得:a≥9.5.答:第二次B种跳绳每条的最低销售价应为9.5元.4.【题文】如图1,在平面直角坐标系中,点A(0,4),C(2,0).(1)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿轴正方向移动,点Q到达A点整个运动随之结束,AC的中点D的坐标是(1,2),设运动时间为秒,问:是否存在这样的使若存在,请求出的值;若不存在,请说明理由.(2)如图2,点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF,点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,以下两个式子:哪个式子为定值,请求出这个定值.【答案】(1) t=;(2)的值不变,其值为2.【分析】(1)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据,列出关于t的方程,求得t的值即可;(2)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.【解答】解:(1)由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=OP•y D=(2−t)×2=2−t,S△DOQ=OQ•x D=×2t×1=t,∵,∴2(2-t)=t,∴t=;(2)的值不变,其值为2.∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴==,不能确定.===2.5.【题文】已知,平面直角坐标系中,A(2,0),B(),且满足(1)求点B坐标;(2)P(0,)为轴上一点,求的取值范围;(3)若Q为直线AB上一点,连接OQ,且直接写出点Q 的纵坐标的取值范围.【答案】(1)B(-2,4);(2)m≥6或m≤-2;(3)≤y≤3或6≤y≤8.【分析】(1)根据非负数的性质列出方程组,解方程组求出a、b,得到点B的坐标;(2)先利用待定系数法求得直线AB的解析式为y=-x+2,进而得出直线AB交y 轴于(0,2),根据三角形的面积公式求出根据S△ABP不小于8时,×|y-2|×(2+2)≥8,得到点P的纵坐标m的取值范围;(3)分两种情况,当点Q在线段AB上时,可得2(4-y)≤y≤3(4-y)计算可得;当点Q在线段AB的延长线上时,可得2(y-4)≤y≤3(y-4)计算即可.【解答】解:(1)∵∴2a+b=0,3a+2b-2=0,解得a=-2,b=4,∴B(-2,4);(2)设直线AB的解析式为y=kx+b,把A(2,0),B(-2,4)代入,可得,解得,∴直线AB的解析式为y=-x+2,令x=0,则y=2,即直线AB交y轴于(0,2),=4,根据得,8,即×|m-2|×(2+2)≥8,解得m≥6或m≤-2;(3)≤y≤3或6≤y≤8.6.【答题】下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.4x+y=2C.D.6xy+9=0 【答案】B【分析】直接利用二元一次方程的定义分析得出答案.【解答】A、,是三元一次方程,故此选项错误;B、,是二元一次方程,故此选项正确;C、,是分式方程,故此选项错误;D、,是二元二次方程,故此选项错误;选B.7.【答题】若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>0【答案】D【分析】根据不等式的性质即可求出答案.【解答】∵m<1∴m+1<2故D错误选D.8.【答题】在下列调查中,适宜采用全面调查的是()A.了解明德集团所有中学生的视力情况B.了解某校七(4)班学生校服的尺码情况C.调查北京2017年的游客流量D.调查中国“2018俄罗斯世界杯”栏目的收视率【答案】B【分析】根据实际问题的需要选择合适的调查方式.【解答】A、适合用抽样调查;B、适合用全面调查;C、适合用抽样调查;D、适合用抽样调查,所以答案选B.9.【答题】不等式组的解在数轴上表示正确的是()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:解得:x<3,x≥-1故不等式组的解集为:-1≤x<3在数轴上表示为:.选C.10.【答题】已知是二元一次方程2x+y=14的解,则k的值是()A.2B.﹣2C.3D.﹣3【答案】A【分析】根据方程的解的定义,将方程2x+y=14中x,y用k替换得到k的一元一次方程进行求解.【解答】将代入二元一次方程2x+y=14,得7k=14,解得k=2.选A.11.【答题】在一个三角形中,一个外角是其相邻内角的2倍,那么这个外角是()A.150B.120°C.100°D.90°【答案】B【分析】设与外角相邻的内角为x°,根据平角的定义得到方程3x=180,求出x即可.【解答】设与外角相邻的内角为x°,∵一个三角形中,一个外角是其相邻内角的2倍∴这个外角为2x°∴3x=180∴x=60.即这个外角为120°选B.12.【答题】由方程组可得出x与y的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9【答案】A【分析】本题考查了二元一次方程组的解法。
【好题】七年级数学下期末模拟试题(含答案)(1)
![【好题】七年级数学下期末模拟试题(含答案)(1)](https://img.taocdn.com/s3/m/b839a14228ea81c759f57851.png)
【好题】七年级数学下期末模拟试题(含答案)(1)一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩3.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多4.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩5.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线. 7.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .98.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度9.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,xx x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-110.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行11.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,012.若x <y ,则下列不等式中不成立的是( ) A .x 1y 1-<-B .3x 3y <C .x y22< D .2x 2y -<-二、填空题13.已知二元一次方程2x-3y=6,用关于x 的代数式表示y ,则y=______.14.不等式组11{2320x x ≥--<的解集为________.15.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.16.若不等式(a+1)x >a+1的解集是x <1,则a 的取值范围是_________.17.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________18.关于x的不等式1x <-的非负整数解为________.19.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.20.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.三、解答题21.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x 为整数,总分100分),绘制了如下尚不完整的统计图表.根据以上信息解答下列问题:(1)统计表中a = ,b = ,c = ;(2)扇形统计图中,m 的值为 ,“E ”所对应的圆心角的度数是 (度); (3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?22.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 23.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,∠C=∠EFG,∠CED=∠GHD (1)求证:CE∥GF;(2)试判断∠AED 与∠D 之间的数量关系,并说明理由; (3)若∠EHF=100°,∠D=30°,求∠AEM 的度数.24.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.25.解不等式组:5(1)21111(3)32x x x x +>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案. 【详解】A 3=,此选项错误错误,不符合题意;B 3=,此选项错误错误,不符合题意;C 3=-,此选项错误错误,不符合题意;D 3=,此选项正确,符合题意; 故选:D . 【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.C解析:C 【解析】 【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案. 【详解】解:∵实数x ,y 满足254()0x y x y +-+-=,∴40x y +-=且2()0x y -=,即40x y x y +-=⎧⎨-=⎩,解得:22x y =⎧⎨=⎩, 故选C . 【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.C解析:C 【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出. 【详解】解:A 、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误; B 、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误; C 、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确; D 、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误. 故选C. 【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.4.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.5.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<- 故选A. 【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.6.D解析:D【解析】解:A .应为两点之间线段最短,故本选项错误;B .应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C .应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D .在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确. 故选D .7.B解析:B 【解析】 【分析】把两个方程相加可得3x+3y=15,进而可得答案. 【详解】两个方程相加,得3x+3y=15, ∴x+y=5, 故选B. 【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.8.B解析:B 【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度, 故选B.9.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:212x ±==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1.故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.10.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确; 根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.11.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.12.D解析:D 【解析】 【分析】利用不等式的基本性质判断即可. 【详解】若x <y ,则x ﹣1<y ﹣1,选项A 成立; 若x <y ,则3x <3y ,选项B 成立; 若x <y ,则x 2<y2,选项C 成立; 若x <y ,则﹣2x >﹣2y ,选项D 不成立, 故选D . 【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.【解析】【分析】把x 看做已知数求出y 即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x 看做已知数求出y 解析:263x - 【解析】 【分析】把x 看做已知数求出y 即可. 【详解】解:方程2x-3y=6, 解得:y=263x -, 故答案为263x -. 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .14.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x< 解析:223x -≤<【解析】112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 15.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩ 【解析】 【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决. 【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==.故答案为510x y ⎧⎨⎩==.【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.16.a <﹣1【解析】不等式(a+1)x>a+1两边都除以a+1得其解集为x<1∴a+1<0解得:a<−1故答案为a<−1点睛:本题主要考查解一元一次不等式解答此题的关键是掌握不等式的性质再不等式两边同加解析:a <﹣1 【解析】不等式(a+1)x>a+1两边都除以a+1,得其解集为x<1, ∴a+1<0, 解得:a<−1,故答案为a<−1.点睛:本题主要考查解一元一次不等式,解答此题的关键是掌握不等式的性质,再不等式两边同加或同减一个数或式子,不等号的方向不变,在不等式的两边同乘或同除一个正数或式子,不等号的方向不变,在不等式的两边同乘或同除一个负数或式子,不等号的方向改变.17.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4解析:4;【解析】试题解析:把21xy=⎧⎨=⎩代入方程组得:25{21a bb a++=①=②,①×2-②得:3a=9,即a=3,把a=3代入②得:b=-1,则a-b=3+1=4,18.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不解析:0,1,2【解析】【分析】先解不等式,确定不等式的解集,然后再确定其非负整数解即可得到答案.【详解】解:解不等式1x<-得:1x<,∵34=<<=,∴13x<<,∴13x<<的非负整数解为:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了二次根式的应用及一元一次不等式的整数解的知识,确定其解集是解题的关键.19.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O则直线与坐标轴围成的三角形是以OAOB为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =, ∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.20.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 三、解答题21.(1)70,200,500;(2)14,72;(3)成绩在80分及以上的学生大约有2400人.【解析】【分析】(1)根据统计图中的数据可以分别求得a 、b 、c 的值;(2)根据统计图中的数据可以求得m 和“E”所对应的圆心角的度数;(3)根据题意可以求得成绩在80分及以上的学生大约有多少人.【详解】解:(1)()()408%18%18%40%20%70a =÷⨯----=,()408%40%200b =÷⨯=,408%500c =÷=,故答案为70,200,500; (2)%18%18%40%20%14%m =----=,“E ”所对应的圆心角的度数是:36020%72︒⨯=︒,故答案为14,72;(3)()400040%20%2400⨯+= (人),答:成绩在80分及以上的学生大约有2400人.【点睛】本题考查了扇形统计图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.952m ≤≤ 【解析】【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y m x y m +=+⎧⎨-=+⎩得 :422x m y m +⎧⎨-⎩==, 解方程组10310x y x y +=⎧⎨+=-⎩得 :2010x y ⎧⎨-⎩==, ∵关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解, 因此有:42200.120m +-≤且2100.110m -+≤, 化简得:821091122m m ≤≤⎧⎪⎨≤≤⎪⎩,即4591122m m ≤≤⎧⎪⎨≤≤⎪⎩ 解得:952m ≤≤, 故答案为952m ≤≤. 【点睛】 本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.23.(1)证明见解析;(2)∠AED+∠D=180°,理由见解析;(3)∠AEM=130°【解析】分析:(1)根据同位角相等两直线平行,可证CE ∥GF ;(2)根据平行线的性质可得∠C=∠FGD ,根据等量关系可得∠FGD=∠EFG ,根据内错角相等,两直线平行可得AB ∥CD ,再根据平行线的性质可得∠AED 与∠D 之间的数量关系;(3)根据对顶角相等可求∠DHG ,根据三角形外角的性质可求∠CGF ,根据平行线的性质可得∠C ,∠AEC ,再根据平角的定义可求∠AEM 的度数.本题解析:(1)证明:∵∠CED=∠GHD , ∴CE ∥GF(2)答:∠AED+∠D=180°理由:∵CE ∥GF ,∴∠C=∠FGD ,∵∠C=∠EFG ,∴∠FGD=∠EFG ,∴AB ∥CD , ∴∠AED+∠D=180°;(3)∵∠DHG=∠EHF=100°,∠D=30°,∴∠CGF=100°+30°=130°∵CE ∥GF ,∴∠C=180°﹣130°=50°∵AB ∥CD ,∴∠AEC=50°,∴∠AEM=180°﹣50°=130°. 点睛:本题考查了平行线的判定与性质,解题关键是根据已知条件判断相关的内错角,同位角的相等关系.24.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.﹣2<x ≤3,表示在数轴上见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】5(1)21111(3)32x x x x ①②+>-⎧⎪⎨-≥-⎪⎩, 解①得:x >﹣2,解②得:x ≤3,故不等式组的解集是:﹣2<x ≤3,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
【必考题】七年级数学下期末试题带答案(1)
![【必考题】七年级数学下期末试题带答案(1)](https://img.taocdn.com/s3/m/3178738149649b6649d7474a.png)
【必考题】七年级数学下期末试题带答案(1)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70° 2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩3.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x y x y-=⎧⎨-=⎩ C .8374x y x y +=⎧⎨-=⎩ D .8374x y x y -=⎧⎨+=⎩4.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4D .5 5.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a 、b 分别为( ) A .a=8,b=﹣2 B .a=8,b=2 C .a=12,b=2 D .a=18,b=86.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个7.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠88.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个9.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-310.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角11.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限.A .一B .二C .三D .四12.已知a ,b 为两个连续整数,且a<191-<b,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和5 二、填空题13.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________.14.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.15.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.16.若a ,b 均为正整数,且a 7,b 32a +b 的最小值是_______________.17.已知a 、b 满足(a ﹣1)22b +,则a+b=_____.18.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________. 19.现有2019条直线1232019a a a a ,,,,,⋯且有12233445a a a a a a a a ⊥⊥P P ,,,,…,则直线1a 与2019a 的位置关系是___________.20.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是________________________三、解答题21.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?AB CD,点E在直线AB与CD之间,连接AE、CE,22.(1)(感知)如图①,//∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程试说明AEC A DCE(填恰当的理由).EF AB.证明:如图①过点E作//∴∠=∠(),A1Q(已知),EF//AB(辅助线作法),//AB CD∴(),EF CD//∴∠=∠(),2DCE12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)23.问题情境在综合与实践课上,老师让同学们以“两条平行线AB ,CD 和一块含60°角的直角三角尺EFG(∠EFG =90°,∠EGF =60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G 放在CD 上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E 、G 分别放在AB 和CD 上,请你探索并说明∠AEF 与∠FGC 之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上.若∠AEG =α,则∠CFG 等于______(用含α的式子表示).24.一个工程队原定在10天内至少要挖土600m 3,在前两天一共完成了120m 3,由于整个工程调整工期,要求提前两天完成挖土任务.问以后几天内,平均每天至少要挖土多少m 3?25.已知关于,x y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求(a)b -值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON ,然后根据对顶角相等求得∠MOC ,然后根据∠AOM =90°﹣∠COM 即可求解.【详解】∵OE 平分∠BON ,∴∠BON =2∠EON =40°,∴∠COM =∠BON =40°,∵AO ⊥BC ,∴∠AOC =90°,∴∠AOM =90°﹣∠COM =90°﹣40°=50°.故选B .【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC 的度数是关键.2.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩,故选C.【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.D解析:D【解析】【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.4.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.5.C解析:C【解析】试题解析:将x=5,y=b代入方程组得:10{53b ab+=-=,解得:a=12,b=2,故选C.考点:二元一次方程组的解.6.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.7.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.8.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A10.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.11.B解析:B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q坐标为(-1,2),∴点Q在第二象限,故选:B.【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.12.C解析:C【解析】试题解析:∵45,∴3<4,∴这两个连续整数是3和4,故选C.二、填空题13.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a <.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a的代数式的取值范围.14.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置解析:(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.15.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能解析:25【解析】【分析】【详解】设需安排x名工人加工大齿轮,安排y名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.16.4【解析】【分析】先估算的范围然后确定ab 的最小值即可计算a+b 的最小值【详解】∵<<∴2<<3∵a>a 为正整数∴a 的最小值为3∵<<∴1<<2∵b<b 为正整数∴b 的最小值为1∴a+b 的最小值为3+解析:4【解析】【分析】的范围,然后确定a 、b 的最小值,即可计算a+b 的最小值.【详解】∴2<3,∵a ,a 为正整数,∴a 的最小值为3,∴1<2,∵b ,b 为正整数,∴b 的最小值为1,∴a+b 的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a 、b 的最小值.17.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab 的值进而得出答案【详解】∵(a ﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.18.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a的不等式组求出即可【详解】解不等式3x -5≤2x-2得:x≤3解不能等式2x+3>a得:x>∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a的不等式组,求出即可.【详解】解不等式3x-5≤2x-2,得:x≤3,解不能等式2x+3>a,得:x>32a-,∵不等式组有且仅有4个整数解,∴-1≤32a-<0,解得:1≤a<3,∴整数a的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.垂直【解析】【分析】根据两直线平行同位角相等得出相等的角再根据垂直的定义解答进而得出规律:a1与其它直线的位置关系为每4个一循环垂直垂直平行平行根据此规律即可判断【详解】先判断直线a1与a3的位置关解析:垂直.【解析】【分析】根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答,进而得出规律:a1与其它直线的位置关系为每4个一循环,垂直、垂直、平行、平行,根据此规律即可判断.【详解】先判断直线a1与a3的位置关系是:a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;再判断直线a1与a4的位置关系是:a1∥a4,如图2;∵直线a1与a3的位置关系是:a1⊥a3,直线a1与a4的位置关系是:a1∥a4,∵2019÷4=504…3,∴直线a1与a2015的位置关系是:垂直.故答案为:垂直.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导,解题的关键是:结合图形先判断几组直线的关系,然后找出规律.20.【解析】【分析】设绳索长为x尺竿子长为y尺根据索比竿子长一托折回索子却量竿却比竿子短一托即可得出关于xy的二元一次方程组【详解】解:根据题意得:故答案为:【点睛】本题考查了二元一次方程组的应用找准等解析:5 15 2x yx y+⎧⎪⎨-⎪⎩==【解析】【分析】设绳索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】解:根据题意得:515 2x yx y+⎧⎪⎨-⎪⎩==.故答案为:515 2x yx y+⎧⎪⎨-⎪⎩==.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.三、解答题21.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.22.(1)见解析;(2)证明见解析;(3)70°.【解析】【分析】(1)根据平行线的性质、平行公理的推论和等量代换依次解答即可;(2)如图④,过点E作//EF AB,根据平行线的性质、平行公理的推论解答即可;(3)由(2)题的结论可求出∠AEC的度数,进而可得答案.【详解】解:(1)证明:如图①,过点E作//EF AB,1A ∴∠=∠(两直线平行,内错角相等), //AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),2DCE ∴∠=∠(两直线平行,内错角相等),12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ (等量代换);(2)证明:如图④,过点E 作//EF AB ,180A AEF ∴∠+∠=︒(两直线平行,同旁内角互补),//AB CD Q (已知),//EF AB (辅助线作法),//EF CD ∴(平行于同一条直线的两直线互相平行),180C CEF ∴∠+∠=︒(两直线平行,同旁内角互补),180180360A AEC C A AEF CEF C ∴∠+∠+∠=∠+∠+∠+∠=︒+=︒;(3)解:由(2)题的结论知:360A AEC C ∠+∠+∠=︒,∴360360*********AEC A C ∠=︒-∠-∠=︒-︒-︒=︒,∴∠MEC =180AEC ︒-∠=70°. 故答案为:70°. 【点睛】本题主要考查了平行线的性质、平行公理的推论等知识,属于常考题型,熟练掌握平行线的性质是解题关键.23.(1)∠1=40°;(2)∠AEF+∠GFC =90°;(3)60°﹣α.【解析】【分析】(1)依据AB ∥CD ,可得∠1=∠EGD ,再根据∠2=2∠1,∠FGE =60°,即可得出∠EGD 13=(180°﹣60°)=40°,进而得到∠1=40°; (2)根据AB ∥CD ,可得∠AEG +∠CGE =180°,再根据∠FEG +∠EGF =90°,即可得到∠AEF +∠GFC =90°;(3)根据AB ∥CD ,可得∠AEF +∠CFE =180°,再根据∠GFE =90°,∠GEF =30°,∠AEG =α,即可得到∠GFC =180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB ∥CD ,∴∠1=∠EGD .又∵∠2=2∠1,∴∠2=2∠EGD.又∵∠FGE=60°,∴∠EGD13=(180°﹣60°)=40°,∴∠1=40°;(2)如图2.∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3.∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.24.80m3【解析】试题分析:设以后几天内,平均每天要挖掘xm3土方,根据题意可知原定在10天,已经干了两天,还要求提前2天,即为要6天至少挖掘(600-120)m3的土方,根据题意可得不等式,解不等式即可.试题解析:设平均每天挖土x m3,由题意得:(10﹣2﹣2)x≥600﹣120,解得:x≥80.答:平均每天至少挖土80m3.点睛:本题考查了一元一次不等式的应用,关键是弄清题意,清楚600m3的土方到底要用几天干完.25.-8.【解析】试题分析:因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值.试题解析:因为两组方程组有相同的解,所以原方程组可化为方程组①35234x yx y-=⎧⎨+=-⎩和方程组②45228ax byax by+=-⎧⎨-=⎩,解方程组①,得12 xy=⎧⎨=-⎩,代入②得4102228a ba b-=-⎧⎨+=⎩,解得23ab=⎧⎨=⎩,所以(-a)b=(-2)3=-8.【点睛】本题考查了同解方程组,考查了学生对方程组有公共解定义的理解能力及应用能力,解题的关键是将所给的两个方程组进行重新组合.。
【3套打包】呼和浩特市最新七年级下册数学期末考试试题(含答案)(1)
![【3套打包】呼和浩特市最新七年级下册数学期末考试试题(含答案)(1)](https://img.taocdn.com/s3/m/cdac10262e3f5727a4e96201.png)
新七年级(下)期末考试数学试题(含答案)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合要求的请将答案选项填在下表中.1.如图,直线a、b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是()A.①③B.②④C.①③④D.①②③④2.下列结论正确的是()A.B.C 6 D.-(2=16253.在平面直角坐标系中,点(-1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限4.解方程组437435x yx y-⎨⎩+⎧==时,较为简单的方法是()A.代入法B.加减法C.试值法D.无法确定5.不等式组2130xx≤+≥⎧⎨⎩的整数解的个数为()A.1 B.2 C.3 D.46.为了了解我市参加中考的75000名学生的视力情况,抽查了1000名学生的视力进行统计分析,下面四个判断中,正确的是()A.75000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.上述调查是普查7.下列四个命题:①若a>b,则a+1>b+1;②若a>b,则a-c>b-c;③若a>b,则-2a<-2b;④若a>b,则ac>bc.其中正确的个数是()A.1 B.2 C.3 D.48.甲、乙两人做同样的零件,如果甲先做1天,乙再开始做,5天后两人做的一样多,如果甲先做30个,乙再开始做,4天后乙反比甲多做10个.甲,乙两人每天分别做多少个?设甲,每天做x个,乙每天做y个,列出的方程组是()A.65304410x yx y⎩++⎧⎨==B.156304410x yx y⎨⎩++-⎧==C.65304410x yx y⎩+-⎧⎨==D.155304410x yx y⎨⎩+++⎧==9.如图所示是甲、乙两户居民家庭全年支出费用的扇形统计图,根据统计图,下面对全年食品支出费用判断正确的是()A.甲户比乙户多B.乙户比甲户多C.甲、乙两户一样多D.无法确定哪一户多10.如果点M在y轴的左侧,且在x轴的上侧,到两坐标轴的距离都是1,则点M的坐标为()A.(-1,2)B.(-1,-1)C.(-1,1)D.(1,1)11.关于x的方程5x+12=4a的解都是负数,则a的取值范围()A.a>3 B.a<-3 C.a<3 D.a>-312.解方程组278ax bycx y-⎨⎩+⎧==时,正确的解是32xy-⎧⎨⎩==,由于看错了系数c得到的解是22xy⎩-⎧⎨==,则a+b+c的值是()A.5 B.6 C.7 D.无法确定二、填空题:本大题共6小题,每小题3分,共18分,请将答案直接填在题中横线上.13.如图,已知直线AB∥CD,∠1=50°,则∠2=(1)这天共销售了多少个粽子?(2)销售B品牌粽子多个个?并补全图1中的条形图;(3)求出A品牌粽子在图2中所对应的圆心角的度数;(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.参考答案及试题解析1.【分析】根据平行线的判定方法可以一一证明①、②、③、④都能判断a∥b.【解答】解:∵∠1=∠2,∴a∥b,故①正确.∵∠3=∠6,∠3=∠5,∴∠5=∠6,∴a∥b,故②正确,∵∠4+∠7=180°,∠4=∠6,∴∠6+∠7=180°,∴a∥b,故③正确,∵∠5+∠8=180°,∠5=∠3,∠8=∠2,∴∠2+∠3=180°,∴a∥b,故④正确,故选:D.【点评】本题考查平行线的判定,记住同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行,解题的关键是搞清楚同位角、内错角、同旁内角的概念,属于中考常考题型.2.【分析】根据二次根式的性质即可求出答案【解答】解:(B)原式=B错误;(C)原式=16,故C错误;(D)原式=-1625故D错误;故选:A.【点评】本题考查二次根式的性质,解题的关键熟练运用二次根式的性质,本题属于基础题型.3.【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【解答】解:因为点(-1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4【分析】先观察两方程的特点,因为y的系数互为相反数,x的系数相同,故用加减消元法比较简单.【解答】解:∵两方程中y的系数互为相反数,x的系数相同,∴用加减消元法比较简单.故选:B.【点评】本题考查的是解二元一次方程的加减消元法和代入消元法,当两方程中相同的未知数的系数相等或互为相反数时用加减消元法解方程比较简单.5.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:2130xx≤⋯+≥⎨⋯⎧⎩①②,解①得x≤12,解②得x≥-3.则不等式组的解集是:-3≤x≤12.则整数解是-3,-2,-1,0共有4个.故选:D.【点评】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.6.【分析】总体:所要考察对象的全体;个体:总体的每一个考察对象叫个体;样本:抽取的部分个体叫做一个样本;样本容量:样本中个体的数目.【解答】解:A、75000名学生的视力情况是总体,故错误;B、1000名学生的视力情况是总体的一个样本,正确;C、每名学生的视力情况是总体的一个个体,故错误;D、上述调查是抽样调查,故错误;故选:B.【点评】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.7.【分析】利用不等式的性质分别判断后即可确定正确的选项.【解答】解:①若a>b,则a+1>b+1,正确;②若a>b,则a-c>b-c,正确;③若a>b,则-2a<-2b,正确;④若a>b,则ac>bc当c≤0时错误.其中正确的个数是3个,故选:C.【点评】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.8.【分析】此题中的等量关系有:①甲先做一天,乙再开始做5天后两人做的零件一样多;②甲先做30个,乙再开始做,4天后乙反比甲多做10个.【解答】解:设甲,每天做x 个,乙每天做y 个,根据题意.列方程组为65304410x y x y ⎩+-⎧⎨==. 故选:C .【点评】此题考查方程组问题,找准等量关系是解决应用题的关键,正确理解题意中的数量关系.9. 【分析】根据扇形图的定义,本题中的总量不明确,所以在两个图中无法确定哪一户多.【解答】解:因为两个扇形统计图的总体都不明确,所以A 、B 、C 都错误,故选:D .【点评】本题考查的是扇形图的定义.利用圆和扇形来表示总体和部分的关系用圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图.10. 【分析】先判断出点M 在第二象限,再根据点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度解答.【解答】解:∵点M 在y 轴的左侧,且在x 轴的上侧,∴点M 在第二象限,∵点M 到两坐标轴的距离都是1,∴点M 的横坐标为-1,纵坐标为1,∴点M 的坐标为(-1,1).故选:C .【点评】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的关键.11. 【分析】本题首先要解这个关于x 的方程,求出方程的解,根据解是负数,可以得到一个关于a 的不等式,就可以求出a 的范围.【解答】解:解关于x 的方程得到:x=4125a -,根据题意得: 4125a -<0,解得a <3. 故选:C .【点评】本题是一个方程与不等式的综合题目.解关于x 的不等式是本题的一个难点.12.【分析】根据方程的解的定义,把32xy-⎧⎨⎩==代入ax+by=2,可得一个关于a、b的方程,又因看错系数c解得错误解为22xy⎩-⎧⎨==,即a、b的值没有看错,可把解为22xy⎩-⎧⎨==,再次代入ax+by=2,可得又一个关于a、b的方程,将它们联立,即可求出a、b的值,进而求出c的值【解答】解:∵方程组278ax bycx y-⎨⎩+⎧==时,正确的解是32xy-⎧⎨⎩==,由于看错了系数c得到的解是22xy⎩-⎧⎨==,∴把32xy-⎧⎨⎩==与22xy⎩-⎧⎨==代入ax+by=2中得:322222a ba b⎧+⎨⎩--=①=②,①+②得:a=4,把a=4代入①得:b=5,把32xy-⎧⎨⎩==代入cx-7y=8中得:3c+14=8,解得:c=-2,则a+b+c=4+5-2=7;故选:C.【点评】此题实际上是考查解二元一次方程组的能力.本题要求学生理解方程组的解的定义,以及看错系数c的含义:即方程组中除了系数c看错以外,其余的系数都是正确的.13.【分析】先根据对顶角相等求出∠1的对顶角的度数,再根据两直线平行同位角相等即可得∠2的度数.【解答】解:如图,∵∠3=∠1=50°,又AB∥CD,∴∠2=∠3=50°.故答案为:50°.【点评】本题主要考查了平行线的性质,正确观察图形,熟练掌握平行线的性质和对顶角相等是解决此类问题的关键.14. 【分析】因为二次根式的被开方数2x+3是非负数.所以根据2x+3≥0来求x 的取值范围即可.【解答】解:根据题意,知当被开方数2x+3≥0,即x≥-32故答案是:≥-32. 【点评】本题考查了二次根式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15. 【分析】将x=2,y=1代入方程组求出m 与n 的值,即可确定出所求式子的值.【解答】解:将x=2,y=1代入方程组得:412211m n ⎨-+⎩+⎧==, 解得:m=-1,n=0,则(m+n )2016=(-1)2016=1.故答案为:1【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值,熟练掌握方程组的解是解题的关键.16. 【分析】根据不等式的性质可得a -3<0,由此求出a 的取值范围.【解答】解:∵(a -3)x >1的解集为x <13a -, ∴不等式两边同时除以(a -3)时不等号的方向改变,∴a -3<0,∴a <3.故答案为:a <3.【点评】本题考查了不等式的性质:在不等式的两边同时乘以或除以同一个负数不等号的方向改变.本题解不等号时方向改变,所以a -3小于0.17.【分析】样本容量是一个样本包括的个体数量,根据定义即可解答.【解答】解:样本容量是600.故答案是600.【点评】本题考查了样本容量的定义,样本容量是一个样本包括的个体数量,样本容量没有单位.18.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:解不等式①得x≥a,解不等式②得x<2,因为不等式组有5个整数解,则这5个整数是1,0,-1,-2,-3,所以a的取值范围是-4<a≤-3.【点评】正确解出不等式组的解集,确定a的范围,是解决本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:(1)原式=0.2-2-12=-2.3;(2)原式A.x=-1 B.-6 C.-19D.-92.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.若a>b,则下列各式中正确的是()A.a-c<b-c B.ac>bcC.-a bc c<(c≠0)D.a(c2+1)>b(c2+1)A.1 B.2 C.3 D.45.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=100°,∠CDE=15°,则∠DEF的度数是()A.110°B.115°C.120°D.125°6.已知21xy-⎧⎨⎩==是二元一次方程组531ax byax by+-⎧⎨⎩==的解,则2a+b的值为()A.3 B.4 C.5 D.6 7.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是()A.52<x<5B.0<x<2.5 C.0<x<5 D.0<x<108.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形9.若四边形ABCD中,∠A:∠B:∠C=1:2:5,且∠C=150°,则∠D的度数为()A.90°B.105°C.120°D.135°10.如图,将正方形纸片ABCD折叠,使点D落在边AB上的D'处,点C落在C'处,若∠AD'M=50°,则∠MNC'的度数为()A.100°B.110°C.120°D.130°二、填空题(每小题3分,共15分)11.若一个多边形的每个外角都等于30°,则这个多边形的边数为12.我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有只,兔有只.13.如图,一副三角尺△ABC 与△ADE 的两条斜边在一条直线上,直尺的一边GF ∥AC ,则∠DFG 的度数为 .14.若不等式组5512x x x m ⎨⎩++-⎧<>的解集是x >1,则m 的取值范围是 15.如图是由四块长方形纸片和一块正方形纸片拼成一个大正方形.已知其中的两块,一块长为5cm ,宽为2cm ;一块长为4cm ,宽为1cm ,则大正方形的面积为 cm 2.22.张师傅在铺地板时发现:用8个大小一样的长方形瓷砖恰好可以拼成一个大的长方形(如图①),然后,他用这8块瓷砖七拼八凑,又拼出了一个正方形,中间还留下一个边长为3的小正方形(阴影部分),请你根据提供的信息求出这些小长方形的长和宽.23.如图,点D、E分别是等边三角形ABC的边BC、AC上的点,连接AD、BE交于点O,且△ABD≌△BCE.(1)若AB=3,AE=2,则BD= ;(2)若∠CBE=15°,则∠AOE= ;(3)若∠BAD=a,猜想∠AOE的度数,并说明理由.参考答案与试题解析1.【分析】方程x系数化为1,即可求出解.【解答】解:方程-13x=3,解得:x=-9,故选:D.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形但不是中心对称图形,故本选项正确;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项错误.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】根据不等式的性质对各选项分析判断即可得解.【解答】解:A、根据不等式的基本性质1,A选项结论错误,不符合题意;B、因为c可正可负可为0,所以无法判断ac和bc的大小关系,B选项结论错误,不符合题意;C、因为c可正可负,所以无法判断两者的大小关系,C选项结论错误,不符合题意;D、因为c2+1>0,所以根据不等式的基本性质2,D选项结论正确,符合题意;故选:D.【点评】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.【分析】①移项注意符号变化;②去分母后,x-1=3,x=4,中间的等号应为逗号,故错误;③去分母后,注意符号变化.④去分母、去括号、移项、合并同类项、系数化为1,依此即可求解.【解答】解:①方程2x-1=x+1移项,得x=2,即3x=6,故错误;②方程13x-=1去分母,得x-1=3,解得:x=4,中间的等号应为逗号,故错误;③方程1-2142x x--=去分母,得4-x+2=2(x-1),故错误;④方程1210.50.2x x--+=去分母,得2(x-1)+5(2-x)=1,即2x-2+10-5x=1,是正确的.错误的个数是3.故选:C.【点评】本题主要考查解一元一次方程,注意移项去分母时的符号变化是本题解答的关键.5.【分析】直接利用平行线的性质结合三角形外角的性质得出答案.∴∠DFG=∠FGE+∠FEG=60°+45°=105°,故答案为:105°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.14.【分析】首先解每个不等式,然后根据不等式组的解集是x>1,即可得到一个关于m 的不等式,从而求解.【解答】解:5512x xx m⎧⎩-⎨++<①>②解①得x>1,解②得x>m+2,∵不等式组的解集是x>1,∴m+2≤1,解得m≤-1.故答案是:m≤-1.【点评】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.【分析】设大正方形的边长为x,则AB=x-1-2=x-3,BC=4+5-x=9-x,依据AB=BC,即可得到x的值,进而得出大正方形的面积.【解答】解:如图,设大正方形的边长为x,则AB=x-1-2=x-3,BC=4+5-x=9-x,∵AB=BC,∴x-3=9-x,解得x=6,∴大正方形的面积为36cm2.故答案为:36.【点评】本题主要考查了正方形与矩形的性质,解题时注意:正方形的四条边相等. 16. 【分析】(1)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解; (2)方程组利用加减消元法求出解即可. 【解答】解:(1)去分母得:4x-2-x-1=6, 移项合并得:3x=9, 解得:x=3; (2)32121x y x y -+-⎧⎨⎩=①=②,①+②×2得:5x=10, 解得:x=2,把x=2代入②得:y=-3, 则方程组的解为23x y -⎧⎨⎩==.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.17. 【分析】首先解每个不等式,然后确定两个不等式的解集的公共部分就是不等式组的解集.【解答】解:()3242532x x x -+⎧⎨≤+⎩<①②,解不等式①,得x <2. 解不等式②,得x≥-1.在同一条数轴上表示不等式①②的解集,如图:所以原不等式组的解集为-1≤x <2.【点评】本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 18. 【分析】(1)如图①,以点C 为对称中心画出△DEC ; (2)如图②,以AC 边所在的性质为对称轴画出△ADC ;(3)如图③,利用网格特点和和旋转的性质画出A 、B 的对应点D 、E ,从而得到△DEC ;21. 【分析】(1)根据题意结合每辆大客车的乘客座位数比小客车多17个以及师生共300人参加一次大型公益活动,分别得出等式求出答案;(2)根据(1)中所求,进而利用总人数为300+30,进而得出不等式求出答案. 【解答】解:(1)设每辆小客车的乘客座位数是x 个,大客车的乘客座位数是y 个,根据题意可得:1765300y x y x ⎨⎩-+⎧==,解得:1835x y ⎧⎨⎩==,答:每辆小客车的乘客座位数是18个,大客车的乘客座位数是35个;(2)设租用a 辆小客车才能将所有参加活动的师生装载完成,则 18a+35(11-a最新人教版七年级数学下册期末考试试题(答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求)1.P 点的坐标为(-5,3),则P 点在( )A .第一象限B .第二象限C .第三象限D .第四象限2.如果m <n ,那么下列各式一定正确的是( )A .m 2<n 2B .22m n > C .-m >-n D .m-1>n-13.下列调查中,适宜采用全面调查方式的是( )A .了解我市的空气污染情况B .对端午节期间市场上粽子质量情况的调查C .了解全班同学每天做家庭作业的时间D .考查某类烟花爆竹燃放安全情况4.将某图形的各顶点的横坐标保持不变,纵坐标减去3,可将该图形( )A .横向向右平移3个单位B .横向向左平移3个单位C .纵向向上平移3个单位D .纵向向下平移3个单位5.用加减消元法解方程组235321x y x y -⎩-⎧⎨=①=②,下列解法错误的是( ) A .①×2-②×(-3),消去y B .①×(-3)+②×2,消去x C .①×2-②×3,消去yD .①×3-②×2,消去x6.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是( )A .条形图B .折线图C .扇形图D .直方图7.如图,已知AB ∥CD ,∠BAD=100°,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠ABC=80°D .∠ADC=80°A .B .C .D .A.1 B.-1 C.2 D.-210.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第二次将点A向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,按照这种移动规律移动下去,第n次移动到点A n,如果点A n与原点的距离不小于20,那么n的最小值是()A .12 B.13 C.14 D.15二、填空题(本大题共8个小题,每小题3分,共24分)11.把方程2x-3y=x+2y改写成用含x的式子表示y的形式:.12.若2x+1和3-x是一个数的平方根,则x=13.为了考察某市初中3500名毕业生的数学成绩,从中抽取200份试卷,在这个问题中,样本容量是.14.已知A(a,0),B(-3,0)且AB=5,则a= .15.已知12xy⎧⎨⎩==是方程组221ax yx by++⎨⎩-⎧=,=的解,则a+b的值为.16.如意超市购进了一种蔬菜,进价是每千克2元,在加工和销售过程中估计有20%的蔬菜正常损耗,为避免亏本,超市应把售价至少定为元.17.如图,直线AB交CD于点O,OE平分∠BOC,OF 平分∠BOD,∠AOC=3∠COE,则∠AOF等于.18.不等式组1313xxx m-⎪⎩-+⎧⎪⎨<<有3个整数解,则m的取值范围是.三、解答题(本大题共6个小题,共46分)解:∵∠1+∠2=180°,(已知)∴ ∥ .( ) ∴∠B=∠DEC .( ) ∵∠B=∠3,(已知) ∴ ∴AD ∥BC ,( )∴ (两直线平行,同旁内角互补) ∵∠BCD=80°,∴∠ADC=.22.某校为了解本校七年级学生的数学作业完成情况,将完成情况分为四个等级:随机对该年级若干名学生进行了调查,然后把调查结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:(1)共调查了多少名同学?补全条形统计图;(2)完成等级为C 等的对应扇形的圆心角的度数是 ;(3)该年级共有700人,估计该年级数学作业完成等级为D 等的人数.24.某工厂计划购进A 型和B 型两种型号的机床共10台,若购买A 型机床1台,B 型机床2台,共需40万元;购买A 型机床2台,B 型机床1台,共需35万元. (1)求购买A 型和B 型机床每台各需多少万元?(2)已知A 型和B 型机床每台每小时加工零件数分别为6个和10个.若该工厂购买A 型和B 型机床的总费用不超过122万元,且确保这10台机床每小时加工零件的总数不少于65个,则该工厂有哪几种购买机床方案?哪种购买方案总费用最少?最少总费用是多少?参考答案与试题解析1. 【分析】依据P 点的坐标为(-5,3),即可得到P 点在第二象限. 【解答】解:∵P 点的坐标为(-5,3), ∴P 点在第二象限, 故选:B .【点评】本题主要考查了点的坐标,解题时注意:第二象限的点的符号特点为(-,+). 2. 【分析】利用不等式的性质对各选项进行判断即可. 【解答】解:如果m <n ,那么m 2<n 2不一定成立; 如果m <n ,那么22m n<,-m >-n ,m -1<n -1. 故选:C .【点评】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.3.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A.了解我市的空气污染情况,适合抽样调查;B.对端午节期间市场上粽子质量情况的调查,适合抽样调查;C.了解全班同学每天做家庭作业的时间,适合全面调查;D.考查某类烟花爆竹燃放安全情况,适合抽样调查;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.【分析】根据向下平移,纵坐标减,横坐标不变解答.【解答】解:∵某图形的各顶点的横坐标保持不变,纵坐标减去3,∴将该图形向下平移了3个单位.故选:D.【点评】本题考查了坐标与图形的变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.【分析】要加减消元,则要使相同未知数的系数相同,则要乘以未知数前系数的最小公倍数,而此题的最小公倍数是6,据此可解此题.【解答】解:A、①×2-②×(-3),相加才可消去y,不正确;B、①×(-3)+②×2,消去x,正确;C、①×2-②×3,消去y,正确;D、①×3-②×2,消去x,正确;故选:A.【点评】此题考查的是二元一次方程组的基本解法----加减消元法的运用,要使相同未知数的系数相同,则要乘以未知数前系数的最小公倍数,此题乘以的公倍数应该为6.6.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.【解答】解:根据题意,得要求直观反映空气的组成情况,即各部分在总体中所占的百分比,结合统计图各自的特点,应选择扇形统计图.故选:C.【点评】此题考查扇形统计图、折线统计图、条形统计图各自的特点.7.【分析】由平行线的性质得出∠ADC=80°;只有AD∥BC时,才有∠1=∠2,∠3=∠4,∠ABC=80°;即可得出结果.【解答】解:∵AB∥CD,∠BAD=100°,∴∠ADC=80°;只有AD∥BC时,才有∠1=∠2,∠3=∠4,∠ABC=80°;故选:D.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【解答】解:解不等式①,得:x<1,解不等式②,得:x≥-3,则不等式组的解集为-3≤x<1,将两不等式解集表示在数轴上如下:故选:C.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.【分析】由绝对值、算术平方根的非负性和已知条件可得2x+y-3=0,x-3y-5=0,构建二元一次方程组230350x yx y+---⎧⎨⎩==,解二元一次方程组得21xy-⎧⎨⎩==,最后可求出y x=1.【解答】,|x−3y−5|≥0,-3y-5|=0,。
七年级下册期末模拟数学质量检测试卷含答案[001]
![七年级下册期末模拟数学质量检测试卷含答案[001]](https://img.taocdn.com/s3/m/71c6db0166ec102de2bd960590c69ec3d5bbdb9e.png)
七年级下册期末模拟数学质量检测试卷含答案学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.下列运算正确的是( )A .a 2·a 3=a 6B .(a 2)3=a 5C .(2a )2=2a 2D .a 3÷a 2=a 2.如图,∠1和∠2不是同位角的是( )A .B .C .D .3.已知1x =是不等式20x b -<的解,b 的值可以是( )A .4B .2C .0D .2-4.若a b >,则下列不等式中不成立的是( )A .a 3b 3->-B .3a 3b ->-C .33a b >D .a b -<-5.如果关于x 的不等式组2243(2)x m x x -⎧⎪⎨⎪-≤-⎩的解集为1≥x ,且关于x 的方程1233m x x --=-有正整数解,则所有符合条件的整数m 的值有几个( )A .0个B .1个C .2个D .3个 6.给出下列四个命题,①多边形的外角和小于内角和;②如果a >b ,那么(a +b )(a -b )>0;③两直线平行,同位角相等;④如果a ,b 是实数,那么0()1a b +=,其中真命题的个数为( )A .1B .2C .3D .47.我们知道不存在一个实数的平方等于1-,即在实数范围内不存在x 满足21x =-.若我们规定一个新数“i ”,使其满足21i =-(即方程21x =-有一个根为i ).并且进一步规定:一切实数可以与新数进行四附运算,且原有运算律和运算法则仍然成立,于是有123243,1,(1),1x i i i i i i i i i i i i ==-=⋅=-⋅=-=⋅=-⋅=.那么23420222023i i i i i i ++++⋅⋅⋅++的值为( )A .0B .1-C .1D .i8.如图,某小区规划在边长为xm 的正方形场地上,修建两条宽为2m 的通道,其余部分种草,以下各选项所列式子不是计算通道所占面积的为( )A .2x+2x ﹣22B .x 2﹣(x ﹣2)2C .2(x+x ﹣2)D .x 2﹣2x ﹣2x+22二、填空题9.计算:﹣3x •2xy = .10.命题“如果a b =,那么22a b =”是______命题.(填“真”或“假”)11.一个多边形每个内角的大小都是其相邻外角大小的2倍,则这个多边形的边数是_____________.12.若x 2﹣ax ﹣1可以分解为(x ﹣2)(x +b ),则a =_____,b =_____.13.如果二元一次方程组13223ax by ax by -=⎧⎨+=⎩的解是54x y =⎧⎨=⎩,则a ﹣b =___ 14.如图,等腰△ABC 中,AB =AC =10,BC =12,点P 是底边BC 上一点,则AP 的最小值是________15.将正三角形、正方形、正五边形,按如图所示的位置摆放,且每一个图形的一个顶点都在另一个图形的一条边上,则123∠+∠+∠=__________度.16.如图,在△ABC 中,AD 是BC 边上的高,且ACB BAD ∠=∠,AE 平分∠CAD ,交BC 于点E .过点E 作EF ∥AC 分别交,AB AD 于点,F G ,则下列结论:①90BAC ∠=︒;②∠AEF =∠BEF ;③∠BAE =∠BEA ;④2B AEF ∠=∠;⑤∠CAD =2∠AEC ﹣180°.其中正确的有 ___.三、解答题17.计算:(1)()012320203π-+-+-. (2)()2243632a a a a ⋅+-. (3)()()()371x x x x +---.18.因式分解:(1)43269a b a b a b -+(2)n 2(m ﹣2)+4(2﹣m )19.解方程组:(1)3281x y y x +=⎧⎨=-⎩. (2)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩. 20.解不等式组:()30317x x x -<⎧⎨-≥-⎩,并把解集在数轴上表示出来.21.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠.(1)求证://AB CD ;(2)若80,30EHF D ∠=︒∠=︒,求BEM ∠的度数.22.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1) 求a 、b 的值;(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案.23.(发现问题)已知32426x y x y +=⎧⎨-=⎩①②,求45x y +的值. 方法一:先解方程组,得出x ,y 的值,再代入,求出45x y +的值.方法二:将①2⨯-②,求出45x y +的值.(提出问题)怎样才能得到方法二呢?(分析问题)为了得到方法二,可以将①m ⨯+②n ⨯,可得(32)(2)46m n x m n y m n ++-=+.令等式左边(32)(2)45m n x m n y x y ++-=+,比较系数可得32425m n m n +=⎧⎨-=⎩,求得21m n =⎧⎨=-⎩. (解决问题)(1)请你选择一种方法,求45x y +的值;(2)对于方程组32426x y x y +=⎧⎨-=⎩利用方法二的思路,求77x y -的值; (迁移应用)(3)已知1224327x y x y ≤+≤⎧⎨≤+≤⎩,求3x y -的范围. 24.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数; (3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF、EH相交于点H,满足13PFG MFG∠=∠,13BEH BEM∠=∠,设∠EMF=α,求∠H的度数(用含α的代数式表示).25.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .① 求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.【参考答案】一、选择题1.D解析:D【分析】根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.【详解】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.【点睛】本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.2.D解析:D【分析】根据同位角的定义,“在两条被截直线的同方,截线的同侧的两个角,即为同位角”直接分析得出即可.【详解】解:A 、∠1和∠2是同位角,故此选项不符合题意;B 、∠1和∠2是同位角,故此选项不符合题意;C 、∠1和∠2是同位角,故此选项不符合题意;D 、∠1和∠2不是同位角,故此选项符合题意;故选:D .【点睛】此题主要考查了同位角的定义,正确掌握同位角定义是解题关键.3.A解析:A【分析】把x 的值代入不等式,求出b 的取值范围即可得解.【详解】解:∵1x =是不等式20x b -<的解,∴20b -<,解得,2b >所以,选项A 符合题意,故选:A .【点睛】此题主要考查了不等式的解和解不等式,熟练掌握不等式的解是解答此题的关键. 4.B解析:B【详解】分析:根据不等式的性质,逐一判断即可.详解:根据不等式的性质1,不等式的两边同时减去-3,不等号的方向不变,故正确; 根据不等式的性质3,不等式的两边同乘以-3,不等号的方向改变,故不正确; 根据不等式的性质2,不等式的两边同时除以3,不等号的方向不变,故正确; 根据不等式的性质3,不等式的两边同乘以-1,不等号的方向改变,故正确.故选B.点睛:此题主要考查了不等式的性质,关键是熟记不等式的三条性质.不等式的性质1,不等式的两边同时加上或减去同一个数(式子),不等号的方向不变; 不等式的性质2,不等式的两边同乘以或除以同一个正数,不等号的方向不变;不等式的性质3,不等式的两边同乘以或除以同一个负数,不等号的方向改变.5.B解析:B【分析】表示出不等式组的解集,由已知解集确定出m 的范围,表示出方程的解,由方程的解为正整数,确定出整数m 的值即可.【详解】解:不等式组整理得:41≥+⎧⎨≥⎩x m x , 由不等式组的解集为x ≥1,得到m +4≤1,即m ≤-3,方程去分母得:m -1+x =3x -6, 解得:5+2=m x , 由方程有正整数解,故50+>m ,且5+m 能被2整除,∴m =-3,则符合条件的整数m 的值有1个.故选:B .【点睛】此题考查了一元一次不等式组的整数解,熟练掌握不等式组的解法是解本题的关键. 6.A解析:A【分析】根据多边形的内角和、不等式的性质、平行线的性质和零指数幂判断即可.【详解】解:①多边形的外角和不一定小于内角和,四边形的内角和等于外角和,原命题是假命题; ②如果0>a >b ,那么(a +b )(a -b )<0,原命题是假命题;③两直线平行,同位角相等,是真命题;④如果a ,b 是实数,且a +b ≠0,那么(a +b )0=1,原命题是假命题.故选:A .【点睛】本题考查了命题与定理的知识,解题的关键是了解多边形的内角和、不等式的性质、平行线的性质和零指数幂,难度较小.7.B解析:B【分析】把i+i2+i3+i4+…+i2022+i2023分成506组,根据i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1得到每组的和为0,从而得到原式的值.【详解】解:∵i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+4=1,∴i+i2+i3+i4+…+i2022+i2023=i+(-1)+(-i)+1+…+i+(-1)+(-i)=-1.故选:B.【点睛】本题考查了实数的运算:利用实数的运算法则解决新数运算.8.D解析:D【解析】试题分析:根据图示,可知通道所占面积是:2x+2x﹣22=4x﹣4.A、是表示通道所占面积,选项错误;B、x2﹣(x﹣2)2=x2﹣x2+4x﹣4=4x﹣4,故是表示通道所占面积,选项错误;C、2(x+x﹣2)=4x﹣4,是表示通道所占面积,选项错误;D、x2﹣2x﹣2x+22=4﹣4x≠4x﹣4,不是表示通道的面积,选项正确.故选D.二、填空题9.﹣6x2y【分析】根据单项式乘以单项式的法则即可求出答案.【详解】解:﹣3x•2xy=﹣3×2•(x•x)y=﹣6x2y.故答案为:﹣6x2y.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.10.真【分析】根据真假命题的概念直接进行解答即可.【详解】由a b =,则有22a b =,所以命题“如果a b =,那么22a b =”是真命题;故答案为:真.【点睛】本题主要考查命题,正确理解真假命题是解题的关键.11.6【详解】【考点】多边形的外角和公式、多边形的一个内角与其相邻外角的关系.【分析】先根据多边形的一个内角与其相邻外角互补以及一个多边形每个内角的大小都是其相邻外角大小的2倍,求出多边形的每一个外角都等于1180603︒︒⨯= .再根据多边形的外角和等于360°,可以求出多边形的边数是360606÷= .【解答】解:∵多边形的一个内角与其相邻外角互补以及一个多边形每个内角的大小都是其相邻外角大小的2倍,∴多边形的每一个外角都等于1180603︒︒⨯=, 多边形的外角和等于360°,∴这个多边形的边数是360606÷=故答案为:6.12.3212【分析】 根据因式分解的意义,把一个多项式转化成几个整式积的形式,可得答案.【详解】解:∵x 2﹣ax ﹣1=(x ﹣2)(x +b )=x 2+(b ﹣2)x ﹣2b ,∴﹣2b =﹣1,b ﹣2=﹣a ,b =12,a =32, 故答案为:32,12. 【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.13.0【分析】将x 和y 的值代入二元一次方程组,再解方程组即可得出答案.【详解】解:将54x y =⎧⎨=⎩代入方程组得:54115823a b a b -=⎧⎨+=⎩①②, 把②+①×2得2525a =,解得1a =把1a =代入① 解得1b =∴110a b -=-=故答案为:0.【点睛】本题考查的是二元一次方程组的解,将解代入方程组解方程组即可得出答案.14.B解析:8【分析】根据等腰三角形三线合一性质及垂线段最短性质,可得当点P 是底边BC 的中点时,AP 的值最小,在利用勾股定理解题即可.【详解】解:等腰△ABC 中,AB =AC =10,根据垂线段最短得,当点P 是底边BC 的中点时,AP 的值最小根据三线合一性质得, 1112622BP BC ==⨯= AP BP ⊥22221068AP AB BP ∴=-=-=故答案为:8.【点睛】本题考查等腰三角形、三线合一性质、垂线段最短、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键.15.102°【分析】根据领补角的定义、正多边形的内角和及三角形内角和进行求解即可.【详解】解:由题意得,如图所示,正五边形的每个内角为108°,正方形的每个内角为90°,正三角形的每个内角为6解析:102°【分析】根据领补角的定义、正多边形的内角和及三角形内角和进行求解即可.【详解】 解:由题意得,如图所示,正五边形的每个内角为108°,正方形的每个内角为90°,正三角形的每个内角为60°,所以2418010872∠+∠=︒-︒=︒,3618060120∠+∠=︒-︒=︒,151809090∠+∠=︒-︒=︒, 因为54+6180∠+∠∠=︒,所以可得1+2372+120+90180102∠∠+∠=︒︒︒-︒=︒. 故答案为102°.【点睛】本题主要考查三角形内角和、正多边形的内角,关键是根据图形得到角之间的等量关系,然后利用三角形内角和进行求解即可.16.①③④⑤【分析】证明即可判断①,根据平行线的性质,可得,判断与的大小关系即可判断②,根据三角形的外角性质可以判断③,根据平行线的性质以及角度的和差关系,证明即可判断④,根据三角形的外角性质可判断解析:①③④⑤【分析】证明90CAD BAD ∠+∠=︒即可判断①,根据平行线的性质,可得,AEF CAE FEB ACB ∠=∠∠=∠,判断CAE ∠与ACB ∠的大小关系即可判断②,根据三角形的外角性质可以判断③,根据平行线的性质以及角度的和差关系,证明CAD B ∠=∠即可判断④,根据三角形的外角性质可判断⑤.【详解】 ①AD 是BC 边上的高,90ADC ADB ∴∠=∠=︒90ACB CAD ∴∠+∠=︒,ACB BAD ∠=∠,90CAD BAD ∴∠+∠=︒即90BAC ∠=︒故①正确;②//AC EF,AEF CAE FEB ACB ∴∠=∠∠=∠CAE ∠与ACB ∠无法判断大小,故②不正确; ③ AE 平分∠CAD ,CAE DAE ∴∠=∠,ACB BAD ∠=∠,BAE BAD DAE ACB CAE ∴∠=∠+∠=∠+∠,BEA ACE CAE ∠=∠+∠,BAE BEA ∴∠∠=,④//AC EF ,CAE AEF ,2CAD CAE ∠=∠,2CAD AEF ∴∠=∠,90BAC ∠=︒,90ADC ∠=︒,9090CAD C B ∠=︒-∠=︒-∠,CAD B ∴∠=∠,∴2B AEF ∠=∠,故④正确; ⑤1902AEC EAD ADC CAD ∠=∠+∠=∠+︒, 2180AEC CAD ∴∠=∠+︒,即2180CAD AEC ∠=∠-︒,故⑤正确.综上所述,正确的有①③④⑤.故答案为:①③④⑤.【点睛】本题考查了平行线的性质,三角形外角性质,角平分线的定义,灵活运用以上知识是解题的关键.三、解答题17.(1)2;(2);(3)【分析】(1)根据负整数指数幂,零指数幂和绝对值的计算法则求解即可;(2)根据同底数幂乘法和幂的乘方,合并同类项的计算法则求解即可; (3)先计算多项式乘以多项式,单项解析:(1)2;(2)630a -;(3)213x --【分析】(1)根据负整数指数幂,零指数幂和绝对值的计算法则求解即可;(2)根据同底数幂乘法和幂的乘方,合并同类项的计算法则求解即可;(3)先计算多项式乘以多项式,单项式乘以多项式,然后合并同类项即可.【详解】解:(1)()012320203π-+-+- 12133=++ 2=;(2)()2243632a a a a ⋅+- 66632a a a =+-630a =-;(3)()()()371x x x x +---223721x x x x x =+---+213x =--.【点睛】本题主要考查了负整数指数幂,零指数幂,绝对值,整式的混合运算,同底数幂的乘法,幂的乘方和合并同类项,解题的关键在于能够熟练掌握相关知识进行求解.18.(1)(2)【分析】(1)先提取公因式 ,然后再利用完全平方公式进行分解即可;(2)先提取公因式 ,然后再利用平方差公式进行分解即可【详解】解:(1)=,=.(2)n2(m ﹣2)+4解析:(1)22(3)a b a -(2)(2)(2)(2)m n n --+【分析】(1)先提取公因式2a b ,然后再利用完全平方公式进行分解即可;(2)先提取公因式()2m - ,然后再利用平方差公式进行分解即可【详解】解:(1)43269a b a b a b -+=22(69)a b a a -+,=22(3)a b a -.(2)n 2(m ﹣2)+4(2﹣m ),=2(2)(4)m n --,=(2)(2)(2)m n n --+.【点睛】本题考查了因式分解,解题关键是掌握因式分解的顺序和方法,注意:因式分解要彻底. 19.(1);(2)【分析】(1)利用代入消元法可进行求解;(2)先把二元一次方程组进行化简,然后再利用加减消元进行求解即可.【详解】解:(1)把②代入①得:,解得:,把代入②得:,∴原方解析:(1)21x y =⎧⎨=⎩;(2)71x y =⎧⎨=⎩【分析】(1)利用代入消元法可进行求解;(2)先把二元一次方程组进行化简,然后再利用加减消元进行求解即可.【详解】解:(1)3281x y y x +=⎧⎨=-⎩①②把②代入①得:3228x x +-=,解得:2x =,把2x =代入②得:1y =,∴原方程组的解为21x y =⎧⎨=⎩; (2)6234()5()2x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩ 方程组化简得:53692x y x y +=⎧⎨-+=⎩①②②×5+①得:4646y =,解得:1y =,把1y =代入②得:7x =,∴原方程组的解为71x y =⎧⎨=⎩. 【点睛】本题主要考查二元一次方程组的解法,熟练掌握二元一次方程组的解法是解题的关键. 20.,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:,解不等式①,得:,解不等式②,得:,则不等解析:23x -≤<,数轴见解析【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:()30317x x x -<⎧⎪⎨-≥-⎪⎩①②,x<,解不等式①,得:3x≥-,解不等式②,得:2则不等式组的解集为23-≤<,x将不等式组的解集表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(1)见解析;(2)70°【分析】(1)根据同位角相等,两直线平行可得CE∥GF,再根据平行线的性质可得∠C =∠DGF,再等量代换可得∠DGF=∠EFG,进而证明AB∥CD;(2)结合(1)根解析:(1)见解析;(2)70°【分析】(1)根据同位角相等,两直线平行可得CE∥GF,再根据平行线的性质可得∠C=∠DGF,再等量代换可得∠DGF=∠EFG,进而证明AB∥CD;(2)结合(1)根据∠EHF=70°,∠D=30°,利用三角形内角和定理和平行线的性质即可求∠BEM的度数.【详解】(1)证明:∵∠CED=∠GHD,∴CE//GF,∴∠C=∠DGF,又∵∠C=∠EFG,∴∠DGF=∠EFG,AB CD;∴//(2)解:∵∠CED=∠GHD,∠GHD=∠EHF=80°,∴∠CED=80°,在CDE中,∠CED=80°,∠D=30°,∴∠C=180°﹣80°﹣30°=70°,∵AB∥CD,∴∠BEM=∠C=70°,答:∠BEM的度数为70°.【点睛】本题考查了平行线的判定与性质以及三角形的内角和,解决本题的关键是准确区分平行线的判定与性质,并熟练运用.22.(1);(2)有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器. (3)最省钱的方案是购买2 台甲种机器,8 台乙解析:(1)3018 ab=⎧⎨=⎩;(2)有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器. (3)最省钱的方案是购买2 台甲种机器,8 台乙种机器.【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得12 236 a ba b-=⎧⎨-=⎩,解得,3018ab=⎧⎨=⎩;(2)解:设买了x台甲种机器由题意得:30+18(10-x)≤216解得:x≤3∵x为非负整数∴x=0、1、2、3∴有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)解:由题意得:240+180(10-x)≥1890 解得:x≥1.5∴1.5≤x≤ 3∴整数 x =2 或 3当 x =2 时购买费用=30×2+18×8=204(元)当 x =3 时购买费用=30×3+18×7=216(元)∴最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.23.(1)2;(2)26;(3)【分析】(1)利用方法二来求的值;由题意可知;(2)先根据方法二的基本步骤求出,即可得;(3)通过方法二得出,再利用不等式的性质进行求解.【详解】解:(1)利解析:(1)2;(2)26;(3)3836x y -≤-≤-【分析】(1)利用方法二来求45x y +的值;由题意可知4524162x y +=⨯-⨯=;(2)先根据方法二的基本步骤求出15m n =-⎧⎨=⎩,即可得77(32)5(2)x y x y x y -=-++-; (3)通过方法二得出311(2)7(32)x y x y x y -=+-+,再利用不等式的性质进行求解.【详解】解:(1)利用方法二来求45x y +的值;由题意可知:2(32)(2)64245x y x y x y x y x y +--=+-+=+,即4524162x y +=⨯-⨯=;(2)对于方程组32426x y x y +=⎧⎨-=⎩①②, 由①m ⨯+②n ⨯可得:(32)(2)77m n x m n y x y ++-=-,则32727m n m n +=⎧⎨-=-⎩③④, 由③+2⨯④可得:77m =-,1m ∴=-,将1m =-代入④可得5n =,15m n =-⎧∴⎨=⎩, 则77(32)5(2)145626x y x y x y -=-++-=-⨯+⨯=;(3)已知1224327x y x y ≤+≤⎧⎨≤+≤⎩, 通过方法二计算得:311(2)7(32)x y x y x y -=+-+,又()()1111222,4973228x y x y ≤+≤-≤-+≤-,3836x y ∴-≤-≤-.【点睛】本题考查了二元一次方程的求解、代数式的求值、不等式的性质,解题的关键是理解材料中的方法二中的基本操作步骤.24.(1);(2);(3).【分析】(1)过点作,利用平行线的性质可得,,由,经过等量代换可得结论; (2)过作,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设,,则,,设交于.证明解析:(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论;(2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.25.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得,解析:(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去);当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去);综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.。
【压轴卷】七年级数学下期末一模试卷(附答案)(1)
![【压轴卷】七年级数学下期末一模试卷(附答案)(1)](https://img.taocdn.com/s3/m/97bad5a9941ea76e58fa0491.png)
【压轴卷】七年级数学下期末一模试卷(附答案)(1)一、选择题1.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°2.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b > 3.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为( )A .8374x y x y +=⎧⎨+=⎩B .8374x y x y -=⎧⎨-=⎩C .8374x y x y +=⎧⎨-=⎩D .8374x y x y -=⎧⎨+=⎩ 6.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)7.在实数0,-π,3,-4中,最小的数是()A.0B.-πC.3D.-48.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角9.如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.23D.3210.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是()A.(2,﹣1)B.(4,﹣2)C.(4,2)D.(2,0)11.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x +-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-1 12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤: ①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②二、填空题13.若264a =,则3a =______.14.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .15.如果一个数的平方根为a+1和2a-7, 这个数为 ________16.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.17.已知21x y =⎧⎨=⎩是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________ 18.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.19.如图,直线//a b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为______.20.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________. 三、解答题21.(1)计算:2020011(1)(2019)3sin 60()2π---+--+o (2)解不等式组:34223154x x x x +≥⎧⎪⎨+--≥⎪⎩①②,并求整数解。
【鲁教版】七年级数学下期末试题含答案(1)
![【鲁教版】七年级数学下期末试题含答案(1)](https://img.taocdn.com/s3/m/7b782e5469dc5022abea0063.png)
一、选择题1.下列事件为随机事件的是()A.367人中至少有2人生日相同B.打开电视,正在播广告C.没有水分,种子发芽D.如果a、b都是实数,那么+=+a b b a 2.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件3.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.04.如图,在33⨯的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中ABC是一个格点三角形,在这个33⨯的正方形格纸中,与ABC成轴对称的格点三角形最多有()A.3个B.4个C.5个D.6个5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分AFC的面积是()A.8 B.10 C.20 D.326.以下是某中学初二年级的学生在学习了轴对称图形之后设计的.下面这四个图形中,不是轴对称图形的是()A.B.C.D.7.已知三角形的一边长为8,则它的另两边长分别可以是()A.2,9 B.17,29 C.3,12 D.4,48.如图,△ACB≌△A′C B′,∠ACB=70°,∠ACB′=100°,则∠BCA′度数是()A.40°B.35 C.30°D.45°9.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是()A.4、5、6 B.3、4、5 C.2、3、4 D.1、2、310.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.6711.如图,直线AB,CD被直线EF所截,与AB,CD分别交于点E,F,下列描述:①∠1和∠2互为同位角②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是()A.①③B.②④C.②③D.③④12.利用图形中面积的等量关系可以得到某些数学公式.根据如图能得到的数学公式是()A.(a+b)(a-b)=a2-b2B.(a-b)2=a2-2ab+b2C.a(a+b)=a2 +ab D.a(a-b)=a2-ab二、填空题13.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).14.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为____.15.如图,∠AOB = 30°,点P 是∠AOB 内任意一点,且OP = 7,点E 和点F 分别是射线OA 和射线OB 上的动点,则△PEF 周长的最小值是______.16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在'D 、'C 的位置,并利用量角器量得66EFB ∠=︒,则'AED ∠等于__________度.17.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.18.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温提高8℃,烧了x 分钟后水壶的水温为y ℃,当水开时就不再烧了.(1)y 与x 的关系式为________,其中自变量是________,它应在________变化.(2)x=1时,y=________,x=5时,y=________.(3)x=________时,y=48.19.一个锐角的补角比它的余角的3倍少40︒,这个锐角的度数是______.20.将7张如图①所示的小长方形纸片按图②的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a,长为4a,则21=S S______(结果用含a的代数式表示).三、解答题21.(本题满分8分)“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:根据图表中提供的信息解答下列问题:(1)统计表中的a= _ ,b= _ ,c= _ ;(2)在扇形统计图中,A类所对应的圆心角是 _ 度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?22.如图,在网格中,每个小正方形的边长都为1,网格中有两个格点A、B和直线l,且AB长为3.6.(1)求作点A 关于直线l 的对称点1A .(2)P 为直线l 上一动点,在图中标出使AP BP +的值最小的P 点,且求出AP BP +的最小值?(3)求ABP ∆周长的最小值?23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.用一根长是20cm 的细绳围成一个长方形,这个长方形的一边的长为xcm ,它的面积为2ycm .(1)写出y 与x 之间的关系式,在这个关系式中,哪个是自变量?自变量的取值范围是怎样的?(2)在下面的表格中填上当x 从1变到9时(每次增加1),y 的相应值; ()x cm 1 2 3 4 5 6 7 8 9 ()2y cm (3)根据表格中的数据,请你猜想一下:怎样围才能使得到的长方形的面积最大?最大是多少?(4)请你估计一下:当围成的长方形的面积是222cm 时,x 的值应在哪两个相邻整数之间?25.如图,在线段MN 上求作一点P ,使∠APM =∠BPM ,(保留作图痕迹,不必写出作法与证明).26.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 367人中至少有2人生日相同 ,是必然事件,故A 不符合题意;B. 打开电视,正在播广告,是随机事件,故B 符合题意;C. 没有水分,种子发芽, 是不可能事件,故C 不符合题意;D. 如果a 、b 都是实数,那么+=+a b b a ,是必然事件,故D 不符合题意. 故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及概率定义分别进行分析,即可得出答案.【详解】A、打开电视机,正在播放《新闻联播》,这个事件可能发生,也可能不发生,是不确定事件,故本选项错误;B、两直线被第三条直线所截,同位角相等是不确定事件,故本选项错误;C、天气预报说“明天的降水概率为40%只是反映了事件发生的机会的大小,不是发生的时长,故本项错误;D、“篮球队员在罚球线上投篮一次,投中”为随机事件,故本选项正确.故选D.【点睛】本题考查了随机事件、全面调查与抽样调查、概率定义,解题关键是根据事件包括必然事件和不可能事件以及概率定义进行分析.3.C解析:C【解析】【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).4.D解析:D【分析】根据网格结构分别确定出不同的对称轴,然后作出成轴对称的三角形即可得解.【详解】解:与ABC成轴对称的格点三角形最多有6个.故答案为:D.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.5.B解析:B【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【详解】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB∥CD,∴∠ACD=∠CAB,∵△ACD′由△ACD翻折而成,∴∠ACD=∠ACD′,∴∠ACD′=∠CAB,∴AF=CF,∵BF=AB﹣AF=8﹣AF,∴CF2=BF2+BC2∴AF2=(8﹣AF)2+42∴AF=5,BF=3∴S△AFC=S△ABC﹣S△BFC=10.故选:B.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解题关键是熟练掌握图形折叠的性质.6.C解析:C【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:C.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.A解析:A【分析】根据三角形三边关系判断即可;【详解】9211+=>8,927-=<8,故A正确;-=>8,故B错误;+=>8,291712172946-=>8,故C错误;12315+=>8,1239+=,故D错误;448故答案选A.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.8.A解析:A【分析】根据已知ACB≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9.D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D、4+5>6,能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项错误;A、2+3>4,能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项正确;故选:D.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.11.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.12.B解析:B【分析】根据图形得出阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,即可得出选项.【详解】解:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选:B.【点睛】本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.随机【解析】【分析】根据必然事件不可能事件随机事件的概念必然事件指在一定条件下一定发生的事件可能事件是指在一定条件下一定不发生的事件不确定事件即随机事件是指在一定条件下可能发生也可能不发生的事件即可解析:随机【解析】【分析】根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答【详解】从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件【点睛】此题考查随机事件,难度不大14.【分析】可运用相似三角形的性质求出GFMN从而求出OFOM进而可求出阴影部分的面积【详解】解:如图∵GF∥HC∴△AGF∽△AHC∴∴同理MN=则有OM=故答案为:【点睛】本题主要考查了相似三角形的解析:1112【分析】可运用相似三角形的性质求出GF 、MN ,从而求出OF 、OM ,进而可求出阴影部分的面积. 【详解】 解:如图,∵GF ∥HC ,∴△AGF ∽△AHC ,∴1,2GF AG HC AH ⋅== ∴13,22GF HC == 312.22OF OG GF =-=-= 同理MN=23,则有OM=13 1111,22312OFM S ∆=⨯⨯= 1111.1212S =-=阴影 故答案为:1112 【点睛】本题主要考查了相似三角形的判定与性质、三角形的面积公式,求得△OFM 的面积是解决本题的关键.15.7【分析】设点P 关于OA 的对称点为C 关于OB 的对称点为D 当点EF 在CD 上时△PEF 的周长最小【详解】分别作点P 关于OAOB 的对称点CD 连接CD 分别交OAOB 于点EF 连接OPOCODPEPF ∵点P 关于解析:7【分析】设点P 关于OA 的对称点为C ,关于OB 的对称点为D ,当点E 、F 在CD 上时,△PEF 的周长最小.【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点E、F,连接OP、OC、OD、PE、PF.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PE=CE,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PF=DF,OP=OD,∠DOB=∠POB,∴OC=OD=OP=7,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=7.∴△PEF的周长的最小值=PE+EF+PF=CE+EF+DF≥CD=7.故答案为7.【点睛】此题主要考查轴对称−−最短路线问题,熟知两点之间线段最短是解答此题的关键.16.48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°再由折叠的性质可得∠DEF=∠DEF=66°则∠DED=132°然后再由邻补角的定义求解即可【详解】解:∵AD∥BC∴∠DEF=∠解析:48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°,再由折叠的性质可得∠D'EF=∠DEF=66°,则∠DED'=132°,然后再由邻补角的定义求解即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFB=66°,由折叠的性质可得∠D'EF=∠DEF=66°,∴∠DED'=132°,∴∠AED'=180°-132°=48°.故答案为48.【点睛】本题考查了折叠的性质,以及平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.17.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2n θ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= …… ∴∠A n =2nθ. 故答案为:4θ,2n θ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键.18.(1)y=8x+20x在0--10变化;(2)2860;(3)35【解析】试题分析:(1)由每分钟水温升高8℃结合冷水的温度为20℃即可得到与间的关系式;由题意可知:自变量是烧水的时间;由烧水时间从解析:(1)y=8x+20,x,在0--10变化;(2)28,60;(3)3.5【解析】试题分析:(1)由每分钟水温升高8℃结合冷水的温度为20℃即可得到y与x间的关系式;由题意可知:自变量是烧水的时间;由烧水时间从0开始,到水烧开停止结合前面所得关系式即可求出自变量的取值范围;(2)将x的取值代入(1)中所得关系式即可求得对应的y的值;(3)将48y=代入(1)中所得关系式解出对应的x的值即可.试题(1)根据题意,y=8x+20;∵水温是随着时间的变化而变化的,∴自变量是时间x ;∵当水温y=100时,水烧开了就不再烧了,∴8x+20=100,解得x=10,∴x的变化范围是0≤x≤10.(2)当x=1时, y=1×8+20=28;当x=5时,y=5×8+20=60;(3)把y=48代入y=8x+20得:8x+20=48,解得:x=3.5,∴当x=3.5时,y=48.19.【分析】设这个角为α根据余角的和等于90°补角的和等于180°表示出这个角的补角与余角然后根据题意列出方程求解即可【详解】解:设这个角为α则它的补角为180°-α余角为90°-α根据题意得180°-解析:25︒【分析】设这个角为α,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】解:设这个角为α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α)-40°,解得α=25°.故答案为:25°.【点睛】本题考查了余角与补角的定义,熟记“余角的和等于90°,补角的和等于180°”是解题的关键.20.【分析】可设长方形ABCD的长为m分别求出S1S2再代入S2-S1计算即可求解【详解】解:设长方形ABCD的长为m则S2-S1=(m-3a)×4a-(m-4a)×4a=4ma-12a2-4am+16解析:24a【分析】可设长方形ABCD的长为m,分别求出S1,S2,再代入S2-S1计算即可求解.【详解】解:设长方形ABCD的长为m,则S2-S1=(m-3a)×4a-(m-4a)×4a=4ma-12a2-4am+16a2×=4a2.故答案为:4a2.【点睛】本题考查了列代数式和整式的运算,关键是熟练掌握长方形的面积公式,准确的进行整式计算.三、解答题21.(1)5,0.20,0.24;(2)72°;(3)60.【解析】试题分析:(1)根据总的监测点个数为25,即可求出第5个组别的频率;已知各个组别的频数,即可求出a的值,继而求出该组别的频数;(2)A类所对应的圆心角=A类的频率×360°;(3)PM2.5日平均浓度值符合安全值的城市的个数=100×PM2.5日平均浓度值符合安全值的城市的频率.试题(1)a=25﹣(2+3+5+6+4)=5,b=525=0.20,c=625=0.24;故答案为:5,0.20,0.24;(2)A类所对应的圆心角=(0.08+0.12)×360°=72°;故答案为:72°;(3)∵100×(0.08+0.12+0.20+0.20)=60个,∴PM2.5日平均浓度值符合安全值的城市的个数约为60个.考点:1.频数(率)分布表;2.用样本估计总体;3.扇形统计图.22.(1)见解析;(2)点P位置见解析,最小值为5;(3)8.6【分析】(1)根据题意作图即可(2)连接BA1交直线l于点P,由两点间,线段最短即可确定点P的位置(3)由(2)中求得点P的位置,即可得AB+AP+BP=AB+A1P+BP=AB+A1B【详解】(1)如图,点A1即为所作点A关于直线l的对称点(2)连接BA1交直线l于点P,连接AB,AP,则AP=A1P,由两点之间,线段最短可知,AP BP +最短值为5,(3)由(2)可知,点P 即可使△ABP 最小的位置故△ABP 周长的最小值为AB+AP+BP=AB+A 1P+BP=3.6+A 1B=3.6+5=8.6【点睛】此题考查轴对称变换的作图及两点间线段最短的问题,解题关键在于掌握通过轴对称建立最短路径进行解题.23.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO ≅ΔDFO (AAS ),∴OB=OF ,∴点O 为BF 中点 .【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键. 24.(1)y=210x x -,x 是自变量,010x <<;(2)见解析;(3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为225cm ;(4)当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间.【分析】(1)根据周长的等量关系可得长方形的另一边为10-x ,那么面积=x (10-x ),自变量是x ,取值范围是0<x <10;(2)把相关x 的值代入(1)中的函数解析式求值即可;(3)根据表格可得x 为5时,y 的值最大;(4)观察表格21<y <24时,对应的x 的取值范围即为所求.【详解】(1)(202)y x x =÷-2(10)10x x x x =-=-.x 是自变量,010x <<. (2)当x 从1变到9时(每次增加1),y 的相应值列表如下()x cm 1 23 4 5 6 7 8 9 ()2y cm 916 21 24 25 24 21 16 9 (3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为25cm .(4)由表格可知,当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间.【点睛】本题考查了变量与函数,函数的表示方法,求函数值等知识.用到的知识点为:长方形的长与宽的和等于周长的一半;长方形的面积等于长×宽.25.见解析【分析】作点B 关于直线MN 的对称点B ′,作直线AB′交MN 于点P ,连接BP ,点P 即为所求.【详解】解:如图,点P 即为所求.【点睛】本题考查作图−基本作图,解题的关键是理解题意,灵活运用所学知识解决问题.26.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除 ∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.。
七年级下学期数学期末考试试卷(含答案)
![七年级下学期数学期末考试试卷(含答案)](https://img.taocdn.com/s3/m/5a4257a6e009581b6bd9eb57.png)
第1页,总10页…………○…………外…………○…………装…………○…………订…………○…………线…………○……姓名:____________班级:____________学号:___________…………○…………内…………○…………装…………○…………订…………○…………线…………○……七年级下学期数学期末考试试卷考试时间:**分钟 满分:**分姓名:____________班级:____________学号:___________题号 一 二 三 四 五 总分 核分人 得分注意事项:1、填写答题卡的内容用2B铅笔填写2、提前 15 分钟收取答题卡第Ⅰ卷 客观题第Ⅰ卷的注释评卷人得分一、单选题(共8题)1. 下列计算正确的是( ) A .=±4 B . ±=3 C .=﹣3 D . ()2=32. -8的立方根是( ) A . B .C .D .3. 下面四个图形中, 与是对顶角的是( )A.B.C.D.4. 下列调查中,最适宜采用全面调查的是( )A . 对我国初中学生视力状况的调查B . 对某班同学一分钟跳绳次数的调查C . 对一批节能灯管使用寿命的调查D . 对珠江现有鱼数量的调查5. 已知a <b,下列不等式变形中正确的是( ) A . a -2>b -2 B . C . 3a+1>3b+1 D . -2a>-2b6. 把方程 改写成用含 的式子表示y 的形式,正确的是( )A .B .C .D .7. 如果点P (m+3,m+1)在平面直角坐标系的x 轴上,则m=( )A . 0B . -1C . -2D . 38. 已知关于x 、y 的二元一次方程组 满足x=y ,则k 的值为( )A . -1B . 0C . 1D . 2第Ⅱ卷 主观题第Ⅱ卷的注释评卷人得分一、填空题(共6题)1. 比较大小:2 (填“﹤”,“=”,“﹥”).2. 一个容量为60的样本最大值为134,最小值为60,取组距为10,则可以分成 组.3. 关于x 的不等式12-6x≥0的正整数解的和是 .4. 已知二元一次方程组2x -3y -5=0的一组解为,则2a -9=5. 如图,有一张四边形纸片ABCD ,AD∥BC ,将它沿GH 折叠,点C 落Q 处,点D 落在AB 边上的点E 处,若∥GHC=110°,则∥AGE 等于6. 如图,正方形 的各边分别平行于 轴或 轴,蚂蚁甲和蚂蚁乙都由点 出发,同时沿正方形 的边作环绕运动,蚂蚁甲按顺时针方向以3个单位长度秒的速度作匀速运动,蚂蚁乙按逆时针方向以1个单位长度/秒的速度作匀速运动,则两只蚂蚁出发后的第3次相遇点的坐标是 .答案第2页,总10页……○…………外…………○…………装…………○…………订…………○…………线…………○………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………评卷人得分二、计算题(共2题)7. 计算:8. 解不等式组: .评卷人得分三、解答题(共1题)9. 如图,8块相同的小长方形恰好拼成一个大的长方形,若小长方形的周长为16厘米.每块小长方形的长和宽分别是多少厘米?评卷人得分四、综合题(共6题)10. 如图,三个顶点分别是.将向下平移4个单位长度,解答下列问题。
【必考题】七年级数学下期末试题及答案(1)
![【必考题】七年级数学下期末试题及答案(1)](https://img.taocdn.com/s3/m/dfe62876f8c75fbfc67db296.png)
【必考题】七年级数学下期末试题及答案(1)一、选择题1.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A .(-2,-3) B .(-2, 3) C .(2, 3) D .(-3, 2) 2.116的平方根是( ) A .±12B .±14C .14D .123.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩4.2-的相反数是( )A .2-B .2C .12D .12-5.如图,在平面直角坐标系xOy 中,点P(1,0).点P 第1次向上跳动1个单位至点P 1(1,1),紧接着第2次向左跳动2个单位至点P 2(﹣1,1),第3次向上跳动1个单位至点P 3,第4次向右跳动3个单位至点P 4,第5次又向上跳动1个单位至点P 5,第6次向左跳动4个单位至点P 6,….照此规律,点P 第100次跳动至点P 100的坐标是( )A .(﹣26,50)B .(﹣25,50)C .(26,50)D .(25,50)6.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b=⎧⎨=⎩,则a 、b 分别为( )A .a=8,b=﹣2B .a=8,b=2C .a=12,b=2D .a=18,b=87.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3C .a =-2,b =3D .a =-2,b =18.16的平方根为( )A .±4B .±2C .+4D .29.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A .1个B .2个C .3个D .4个 10.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°11.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②二、填空题13.如果不等式组213(1)x x x m ->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____14.如图5-Z -11是一块长方形ABCD 的场地,长AB =102 m ,宽AD =51 m ,从A ,B 两处入口的中路宽都为1 m ,两小路汇合处路宽为2 m ,其余部分种植草坪,则草坪的面积为________m 2.15.已知点P (3﹣m ,m )在第二象限,则m 的取值范围是____________________. 16.为了了解某商品促销广告中所称中奖率的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是______.17.如果方程组23759x y x y +=⎧⎨-=⎩,的解是方程716x my +=的一个解,则m 的值为____________.18.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.19.在平面直角坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是________.20.比较大小:23________13.三、解答题21.某运输公司现将一批152吨的货物运往A ,B 两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A ,B 两地的运费如下表所示: 目的地(车型) A 地(元/辆) B 地(元/辆) 大货车 800 900 小货车400600(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)(2)现安排其中的10辆货车前往A 地,其余货车前往B 地,设前往A 地的大货车为x 辆,前往A ,B 两地总费用为w 元,试求w 与x 的函数解析式.22.如图,在平面直角坐标系xOy 中,点A (a ,0),B (c ,c ),C (0,c ),且满足2(8)c 40a +++=,P 点从A 点出发沿x 轴正方向以每秒2个单位长度的速度匀速移动,Q 点从O 点出发沿y 轴负方向以每秒1个单位长度的速度匀速移动. (1)直接写出点B 的坐标,AO 和BC 位置关系是;(2)当P 、Q 分别是线段AO ,OC 上时,连接PB ,QB ,使2PAB QBC S S ∆∆=,求出点P 的坐标;(3)在P 、Q 的运动过程中,当∠CBQ =30°时,请探究∠OPQ 和∠PQB 的数量关系,并说明理由.23.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=o ,60B ∠=o ,45D E ∠=∠=o .(1)若150BCD =o ∠,求ACE ∠的度数;(2)试猜想BCD ∠与ACE ∠的数量关系,请说明理由;(3)若按住三角板ABC 不动,绕顶点C 转动三角板DCE ,试探究BCD ∠等于多少度时,CD AB P ,并简要说明理由.24.如图①,已知AB ∥CD ,点E 、F 分别是AB 、CD 上的点,点P 是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E 作射线EH 交CD 于点N ,作射线FI ,延长PF 到G ,使得PE 、FG 分别平分∠AEH 、∠DFl ,得到图②.(1)在图①中,过点P 作PM ∥AB ,当α=20°,β=50°时,∠EPM= 度,∠EPF= 度;(2)在(1)的条件下,求图②中∠END 与∠CFI 的度数; (3)在图②中,当FI ∥EH 时,请直接写出α与β的数量关系.25.把一堆书分给几名学生,如果每人分到 4 本,那么多 4 本;如果每人分到 5 本,那么最 后 1 名学生只分到 3 本.问:一共有多少名学生?多少本书?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.2.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】14,14的平方根是12±,12±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.3.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x,y满足254()0x y x y+-+-=,∴40x y+-=且2()0x y-=,即40x yx y+-=⎧⎨-=⎩,解得:22xy=⎧⎨=⎩,故选C.【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.4.B解析:B 【解析】 【分析】根据相反数的性质可得结果. 【详解】因为-2+2=0,所以﹣2的相反数是2, 故选B . 【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .5.C解析:C 【解析】 【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数).故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50. 故选:C . 【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.6.C解析:C 【解析】试题解析:将x=5,y=b 代入方程组得:10{53b ab +=-=, 解得:a=12,b=2, 故选C .考点:二元一次方程组的解.7.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.8.A解析:A【解析】【分析】根据平方根的概念即可求出答案.【详解】∵(±4)2=16,∴16的平方根是±4.故选A.【点睛】本题考查了平方根的概念,属于基础题型.9.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.10.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x<2从而得出关于m的不等式解不等式即可【详解】解:解第一个不等式得x<2∵不等式组的解集是x<2∴m≥2故答案为m≥2【点睛】本题是已知解析:m≥2.【解析】【分析】先解第一个不等式,再根据不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,从而得出关于m的不等式,解不等式即可.【详解】解:解第一个不等式得,x<2,∵不等式组()2131x x x m⎧->-⎨<⎩的解集是x <2,∴m ≥2, 故答案为m ≥2. 【点睛】本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.14.5000【解析】试题解析:由图片可看出剩余部分的草坪正好可以拼成一个长方形且这个长方形的长为102−2=100m 这个长方形的宽为:51−1=50m 因此草坪的面积故答案为:5000解析:5000 【解析】试题解析:由图片可看出,剩余部分的草坪正好可以拼成一个长方形, 且这个长方形的长为102−2=100m , 这个长方形的宽为:51−1=50m , 因此,草坪的面积2501005000m .=⨯= 故答案为:5000.15.m>3【解析】试题分析:因为点P 在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3. 【解析】试题分析:因为点P 在第二象限,所以,30{0m m -<>,解得:考点:(1)平面直角坐标;(2)解不等式组16.抽样调查【解析】【分析】根据抽样调查的定义可直接得到答案【详解】为了了解某商品促销广告中所称中奖的真实性某人买了100件该商品调查其中奖率那么他采用的调查方式是抽样调查故答案为抽样调查【点睛】本题主解析:抽样调查 【解析】 【分析】根据抽样调查的定义可直接得到答案. 【详解】为了了解某商品促销广告中所称中奖的真实性,某人买了100件该商品调查其中奖率,那么他采用的调查方式是抽样调查, 故答案为抽样调查. 【点睛】本题主要考查了抽样调查的定义,从若干单位组成的事物总体中,抽取部分样本单位来进行调查、观察,这种调查方式叫抽样调查.17.2【解析】分析:求出方程组的解得到x与y的值代入方程计算即可求出m 的值详解:①+②×3得:17x=34即x=2把x=2代入①得:y=1把x=2y=1代入方程7x+my=16得:14+m=16解得:m解析:2【解析】分析:求出方程组的解得到x与y的值,代入方程计算即可求出m的值.详解:23759x yx y+=⎧⎨-=⎩①②,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m=2,故答案为:2.点睛:此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.18.【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度可得答案【详解】解:∵PB⊥lPB=5cm∴P到l的距离是垂线段PB的长度5cm故答案为:5【点睛】本题考查了点到直线的距离的定解析:【解析】【分析】根据点到直线的距离是直线外的点到这条直线的垂线段的长度,可得答案.【详解】解:∵PB⊥l,PB=5cm,∴P到l的距离是垂线段PB的长度5cm,故答案为:5.【点睛】本题考查了点到直线的距离的定义,熟练掌握是解题的关键.19.(±30)【解析】解:若x轴上的点P到y轴的距离为3则∴x=±3故P的坐标为(±30)故答案为:(±30)解析:(±3,0)【解析】解:若x轴上的点P到y轴的距离为3,则3x=,∴x=±3.故P的坐标为(±3,0).故答案为:(±3,0).20.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴三、解答题21.(1)中大货车用8辆,小货车用7辆;(2)w =100x +9400(3≤x ≤8,且x 为整数).【解析】【分析】(1)根据表格列出二元一次方程,再根据二元一次方程的解法计算即可.(2)根据费用的计算,列出费用和大货车x 的关系即可.【详解】(1)设大货车用x 辆,小货车用y 辆,根据题意得:15128152x y x y +=⎧⎨+=⎩, 解得:87x y =⎧⎨=⎩. 故这15辆车中大货车用8辆,小货车用7辆.(2)设前往A 地的大货车为x 辆,前往A ,B 两地总费用为w 元,则w 与x 的函数解析式:w =800x +900(8﹣x )+400(10﹣x )+600[7﹣(10﹣x )]=100x +9400(3≤x ≤8,且x 为整数).【点睛】本题主要考查二元一次方程组的应用,关键在于设出合适的未知数,再根据条件列出方程.22.(1)(-4,-4) ,BC ∥AO ;(2)P (−4,0);(3)∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【解析】【分析】(1)由2(8)0a +=解出c ,得到B 点,易知BC ∥AO ;(2)过B 点作BE ⊥AO 于E ,设时间经过t 秒,AP =2t ,OQ =t ,CQ =4-t ;用t 表示出PAB S ∆与QBC S ∆,根据2PAB QBC S S ∆∆=列出方程解出t 即可;(3)要分情况进行讨论,①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图1所示,利用平行线的性质可得到∠PQB =∠OPQ +30°;②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图2所示,同样利用平行线的性质可得到,∠BQP +∠OPQ =150°【详解】(1)由2(8)0a ++=得到c+4=0,得到c=-4(-4,-4) ,BC ∥AO(2)过B 点作BE ⊥AO 于E设时间经过t 秒,则AP =2t ,OQ =t ,CQ =4-t∵BE =4,BC =4, ∴APB 1AP 2S V =·1BE 2442t t =⨯⨯= ()BCQ 11 S CQ?BC 448222t t ==⨯-⨯=-V ∵APB BCQ 2S S =V V∴()4282t t =-解得t =2∴AP =2t =4∴P (−4,0)(3) ①当点Q 在点C 的上方时;过Q 点作QH ∥AO 如图一所示,∴∠OPQ=∠PQH .又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ=30°. ∴∠OPQ +∠BCQ =∠PQH +∠BQH .∴即∠PQB =∠OPQ +∠CBQ.即∠PQB =∠OPQ +30°②当点Q 在点C 的下方时;过Q 点作HJ ∥AO 如图二所示,∴∠OPQ =∠PQJ.又∵BC ∥AO ,QH ∥AO∴QH ∥BC∴∠HQB =∠BCQ =30°. ∴∠HQB +∠BQP +∠PQJ =180°,∴30°+∠BQP +∠OPQ =180°即∠BQP +∠OPQ =150°综上所述∠PQB =∠OPQ +30°或∠BQP +∠OPQ =150°【点睛】本题重点考察非负项的性质、三角形面积的计算、平行线的性质等知识点,综合程度比较高,第三问对Q 点进行分情况讨论,作出辅助线是解题关键23.(1)30°; (2)答案见解析;(3)答案见解析.【解析】【分析】(1)由∠BCD =150°,∠ACB =90°,可得出∠DCA 的度数,进而得出∠ACE 的度数;(2)根据(1)中的结论可提出猜想,再由∠BCD =∠ACB +∠ACD ,∠ACE =∠DCE−∠ACD 可得出结论;(3)根据平行线的判定定理,画出图形即可求解.【详解】解:(1)∵90BCA ECD ∠=∠=︒,150BCD ∠=︒,∴1509060DCA BCD BCA ∠=∠-∠=︒-︒=︒,∴906030ACE ECD DCA ∠=∠-∠=︒-︒=︒;(2)180BCD ACE ∠+∠=︒,理由如下:∵90BCD ACB ACD ACD ∠=∠+∠=︒+∠,90ACE DCE ACD ACD ∠=∠-∠=︒-∠,∴180BCD ACE ∠+∠=︒;(3)当120BCD ∠=︒或60︒时,CD AB P .如图②,根据同旁内角互补,两直线平行,当180B BCD ∠+∠=︒时,CD AB P ,此时180********BCD B ∠=︒-∠=︒-︒=︒;如图③,根据内错角相等,两直线平行,当60B BCD ∠=∠=︒时,CD AB P .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.24.(1)20,70;(2)80°;(3)90°;【解析】【分析】(1)由PM ∥AB 根据两直线平行,内错角相等可得∠EPM=∠AEP=20°,根据平行公理的推论可得PM ∥CD ,继而可得∠MPF=∠CFP=50°,从而即可求得∠EPF ;(2)由角平分线的定义可得∠AEH=2α=40°,再根据AD ∥BC ,由两直线平行,内错角相等可得∠END=∠AEH=40°,由对顶角相等以及角平分线定义可得∠IFG=∠DFG=β=50°,再根据平角定义即可求得∠CFI 的度数;(3)由(2)可得,∠CFI=180°-2β,由AB ∥CD ,可得∠END=2α,当FI ∥EH 时,∠END=∠CFI ,据此即可得α+β=90°.【详解】(1)∵PM ∥AB ,α=20°,∴∠EPM=∠AEP=20°,∵AB ∥CD ,PM ∥AB ,∴PM ∥CD ,∴∠MPF=∠CFP=50°,∴∠EPF=20°+50°=70°,故答案为20,70;(2)∵PE 平分∠AEH ,∴∠AEH=2α=40°,∵AD ∥BC ,∴∠END=∠AEH=40°,又∵FG 平分∠DFI ,∴∠IFG=∠DFG=β=50°,∴∠CFI=180°-2β=80°; (3)由(2)可得,∠CFI=180°-2β, ∵AB ∥CD ,∴∠END=∠AEN=2α,∴当FI ∥EH 时,∠END=∠CFI ,即2α=180°-2β,∴α+β=90°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理是解题的关键.25.一共有6名学生,28本书【解析】【分析】可设有 x 名学生,y 本书.根据总本数相等,每人分到4本,那么多4 本;如果每人分到5 本,那么最 后 1 名学生只分到3本,可列出方程组,求解即可.【详解】解:设一共有x 名学生,y 本书,依题意得:445(1)3x y x y +=⎧⎨-+=⎩解得628x y =⎧⎨=⎩ 答:一共有6名学生,28本书【点睛】本题考查了二元一次方程组的应用,根据该班人数表示出图书数量得出方程组是解题关键.。
【3套打包】福州市七年级下册数学期末考试试题(含答案)(1)
![【3套打包】福州市七年级下册数学期末考试试题(含答案)(1)](https://img.taocdn.com/s3/m/0f07db172f60ddccda38a08e.png)
新人教版七年级(下)期末模拟数学试卷(含答案)一.选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求.)1.已知实数a ,b 满足a+1>b+1,则下列选项错误的为( )A .a >bB .a+2>b+2C .-a <-bD .2a >3b2.如图,图中∠1与∠2的内错角是( )A .a 和bB .b 和cC .c 和dD .b 和dAB .面积为12CD4.二元一次方程组632x y x y +-⎩-⎧⎨==的解是( )A .51x y ⎧⎨⎩==B .42x y ⎧⎨⎩==C .51x y -⎩-⎧⎨==D .42x y -⎩-⎧⎨==5.在平面直角坐标系中,点P (m-3,4-2m )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限6.下面调查方式中,合适的是()A.调查你所在班级同学的身高,采用抽样调查方式B.调查大汶河的水质情况,采用抽样调查的方式C.调查CCTV-5《NBA 总决赛》栏目在我市的收视率,采用普查的方式D.要了解全市初中学生的业余爱好,采用普查的方式A.B.C.D-2A.x+5<0 B.2x>10 C.3x-15<0 D.-x-5>09.某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示.根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有()A.46人B.38人C.9人D.7人10.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5二.填空题(本大题共5个小题,每小题3分,共15分)11.16的算术平方根是12.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,那么图中的四边形ACED的面积为13.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为人.32(2)补全频数分布直方图;(3)根据频数分布表或频数分布直方图,分析数据的分布情况.20.食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂0.2克,B饮料每瓶需加该添加剂0.3克,已知54克该添加剂恰好生产了A、B两种饮料共200瓶,问A、B两种饮料各生产了多少瓶?21.某公交公司有A,B型两种客车,它们的载客量和租金如下表:某中学根据实际情况,计划租用A,B型客车共5辆,同时送七年级师生到基地校参加社会实践活动.设租用A型客车x辆,根据要求回答下列问题:(1)用含x的式子填写下表:(2)若要保证租车费用不超过1900元,求x的最大值.22.已知:ABC中,点D为射线CB上一点,且不与点B,点C重合,DE∥AB交直线AC于点E,DF∥AC交直线AB于点F.(1)画出符合题意的图;(2)猜想∠EDF与∠BAC的数量关系,并证明你的结论.23.如图,已知AM∥BN,∠A=60°,点P是射线AM上一动点(与A不重合),BC、BD分别平分∠ABP和∠PBN,交射线AM于C、D,(推理时不需要写出每一步的理由)(1)求∠CBD的度数.(2)当点P运动时,那么∠APB:∠ADB的度数比值是否随之发生变化?若不变,请求出这个比值;若变化,请找出变化规律.(3)当点P运动到使∠ACB=∠ABD时,求∠ABC的度数.参考答案与试题解析1.【分析】根据不等式的性质即可得到a>b,a+2>b+2,-a<-b.【解答】解:由不等式的性质得a>b,a+2>b+2,-a<-b.故选:D.【点评】本题考查了不等式的性质,属于基础题.2.【分析】根据内错角的定义找出即可.【解答】解:由内错角的定义可得b,d中∠1与∠2是内错角.故选:D.【点评】本题考查了同位角、内错角、同旁内角,熟记内错角的定义是解题的关键.3.【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:AB、面积为12CD故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.4.【分析】用加减消元法解方程组即可.【解答】解:①-②得到y=2,把y=2代入①得到x=4,∴42 xy⎧⎨⎩==,故选:B.【点评】本题考查解二元一次方程组,解题的关键是熟练掌握加减消元法或代入消元法解方程组,属于中考常考题型.5.【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m-3>0,即m>3时,-2m<-6,4-2m<-2,所以,点P(m-3,4-2m)在第四象限,不可能在第一象限;②m-3<0,即m<3时,-2m>-6,4-2m>-2,点P(m-3,4-2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选:A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).6.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、调查你所在班级同学的身高,采用普查,故A不符合题意;B、调查大汶河的水质情况,采用抽样调查的方式,故B符合题意;C、调查CCTV-5《NBA 总决赛》栏目在我市的收视率,采用抽样调查,故C不符合题意;D、要了解全市初中学生的业余爱好,采用抽样调查,故D不符合题意;故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2C,B,∴,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选:C.【点评】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.8.【分析】首先计算出不等式5x>8+2x的解集,再根据不等式的解集确定方法:大小小大中间找可确定另一个不等式的解集,进而选出答案.【解答】解:5x>8+2x,解得:x>83,根据大小小大中间找可得另一个不等式的解集一定是x<5,故选:C.【点评】此题主要考查了不等式的解集,关键是正确理解不等式组解集的确定方法:大大取大,小小取小,大小小大中间找,大大小小找不着.9.【分析】根据扇形统计图的定义,各部分占总体的百分比之和为1,由统计图先求出顾客中对商场的服务质量表示不满意的占总体的百分比,再用总人数100乘这个百分比即可.【解答】解:因为顾客中对商场的服务质量表示不满意的占总体的百分比为:1-9%-46%-38%=7%,所以100名顾客中对商场的服务质量不满意的有100×7%=7人.故选:D.【点评】本题考查扇形统计图的意义.扇形统计图能直接反映部分占总体的百分比大小.10.【分析】“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.【解答】解:如图,∵到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,∴“距离坐标”是(1,2)的点是M1、M2、M3、M4,一共4个.故选:C.【点评】本题考查了点到直线的距离,两平行线之间的距离的定义,理解新定义,掌握到一条直线的距离等于定长k的点在与已知直线相距k的两条平行线上是解题的关键.11.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.12.【分析】设点A到BC的距离为h,根据平移的性质用BC表示出AD、CE,然后根据三角形的面积公式与梯形的面积公式列式进行计算即可得解.【解答】解:设点A到BC的距离为h,则S△ABC=12BC•h=5,∵平移的距离是BC的长的2倍,∴AD=2BC,CE=BC,∴四边形ACED的面积=12(AD+CE)•h=12(2BC+BC)•h=3×12BC•h=3×5=15.故答案为:15.【点评】本题考查了平移的性质,三角形的面积,主要用了对应点间的距离等于平移的距离的性质.13.【分析】首先由第二小组有10人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50-4-10-16-6-4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:106450++×1200=480,故答案为:480.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.14. 【分析】可设小强同学生日的月数为x ,日数为y ,根据等量关系:①强同学生日的月数减去日数为2,②月数的两倍和日数相加为31,列出方程组求解即可.【解答】解:设小强同学生日的月数为x ,日数为y ,依题意有2231x y x y -+⎧⎨⎩==, 解得119x y ⎧⎨⎩==,11+9=20.答:小强同学生日的月数和日数的和为20.故答案为:20.【点评】考查了二元一次方程组的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.15. 【分析】根据二次根式的性质和已知得出即可.【解答】解:∵a b+是整数, ∴a=7,b=10或a=28,b=40,因为当a=7,b=10时,原式=2是整数;当a=28,b=40时,原式=1是整数;即满足条件的有序数对(a ,b )为(7,10)或(28,40),故答案为:(7,10)或(28,40).【点评】本题考查了二次根式的性质和二次根式的运算,估算无理数的大小的应用,题目比较好,有一定的难度.16. 【分析】先分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:121139x x x x --+≤⎧⎪⎨⎪⎩>①② 由①得,x <-1,由②得,x≤2,故此不等式组的解集为:x <-1在数轴上表示为:【点评】本题考查的是在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键17. 【分析】方程组利用加减消元法求出解即可.【解答】解:方程组整理得:2226x y x y -+⎧⎨⎩=①=②, ①+②得:2x=8,解得:x=4,②-①得:4y=4,解得:y=1,则方程组的解为41x y ⎧⎨⎩==. 【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.18. 【分析】(1)根据A 点坐标确定原点位置,然后再画出坐标系即可;(2)首先确定A 、B 、C 三点先向右平移5个单位长度,再向下平移3个单位长度后对应点的位置,再连接即可;(3)利用矩形面积减去周围多余三角形的面积即可.【解答】解:(1)如图所示:(2)如图所示:(3)三角形ABC 的面积:3×4-12×2×3-12×2×1-12×2×4=12-3-1-4=4. 【点评】此题主要考查了作图--平移变换,关键是掌握图形是有点组成的,平移图形时,只要找出组成图形的关键点平移后的位置即可.19.【分析】(1)根据数据采用唱票法记录即可得;(2)由以上所得表格补全图形即可;(3)根据频数分布表或频数分布直方图给出合理结论即可得.【解答】解:(1)补充表格如下:31052(2)补全频数分布直方图如下:(3)由频数分布直方图知,17≤x<22时天数最多,有10天.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.【分析】设A种饮料生产了x瓶,B种饮料生产了y瓶,等量关系为:A、B两种饮料共200瓶,添加剂共需要54克,据此列方程组求解.【解答】解:设A种饮料生产了x瓶,B种饮料生产了y瓶,由题意得,2000.20.354x yx y++⎧⎨⎩==,解得:60140 xy⎧⎨⎩==,答:A种饮料生产了60瓶,B种饮料生产了140瓶.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.21.【分析】(1)设租A型客车x辆,则租B型客车(5-x)辆,根据每辆B型客车的载客量及租车费用,即可完成表格数据;(2)根据总租车费用=租A型客车的费用+租B型客车的费用结合租车费用不超过1900元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可得出结论.【解答】解:(1)设租A型客车x辆,则租B型客车(5-x)辆,A型客车乘坐学生45x人,B型客车乘坐学生30(5-x)人,租A型客车的总租金为400x 元,租B型客车的总租金为280(5-x)元.故答案为:新七年级下册数学期末考试题及答案人教版七年级下学期期末考试数学试题数学试卷(考试时间120分钟满分120分)一.选择题:(每小题3分,共24分)1.在实数:3.14159,3.46,1.010010001…,π,227中,无理数有()A、1个B、2个C、3个D、4个答案:B2.下列运算正确的是()A、3a+2a=5a2B、2a2b﹣a2b=a2b C.3a+3b=3ab D、a5﹣a2=a3答案:B3.下列调查中,最适合采用全面调查的是()A、对全国中学生睡眠时间的调查B.了解一批节能灯的使用寿命C.对“中国诗词大会”节目收视率的调查D.对玉免二号月球车零部件的调查答案:D4.如图,直线l1∥l2,且分别与直线l交于C,D两点,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=50°,则∠2的度数为()A、90°B、110°C、108°D、100°答案:D5.买1本笔记本和3支水笔共需14元,买3本笔记本和1支水笔共需18元,则购买1本笔记本和1支水笔共需()A、3元B、5元C、8元D、13元答案:C6.将点A(2,﹣1)向左平移3个单位长度,再向上平移4个单位长度得到点B,则点B 的坐标是()A、(-1,3)B、(5,3)C、(﹣1,﹣5)D、(5,﹣5)答案:A7.不等式组215xx m-<⎧⎨<⎩的解集是x<3,那么m的取值范围是()A、m>3B、m≥3C、m<2D、m≤2答案:B8.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是()A、ab>0B、a+b<0C、|a|<|b|D、a﹣b>0答案:C二、填空题(每小题3分,共21分)9.16的平方根是.答案:±410.如图,直线a,b相交,若∠1与∠2互余,则∠3的度数为.答案:135°11.某小区地下停车场入口了栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=°.答案:12012.一件夹克衫先按成本提高20%标价,再以9折出售,售价为270元,这件夹克衫的成本是.答案:25013.已知关于x的不等式323x ax-≥⎧⎨-≥-⎩的整数解共有3个,则a的取值范围是.答案:0<a≤114.如图把“QQ笑脸”图标放在直角坐标系中,已知左眼A的坐标是(﹣2,3),右眼B 的坐标为(0,3),则嘴唇C点的坐标是.答案:(﹣1,1)15.某校为了解七年级同学的体能情况,随机选取部分学生测试一分钟仰卧起坐的次数,并绘制了如图所示的直方图,学校七年级共有600人,则计该校一分钟仰卧起坐的次数不少于25次的有人.答案:34016.按下面的程序计算:规定:程序运行到“判断结果是否大于7”为一次运算.若经过2次运算就停止,若开始输人的值x为正整数,则x可以取的所有值是.答案:2或3三、解答题:17.(12分)计算题:(1|1|(2)解方程组21 239 x yx y-=⎧⎨+=⎩(3)解不等式组:解:(1)原式=3-21…………………………..4分18.(6分)已知5a+2的立方根是3,4b+1的算术平方根是3,c求a+b+c 的值.解:19.(6分)已知不等式组122561x nx m-<⎧⎨+>-⎩的解集是﹣6<x<3,求2m+n的值.解:20.(6分)如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(,);B′(,)解:(1)如下图,(2)B(1,2),B’(3,5)21.(6分)如图,∠ADE=∠B,CD∥FG,证明:∠1=∠2.解:22.(8分)我市正在努力创建“全国文明城市”,为进一步营造“创文”氛围,我市某学校组织了一次“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽査的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:(1)本次抽查的样本容量是;(2)在扇形统计图中,m=,n=.(3)补全条形统计图.解:(1)样本容量是:510%=50(2)850=16%,所以,m=16,1-0.1-0.16-0.24-0.2=0.3=30%,所以,n=30 (3)答对9题人数:30%×50=15,答对10题人数:20%×50=10,如下图,23.(9分)某学校准备从体育用品商店一次性购买若干个篮球和足球(每个篮球的价格相同,每个足球的价格相同),购买1个足球和2个篮球共需270元;购买2个足球和3个篮球共需440元.(1)问足球和篮球的单价各是多少元?(2)若购买足球和篮球共24个,且购买篮球的个数大于足球个数的2倍,购买球的总费用不超过2220元,问该学校有哪几种不同的购买方案?解:(1)设购买一个足球需要x 元,一个篮球需y 元,则有x +2y =2702x +3y =440解这个方程组得x =70,y =100,所以,足球的单价是70元,篮球的单价是100元。
北师大版数学七年级下册期末考试模拟试题(一)(二)含答案
![北师大版数学七年级下册期末考试模拟试题(一)(二)含答案](https://img.taocdn.com/s3/m/1a24c47da517866fb84ae45c3b3567ec102ddc43.png)
(第8题1.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 ( )A .SASB .ASAC .AASD .SSS 2.一只蚂蚁在如图1所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是 .3.如图2,有一个五角星的图案,那么图中的∠A +∠B +∠C +∠D +∠E= °4.如图3,先将正方形ABCD 对折,折痕为EF ,将这个正方形展平后,再分别将A 、B 对折,使点A 、点B 都与折痕EF 上的点G 重合,则∠NCG 的度数是 度。
图1 图2 图35.在“石头、剪刀、布”的猜拳游戏中,俩人出拳相同的概率的是( )A .B .C .D .6.如图,玲玲在美术课上用丝线绣成了一个“2”,AB ∥DE ,∠A=30°,∠ACE=110°,则∠E 的度数为( )A.30° B 。
150° C 。
120° D 。
100°7。
近似数3。
0的准确值a 的取值范围是( )A 。
2。
5<a <3。
4 B.2.95≤a≤3。
05 C.2。
95≤a <3。
05 D.2.95<a <3。
58 长度分别为3cm ,5cm ,7cm,9cm 的四根木棒,能搭成(首尾连结)三角形的个数为( )A.1B.2C. 3 D 。
410 等腰三角形一边长是10㎝,一边长是6㎝,则它的周长是 .11.甲、乙两同学骑自行车从A 地沿同一条路到B 地,已知乙比甲先出发,他们离出发地的距离s (km )和骑车时间t (h )之间的函数关系如下图所示,给出下列说法:(1)他们都骑行了20km ;(2)乙在途中中停留了0。
5h ;(3)甲、乙两人同时到达目的地;(4)相遇后,甲 的速度小于乙的速度.根据图象信息,以上说法正确的有( )A .1个 B .2个 C .3个 D .4个12.如图,△ABC 中,∠C =90°,AC =BC ,AD 是△ABC 的角平分线,DE ⊥AB 于E ,若AB =6㎝,则△DEB 的周长为( )A .5㎝B .6㎝C .7㎝D .8㎝13.一幅三角板,如图所示叠放在一起.则图中∠的度数是( )A .75°B .60°14B 15∥ACE 16∠,BD :CD =5:3,的面积是 .17、 如图,AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,∠BEF 的平分线交CD 于点G ,若∠EFG=72°,则∠EGF 等于 ( )A . 36°B . 54°C . 72 °D . 108°18、若实数满足(x +y +2)(x +y -1)=0,则x +y 的值为( )A 、 1B 、-2C 、 2或-1D 、-2或119 锐角三角形的三个内角是∠A 、∠B 、∠C ,如果,,,那么、A .没有锐角 B .有1个锐角 C .有2个锐角 D .有3个锐角20、如图,中,D 、E 、F 分别是BC 、AD 、BE 的中点,若cm 2,则21、如右图,下列条件中,能判定DE ∥AC 的是( ) A 、∠EDC=∠EFC B ∠AFE=∠ACD C ∠3=∠4 D ∠1=∠2 22、一个正方形的边长增加了2cm ,面积相应增加了32cm 2,。
【必考题】七年级数学下期末试题(附答案)(1)
![【必考题】七年级数学下期末试题(附答案)(1)](https://img.taocdn.com/s3/m/7283081902d276a201292e4d.png)
【必考题】七年级数学下期末试题(附答案)(1) 一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.如图,将△ABC沿BC方向平移3cm得到△DEF,若△ABC的周长为20cm,则四边形ABFD 的周长为()A.20cm B.22cmC.24cm D.26cm3.下列方程中,是二元一次方程的是( )A.x﹣y2=1B.2x﹣y=1C.11yx+=D.xy﹣1=04.2-的相反数是()A.2-B.2C.12D.12-5.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A.喜欢乒乓球的人数(1)班比(2)班多B.喜欢足球的人数(1)班比(2)班多C.喜欢羽毛球的人数(1)班比(2)班多D.喜欢篮球的人数(2)班比(1)班多6.已知关于x,y的二元一次方程组231ax byax by+=⎧⎨-=⎩的解为11xy=⎧⎨=-⎩,则a﹣2b的值是()A.﹣2B.2C.3D.﹣37.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-38.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A (﹣2,1)和B (﹣2,﹣3),那么第一架轰炸机C 的平面坐标是( )A .(2,﹣1)B .(4,﹣2)C .(4,2)D .(2,0)9.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4 D .()8,410.不等式组2201x x +>⎧⎨-≥-⎩的解在数轴上表示为( )A .B .C .D .11.在平面直角坐标系中,点P(1,-2)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①② 二、填空题13.某小区地下停车场入口门栏杆的平面示意图如图所示, 垂直地面于点 ,平行于地面,若,则________.14.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________. 15.如果点p(3,2)m m +-在x 轴上,那么点P 的坐标为(____,____).16.某班级为筹备运动会,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下,有 种购买方案. 17.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 18.如图所示第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么(1)第4个图案中有白色六边形地面砖________块,第n 个图案中有白色地面砖________ 块.19.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______. 20. 5-的绝对值是______.三、解答题21.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图; (2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人? 22.目前“微信”、“支付宝”、“共享单车”和“网购”给我们带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行了调查,随机调查了m 人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.(1)根据图中信息求出m=___________,n=_____________;(2)请你帮助他们将这两个统计图补全;(3)根据抽样调查的结果,请估算全校2000名学生种,大约有多少人最认可“微信”这一新生事物?23.(1)同题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠P AB=180°.∴∠APE=180°-∠P AB=180°-130°=50°.∵AB∥C D.∴PE∥C D.…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.①当点P在A、B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.②当点P在A、B两点外侧时(点P与点O不重合),请直接写出∠CPD,∠α,∠β之间的数量关系.24.在边长为1的小正方形网格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为______ ;(2)将△AOB向左平移3个单位长度,再向上平移2个单位长度得到△A1O1B1,请画出△A1O1B1;(3)在(2)的条件下,△AOB边AB上有一点P的坐标为(a,b),则平移后对应点P1的坐标为______ .25.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.3.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.4.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .5.C解析:C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.6.B解析:B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313 ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.7.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A8.A解析:A【解析】【分析】根据A(﹣2,1)和B(﹣2,﹣3)的坐标以及与C的关系进行解答即可.【详解】解:因为A(﹣2,1)和B(﹣2,﹣3),所以建立如图所示的坐标系,可得点C的坐标为(2,﹣1).故选:A . 【点睛】考查坐标问题,关键是根据A (﹣2,1)和B (﹣2,﹣3)的坐标以及与C 的关系解答.9.C解析:C 【解析】 【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标. 【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2), 即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1), 即D (7,4); 故选:C. 【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.10.D解析:D 【解析】 【分析】解不等式组求得不等式组的解集,再把其表示在数轴上即可解答. 【详解】2201x x ①②+>⎧⎨-≥-⎩, 解不等式①得,x >-1; 解不等式②得,x ≤1; ∴不等式组的解集是﹣1<x ≤1. 不等式组的解集在数轴上表示为:故选D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解决问题的关键.11.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.【详解】如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.14.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a≤<.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a 的代数式的取值范围.15.0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0即可求得m=2由此求得点P 的坐标【详解】∵点在x 轴上∴m -2=0即m=2∴P(50)故答案为:50【点睛】本题考查了x 轴上的点的坐标的特点熟解析:0【解析】【分析】根据x 轴上的点的纵坐标为0可得m-2=0,即可求得m=2,由此求得点P 的坐标.【详解】∵点p(3,2)m m +-在x 轴上, ∴m-2=0,即m=2, ∴P (5,0).故答案为:5,0.【点睛】本题考查了x 轴上的点的坐标的特点,熟知x 轴上的点的纵坐标为0是解决问题的关键. 16.2【解析】设甲种运动服买了x 套乙种买了y 套根据准备用365元购买两种运动服其中甲种运动服20元/套乙种运动服35元/套在钱都用尽的条件下可列出方程且根据xy 必需为整数可求出解解:设甲种运动服买了x 套解析:2【解析】设甲种运动服买了x 套,乙种买了y 套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x ,y 必需为整数可求出解.解:设甲种运动服买了x 套,乙种买了y 套,20x+35y=365 x=,∵x ,y 必须为正整数, ∴>0,即0<y <,∴当y=3时,x=13当y=7时,x=6.所以有两种方案.故答案为2.本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.17.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12xy=⎧⎨=⎩代入方程,得a-2=3解得a=5,故答案为5.18.18;4n+2【解析】【分析】根据所给的图案发现:第一个图案中有6块白色地砖后边依次多4块由此规律解决问题【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=1解析:18;4n+2【解析】【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块);第4个图案中有白色六边形地面砖有6+3×4=18(块);第n个图案中有白色地面砖6+4(n-1)=4n+2(块).故答案为18,4n+2.【点睛】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.19.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4解析:8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式,∴x2+(m-2)x+9=(x±3)2.而(x±3)2=x2±6x+9,∴m-2=±6,∴m=8或m=-4.故答案为8或-4.20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【解析】【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【详解】(1)0.5小时的有100人占被调查总人数的20%,∴被调查的人数有:10020%500÷=,22.(1)100,35;(2)详见解析;(3)800人.【解析】【分析】(1)由共享单车的人数以及其所占百分比可求得总人数m,用支付宝人数除以总人数可得其百分比n的值;(2)总人数乘以网购的百分比可求得网购人数,用微信人数除以总人数求得其百分比,由此即可补全两个图形;(3)总人数乘以样本中微信人数所占百分比即可求得答案.【详解】(1)抽查的总人数m=10÷10%=100,支付宝的人数所占百分比n%=35100100%⨯=35%,所以n=35,故答案为:100,35;(2)网购人数为:100×15%=15人,微信对应的百分比为:40100%40% 100⨯=,补全图形如图所示:(3)估算全校2000名学生种,最认可“微信”这一新生事物的人数为:2000×40%=800人.【点睛】本题考查了条形统计图与扇形统计图信息相关问题,读懂统计图,从中找到必要的信息是解题的关键.23.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.24.(1)(﹣3,2)(2)见解析(3)(a ﹣3,b+2)【解析】试题分析:(1)根据坐标系可得B 点坐标,再根据关于y 轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A 、B 、C 三点平移后的对应点位置,然后再连接即可;(3)根据△AOB 的平移可得P 的坐标为(a ,b ),平移后横坐标﹣3,纵坐标+2. 解:(1)B 点关于y 轴的对称点坐标为(﹣3,2),故答案为(﹣3,2);(2)如图所示:(3)P 的坐标为(a ,b )平移后对应点P 1的坐标为(a ﹣3,b+2).故答案为(a ﹣3,b+2).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.25.(1) 18003x y =⎧⎨=⎩;(2) 434;(3) 180. 【解析】解:(1)依题意,得20024003002700x y x y +=⎧⎨+=⎩解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥ 14333m ≥ 14333m ≥的最小整数是434 答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元.则3235023370a b c a b c ++=⎧⎨++=⎩∴ 444720a b c ++= ∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.。
【鲁教版】七年级数学下期末第一次模拟试卷(含答案)(1)
![【鲁教版】七年级数学下期末第一次模拟试卷(含答案)(1)](https://img.taocdn.com/s3/m/169aa2d631126edb6e1a1073.png)
一、选择题1.下列事件中,是随机事件的是()A.从一只装有红球的袋子里摸出黄球B.抛出的蓝球会下落C.抛掷一枚质地均匀的骰子,向上一面点数是2D.抛掷一枚质地均匀的骰子,向上一面点数是102.下列说法正确的是()A.抛掷一枚硬币10次,正面朝上必有5次;B.掷一颗骰子,点数一定不大于6;C.为了解某种灯光的使用寿命,宜采用普查的方法;D.“明天的降水概率为90%”,表示明天会有90%的地方下雨.3.“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是()A.必然事件 B.不可能事件 C.随机事件 D.无法确定4.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A.1个B.2个C.3个D.4个5.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是轴对称图形的是()A.B.C.D.6.下列图形是轴对称图形的是()A.B.C.D.7.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒ 8.下列各组数中,不可能成为一个三角形三边长的是( )A .2,3,4B .5,7,7C .5,6,12D .6,8,109.用直尺和圆规作一个角等于已知角,如图,能得出A O B AOB ∠∠='''的依据是( )A .S .S .SB .S .A .SC .A .S .AD .A .A .S10.如图是反映两个变量关系的图,下列的四个情境比较合适该图的是( )A .一杯热水放在桌子上,它的水温与时间的关系B .一辆汽车从起动到匀速行驶,速度与时间的关系C .一架飞机从起飞到降落的速度与时晨的关系D .踢出的足球的速度与时间的关系11.一个角的补角,等于这个角的余角的3倍,则这个角是( ) A .30°B .35°C .40°D .45° 12.已知235m n +=,则48m n ⋅=( ) A .16B .25C .32D .64二、填空题13.三张背面完全相同的卡片,它们的正面分别标有数字﹣1,0,1,将他们背面朝上,洗匀后随机抽取一张,把正面的数字作为b ,接着再抽取一张,把正面的数字作为c ,则满足关于x 的一元二次方程x 2+bx +c =0有实数根的概率是_____.14.一袋中装有5个红球、4个白球和3个黄球,每个球除颜色外都相同.从中任意摸出一个球,则:P (摸到红球)=______,P (摸到白球)=_______.15.如图有一张直角三角形纸片,两直角边AC =4cm ,BC =8cm ,把纸片的部分折叠,使点B与点A重合,折痕为DE,则△ACD的周长为_____.16.如图,将∠ACB沿EF折叠,点C落在C′处.若∠BFE=65°.则∠BFC′的度数为_____.17.如图,∠1=∠2,要使△ABC≌△ADC,还需添加条件:_____.(填写一个你认为正确的即可)18.假定甲、乙两人在一次赛跑中,路程与时间的关系如图所示,那么可以知道:(1)甲、乙两人中先到达终点的是__; (2)乙在这次赛跑中的速度为__m/s.∠=︒∠=︒,19.如图,这是购物车的侧面示意图,扶手AB与车底CD平行,1100,250∠的度数是_________.则320.如图所示,将一个边长为a的正方形减去一个边长为b的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.(1)利用图形的面积关系可以得到一个代数恒等式是________;(2)求前n个正奇数1,3,5,7,…的和是________.三、解答题21.如图,在Rt ABC △中,AC BC =,90ACB ∠=︒,D 是AC 的中点,DG AC ⊥交AB 于点G ,E 为线段DC 上任意一点,点F 在线段DG 上,且DE DF =,连结EF与CF ,过点F 作FH FC ⊥,交直线AB 于点H .(1)试说明DG DC =的理由;(2)判断FH 与FC 的数量关系,并说明理由.22.我市开展“创文”活动,某校倡议学生利用双休日在人民公园参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;(2)求抽查的学生劳动时间的众数、中位数,并求出同学们劳动的平均时间.(3)电视台要从参加义务劳动的学生中随机抽取1名同学采访,抽到时参加义务劳动的时间为2小时的同学概率是多少?23.如图,点,,,B E C F 在同一直线上,且,,AB DE BE CF == .求证:ACB DFE ∠=∠.()1请从//,AB DE A D ∠=∠①②,AC DF =③中选择一个适当的条件填入横线中,使命题成立.你的选择是 .(只需填一个序号即可);()2根据()1中的选择给出证明.24.如图棱长为a 的小正方体,按照下图的方法继续摆放,自上而下分别叫第一层、第二层…第n 层,第n 层的小正方体的个数记为S.解答下列问题:n 1 2 3 4 … S13…(1)按要求填写上表:(2)研究上表可以发现S 随n 的变化而变化,且S 随n 的增大而增大有一定的规律,请你用式子来表示S 与n 的关系,并计算当n =10时,S 的值为多少?25.如图,直线AB 与CD 相交于点O ,OF ,OD 分别是AOE ∠,∠BOE 的平分线. (1)写出DOE ∠的补角;(2)若64BOE ∠=︒,求AOD ∠和BOF ∠的度数;(3)射线OD 与OF 之间的夹角DOF ∠等于多少度?请说明理由.26.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在m n +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值. 根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >); (2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据随机事件,必然事件,不可能事件的概念对各项判断即可. 【详解】A .从一只装有红球的袋子里摸出黄球,是不可能事件,故选项错误;B .抛出的篮球会下落,是必然事件,故选项错误;C .抛一枚质地均匀的骰子,向上一面点数是2,是随机事件,故选项正确;D .抛一枚质地均匀的骰子,向上一面点数是10,是不可能事件,故选项错误; 故选:C . 【点睛】本题考查了随机事件,解题关键是正确理解随机事件,必然事件,不可能事件的概念.2.B解析:B 【解析】 【分析】利用概率的意义、普查和抽样调查的特点即可作出判断. 【详解】A. 抛掷一枚硬币10次,可能出现正面朝上有5次是随机的,故选项错误;B. 正确;C. 调查灯泡的使用寿命具有破坏性,因而适合抽查,故选项错误;D. “明天的降水概率为90%”,表示明天下雨的可能性是90%,故选项错误。
2020-2021七年级数学下期末模拟试卷(含答案)(1)
![2020-2021七年级数学下期末模拟试卷(含答案)(1)](https://img.taocdn.com/s3/m/01bc18da680203d8ce2f24ab.png)
当y=7时,x=6.
所以有两种方案.
故答案为2.
本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.
17.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于______(用含α的式子表示).
解析:2
【解析】
设甲种运动服买了x套,乙种买了y套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.
解:设甲种运动服买了x套,乙种买了y套,
20x+35y=365
x= ,
∵x,y必须为正整数,
∴ >0,即0<y< ,
A.0B.-πC. D.-4
10.不等式4-2x>0的解集在数轴上表示为()
A. B. C. D.
11.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()
A.16cmB.18cmC.20cmD.21cm
12.关于 , 的方程组 的解满足 ,则 的值为()
【点睛】
2021-2022学年度强化训练北师大版七年级数学下册期末模拟试题 卷(Ⅰ)(含答案详解)
![2021-2022学年度强化训练北师大版七年级数学下册期末模拟试题 卷(Ⅰ)(含答案详解)](https://img.taocdn.com/s3/m/a791f4e2541810a6f524ccbff121dd36a32dc4f9.png)
北师大版七年级数学下册期末模拟试题 卷(Ⅰ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知直线AD ∥BC ,BE 平分∠ABC 交直线DA 于点E ,若∠DAB =54°,则∠E 等于( ) A .25°B .27°C .29°D .45°2、利用乘法公式计算正确的是( ) A .22(43)8129x x x -=+- B .2(25)(25)45m m m +-=- C .22()()a b a b a b ++=+ D .22(4+1)168+1x x x =+3、某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示折线统计图,则符合这一结果的试验最有可能的是( ) ·线○封○密○外A .不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球B .任意写一个整数,它能被2整除C .掷一枚正六面体的骰子,出现1点朝上D .先后两次掷一枚质地均匀的硬币,两次都出现反面4、已知一个正方形的边长为a +1,则该正方形的面积为( )A .a 2+2a +1B .a 2-2a +1C .a 2+1D .4a +45、一把直尺与一块直角三角板按如图方式摆放,若∠1=28°,则∠2=( )A .62°B .58°C .52°D .48°6、∠A 的余角是30°,这个角的补角是( )A .30°B .60°C .120°D .150°7、下面每个选项中,左边和右边的符号作为图形成轴对称的是( )A .%%B .∵∴C .≤≥D .@@8、若0m >,3x m =,2y m =,则3x y m -的值为( )A .32B .32-C .1D .389、某次实验中,测得两个变量m 和v 之间的4组对应值如表,则m 与之间的关系接近于下列各式中的( )A .v=2mB .v=m²-1C .v=3m+1D .v=3m-1 10、计算22x x ÷的结果是( ) A .2x B .12x C .2xD .2x第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、将一张长方形纸片按如图所示的方式折叠,BE 、BD 为折痕.若A B '与C B '重合,则∠EBD 为______度.2、判断下列事件的类型:(必然事件,随机事件,不可能事件)(1)掷骰子试验,出现的点数不大于6._____________(2)抽签试验中,抽到的序号大于0._____________(3)抽签试验中,抽到的序号是0.____________ (4)掷骰子试验,出现的点数是7._____________ (5)任意抛掷一枚硬币,“正面向上”._____________ (6)在上午八点拨打查号台114,“线路能接通”.__________ ·线○封○密·○外(7)度量五边形外角和,结果是720度.________________3、在有理数的原有运算法则中,我们定义新运算“@”如下:a@b=2÷,根据这个新规定可ab b-=________.知2x@(3)x4、某种储蓄月利率是0.36%,今存入本金100元,则本息和y(元)与所存月数x(个)之间的函数解析式是______.5、小强站在镜前,从镜中看到镜子对面墙上挂着的电子钟,则如图所示的电子钟的实际时刻是__________.三、解答题(5小题,每小题10分,共计50分)1、如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P的位置.2、如图,直线AB,CD相交于点O,OM⊥AB于点O,ON⊥CD于点O.(1)试说明∠1=∠2;(2)若∠BOC=4∠2,求∠AOC的大小.3、如图(甲),∠AOC 和∠BOD 都是直角.(1)如果∠DOC =29°,那么∠AOB 的度数为 度.(2)找出图(甲)中相等的角.如果∠DOC ≠29°,他们还会相等吗?(3)若∠DOC 越来越小,则∠AOB 如何变化?(4)在图(乙)中利用能够画直角的工具再画一个与∠FOE 相等的角.4、如图,自行车每节链条的长度为2.5cm ,交叉重叠部分的圆的直径为0.8cm . (1)观察图形,填写下表:(2)如果x 节链条的长度是y ,那么y 与x 之间的关系式是什么?·线○封○密○外(3)如果一辆某种型号自行车的链条(安装前)由60节这样的链条组成,那么这辆自行车上的链条(安装后)总长度是多少?5、已知点P 在MON ∠内.如图,点P 关于射线OM 的对称点是G ,点P 关于射线ON 的对称点是H ,连接OG 、OH 、OP .(1)若50MON ∠=︒,则GOH ∠= ;(2)若5PO =,连接GH ,请说明当MON ∠为多少度时,10GH =.-参考答案-一、单选题1、B【分析】根据两直线平行,内错角相等可求∠ABC =54°,再根据角平分线的性质可求∠EBC =27°,再根据两直线平行,内错角相等可求∠E .【详解】解:∵AD ∥BC ,∴∠ABC =∠DAB =54°,∠EBC =∠E ,∵BE 平分∠ABC ,∴∠EBC =12∠ABC =27°,∴∠E =27°.故选:B .【点睛】本题考查了平行线的性质,角平分线,关键是求出∠EBC =27°.2、D【分析】 根据完全平方公式(222()2a b a ab b ±=±+)、平方差公式(22()()a b a b a b +-=-)逐项判断即可得. 【详解】 解:A 、22(43)16249x x x -=-+,此项错误; B 、2(25)(25)425m m m +-=-,此项错误; C 、22()()2a b a b a ab b ++=++,此项错误; D 、22(4+1)168+1x x x =+,此项正确; 故选:D . 【点睛】 本题考查了乘法公式,熟记公式是解题关键. 3、A 【分析】 根据频率图象可知某实验的频率约为0.33,依次求出每个事件的概率进行比较即可得到答案. 【详解】 解:A 、不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球的概·线○封○密○外率11=123≈0.33,符合题意;B、任意写一个整数,它能2被整除的概率为12,不符合题意;C、掷一个质地均匀的正六面体骰子,出现1点朝上的概率为16≈0.17,不符合题意;D、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率是14,不符合题意;故选:A.【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.4、A【分析】由题意根据正方形的面积公式可求该正方形的面积,再根据完全平方公式计算即可求解.【详解】解:该正方形的面积为(a+1)2=a2+2a+1.故选:A.【点睛】本题主要考查列代数式,解题的关键是熟练掌握正方形的面积公式以及完全平方公式.5、A【分析】过三角板的直角顶点作直尺两边的平行线,根据平行线的性质(两直线平行,同位角相等)即可求解.【详解】解:如图,过三角板的直角顶点作直尺两边的平行线,∵直尺的两边互相平行,∴3128∠=∠=︒,∴490362∠=︒-∠=︒,∴2462∠=∠=︒,故选:A .【点睛】本题考查平行线的性质,掌握平行线的性质是解题的关键.6、C【分析】根据一个角的补角比这个角的余角大90︒列式计算即可得解.【详解】 解:一个角的余角是30, ∴这个角的补角是3090120︒+︒=︒. 故选:C . 【点睛】 本题考查了余角和补角,解题的关键是熟记概念并理清余角和补角的关系. 7、C 【分析】 ·线○封○密○外轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,据此定义可直接得出.【详解】解:根据轴对称图形的定义可得出:C 选项经过对折后可完全重合,故选:C .【点睛】题目主要考查轴对称图形的定义,深刻理解此定义是解题关键.8、D【分析】根据同底数幂的除法的逆运算及幂的乘方的逆运算解答.【详解】解:∵3x m =,2y m =,∴3x y m -=3()x y m m ÷=3÷8=38,故选D .【点睛】本题考查了同底数幂的除法的逆运算及幂的乘方的逆运算,解题的关键是熟练掌握运算法则.9、B【分析】利用已知数据代入选项中,得出符合题意的关系式.【详解】解:当m=1,代入v=m 2-1,则v=0,当m=2,则v=3,当m=3,v=8,故m 与v 之间的关系最接近于关系式:v=m 2-1.故选:B .【点睛】本题考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量;解题关键是分别把数据代入下列函数,通过比较找到最符合的函数关系式. 10、B 【分析】 根据单项式除法的运算法则解答即可. 【详解】 解:221222x x x x x ÷==. 故选B . 【点睛】 本题主要考查了单项式除法,把被除式与除式的系数和相同底数字母的幂分别相除,其结果作为商的因式. 二、填空题 1、90 【分析】 根据折叠的性质和平角的定义即可得到结论. 【详解】 解:由折叠可知,∠ABE =∠A 'BE =12∠ABA ′,∠CBD =∠C 'BD =12∠CBC ′,∴∠DBE =∠A 'BE +∠C 'BD =12∠ABA ′+12∠CBC ′ ·线○封○密○外=12(∠ABA'+∠CBC')=12×180°=90°.故答案为:90.【点睛】本题考查了角的计算,折叠的性质,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.2、必然事件必然事件不可能事件不可能事件随机事件随机事件不可能事件【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【详解】解:(1)骰子最大的点数是6,所以掷骰子试验,出现的点数不大于6是必然事件;(2)抽签试验中,序号都大于0,抽到的序号大于0是必然事件;(3)抽签试验中,序号都大于0,抽到的序号是0是不可能事件;(4) 骰子最大的点数是6,所以掷骰子试验,出现的点数是7是不可能事件;(5)硬币有两面,正面和反面,任意抛掷一枚硬币,“正面向上”是随机事件;(6)在上午八点拨打查号台114,“线路能接通”是随机事件;(7)五边形外角和是360 ,所以度量五边形外角和,结果是720度是不可能事件.【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3、23-【分析】 根据题意直接由定义运算的顺序转化为整式的混合运算,进一步计算得出答案即可. 【详解】解:2x @(-3x ) =2x (-3x )÷(-3x )2 =-6x 2÷9x 2 =23-. 故答案为:23-. 【点睛】 本题考查新定义运算下的整式的混合运算,理解规定的运算方法,把问题转化进行解决问题. 4、0.36100y x =+ 【分析】 根据本金、利息和时间之间的关系,利息=本金×月利率×月数,本息和=本金+利息,即可得出答案. 【详解】 根据题意,y =100+100×0.36%×x =0.36x +100. 故填0.36100y x =+. 【点睛】 本题考查用关系式法表示变量之间的关系.能理清题意找出本金、利息和时间之间的关系是解决此题的关键. 5、21:05 【分析】 ·线○封○密○外由轴对称图形的性质进行分析即可得到正确答案.【详解】解:由轴对称图形的性质可知,电子钟的实际时刻的数字图与镜子中的数字图成轴对称图形,所以实际时刻是:2105:故答案为:2105:【点睛】本题考查轴对称图形的性质,牢记相关的知识点是解题的关键.三、解答题1、(1)见解析;(2)9;(3)见解析【分析】(1)分别作出,B D 两点关于直线AC 的对称点,B D '',连接,,,AD CD AB CB '''',四边形AB ′CD ′即为所求四边形;(2)根据网格的特点,S 四边形ABCD =S △ABD +S △BCD 即可求得答案;(3)连接D E '与直线AC 交于点P ,由PD PE PD PE D E ''+=+≥,可得P 到D 、E 的距离之和最小,则P 点即为所求作的点.【详解】(1)如图,分别作出,B D 两点关于直线AC 的对称点,B D '',连接,,,AD CD AB CB '''',四边形AB ′CD ′即为所求四边形;(2)S 四边形ABCD =S △ABD +S △BCD =11626122⨯⨯+⨯⨯ =9; (3)如图, 连接D E '与直线AC 交于点P ,由PD PE PD PE D E ''+=+≥,可得P 到D 、E 的距离之和最小,则P 点即为所求作的点; 【点睛】本题考查了轴对称作图,轴对称的性质,求网格中四边形的面积,掌握轴对称的性质是解题的关键. 2、(1)见解析;(2)60°【分析】(1)利用同角的余角相等解答即可得出结论;·线○封○密○外(2)利用(1)的结论,等量代换可得∠BOC=4∠1,利用∠BOM=90°=3∠1,求得∠1的度数,则∠AOC=90°﹣∠1.【详解】解:(1)∵OM⊥AB,ON⊥CD,∴∠AOM=∠CON=90°,∴∠AOC+∠1=90°,∠AOC+∠2=90°,∴∠1=∠2.(2)∵OM⊥AB,∴∠BOM=90°.∵∠1=∠2,∠BOC=4∠2,∴∠BOC=4∠1.∴∠BOM=∠BOC﹣∠1=4∠1﹣∠1=3∠1,即3∠1=90°,∴∠1=30°.∴∠AOC=∠AOM﹣∠1=90°﹣30°=60°.【点睛】本题考查了对顶角、垂线性质、余角等基本几何知识,属于基础题.熟练掌握基本几何公理、基本几何概念是关键.3、(1)151︒;(2)相等,理由见解析;(3)∠AOB越来越大(4)见解析【分析】(1)根据∠AOC=90°,∠DOC=29°,求出∠AOD的度数,然后即可求出∠AOB的度数;∠=∠,∠AOD=∠BOC;(2)根据直角和等式的性质可得AOC BOD(3)根据∠AOD+∠DOC+∠DOC+∠BOC=180°,可得∠AOB+∠DOC=180°,进而得到∠DOC变小∠AOB变大,若∠DOC 越来越大,则∠AOB 越来越小.(4)首先以OE 为边,在∠EOF 外画∠GOE =90°,再以OF 为边在∠EOF 外画∠HOF =90°,即可得到∠HOG =∠EOF . 【详解】 解:(1)因为,∠AOC =∠DOB =90°,∠DOC =29° 所以,∠COB =90°﹣29°=61°, 所以,∠AOB =90°+61°=151°, (2)相等的角有:∠AOC =∠DOB =90°,∠AOD =∠BOC ; 因为∠AOD =∠AOC -∠DOC =∠DOB -∠DOC=∠COB 所以∠AOD =∠BOC ; 如果∠DOC ≠29°,他们还会相等; (3)因为∠AOB =∠AOC +∠DOB-∠DOC =180°-∠DOC 所以当∠DOC 越来越小,则∠AOB 越来越大; (4)如图,画∠HOF =∠GOE =90°,则∠HOG =∠EOF 即,∠HOG 为所画的角. 【点睛】 本题考查了余角和补角,以及角的计算,是基础题,准确识图是解题的关键. 4、(1)4.2;5.9;7.6;(2) 1.70.8y x =+;(3)102cm . ·线○封○密·○外【分析】(1)首先根据题意并结合1节链条的图形可得每节链条两个圆之间的距离为(2.5-0.8×2)cm;接下来再结合图形可得到2节链条的长度为2.5+0.9+0.8,按此规律,自己写出3节链条、4节链条的长度,再进行填表即可;(2)结合(1)中各节链条长度的表达式,则不难得到y与x之间的关系式了;(3)将x=60代入(2)中的关系式中,可求得y值,此时,注意:自行车上的链条为环形,在展直的基础上还要缩短0.8cm.【详解】解:(1)每节链条两个圆之间的距离为:2.5-0.8×2=0.9,观察图形可得,2节链条的长度为2.5+0.9+0.8=4.2;3节链条的长度为4.2+0.9+0.8=5.9;4节链条的长度为5.9+0.9+0.8=7.6;填表如下:链条的节数/节 2 3 4 …链条的长度/cm 4.2 5.9 7.6 …(2)1节链条、2节链条、3节链条、4节链条的长度分别可表示为:2.5=0.8+1.7×1,4.2=0.8+1.7×2,5.9=0.8+1.7×3,7.6=0.8+1.9×4=7.6,故y与x之间的关系为:y=1.7x+0.8;(3)当x=60时,y=1.7×60+0.8=102.8,因为自行车上的链条为环形,在展直的基础上还要缩短0.8cm,故自行车60节链条的长度为102.8-0.8=102(cm),所以这辆自行车上的链条(安装后)总长度是102cm.【点睛】本题主要考查了函数关系式,根据题意得出n 节链条的长度与每节长度之间的关系是解决问题的关键. 5、(1)100︒;(2)90︒ 【分析】 (1)由题意依据轴对称可得OG =OP ,OM ⊥GP ,即可得到OM 平分∠POG ,ON 平分∠POH ,进而得出∠GOH =2∠MON ; (2)根据题意可知当∠MON =90°时,∠GOH =180°,此时点G ,O ,H 在同一直线上,可得GH =GO +HO =10. 【详解】 解:(1)∵点P 关于射线OM 的对称点是G ,点P 关于射线ON 的对称点是H , ∴OG =OP ,OM ⊥GP , ∴OM 平分∠POG , 同理可得ON 平分∠POH , ∴∠GOH =2∠MON =2×50°=100°, 故答案为:100°; (2)∵5PO =, ∴5GO HO ==, 当90MON ∠=︒时,180GOH ∠=︒, ∴点G ,O ,H 在同一直线上, ∴5510GH GO HO =+=+=. 【点睛】 本题主要考查轴对称图形相关,熟练掌握角平分线性质以及轴对称图形的性质是解题的关键. ·线○封○密○外。
华东师大版数学七年级下册期末模拟试题50题(含答案)
![华东师大版数学七年级下册期末模拟试题50题(含答案)](https://img.taocdn.com/s3/m/c98d00ecab00b52acfc789eb172ded630b1c983f.png)
华东师大版数学七年级下册期末模拟试题50题含答案(填空题+解答题)一、填空题1.已知方程2y x -=,用含x 的代数式表示y ,那么y =_______. 【答案】x +2【分析】将x 移到方程右边即可.【详解】解:方程y -x =2,移项得:y =x +2.故答案为:x +2.【点睛】本题考查的是方程的基本运算技能:移项、系数化为1等,表示谁就该把谁放到等号的一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x 的式子表示y 的形式.2.把线段AB 平移一段距离后得到线段 A B '',若5AA '=,则 BB '=__________. 【答案】5【分析】根据平移变换只改变图形的位置不改变图形的大小与形状可得A′B′=AB ,平移的距离可得AA′=BB′=5.【详解】∵线段AB 平移一段距离后得到线段A′B′,∵AA′=BB′=5,故答案为:5.【点睛】本题考查平移的基本性质:∵平移不改变图形的形状和大小;∵经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.如图,CE 平分∵ACD ,∵A=40°,∵B=30°,∵D=104°,则∵BEC=____.【答案】57°##57度【分析】根据四边形外角的性质和角平分线的性质,再结合题意,即可得到答案.【详解】根据四边形外角的性质可得∵D =∵A+∵B+∵DCA ,∵D =∵BEC+∵B+∵ECD , 则∵DCA =∵D-(∵A+∵B )=34°,4.“x的19与7的差等于x的2倍与5的和”用方程表示为___.5.已知二元一次方程组331x myx my+=⎧⎨-=⎩的解是1x ny=⎧⎨=⎩(1)n的值为______;(2)m的值为______.【答案】12【分析】将y=1代入方程组求得:x=1,将x=1代入∵得:m=2.【详解】解:将y=1代入方程组得:331x mx m+=⎧⎨-=⎩①②,∵+∵得:4x=4,解得:x=1,将x=1代入∵得:m=2,故答案为:1;2.【点睛】本题主要考查的是二元一次方程组的解法,考查重点为:利用适当的方法解方程组.6.当x____________时,代数式2x-3的值是正数.7.关于x 的一元一次方程(2m ﹣6)x ﹣2=0 ,x =1是一元一次方程的解,则m =_____. 【答案】4【分析】将x =1代入原方程求解即可.【详解】解:将x =1代入(2m ﹣6)x ﹣2=0,2620m --=,解得:4m =,故答案为:4.【点睛】本题考查一元一次方程的解,熟练掌握解一元一次方程是解题关键. 8.从六边形的一个顶点出发,分别连接这个点与其余各顶点,可以把这个六边形分割成____________个三角形. 【答案】4【分析】根据n 边形从一个顶点出发可引出()3n -条对角线,可组成()2n -个三角形,依此可得这个六边形分成三角形的个数.【详解】解:根据n 边形从一个顶点出发可引出()3n -条对角线,可组成()2n -个三角形,∵624-=,即三角形的个数是4.故答案为:4.【点睛】本题考查了多边形的对角线,求对角线条数时,直接代入边数n 的值计算,而计算边数时,需利用方程思想,解方程求n .9.“x 的2倍与14的和小于3”用不等式表示为________.10.当5x =和5-时,代数式32ax x bx c +++的值分别为20和40.则c =___________. 【答案】5【分析】分别代入分别把5x =和5-代入32ax x bx c +++中得1252552012525540a b c a b c +++=⎧⎨-+-+=⎩,利用解方程的知识可得答案; 【详解】解:分别把5x =和5-代入32ax x bx c +++中得1252552012525540a b c a b c +++=⎧⎨-+-+=⎩ ,两方程相加得2c =10,c =5,故答案为5.【点睛】本题考查了代数式求值,分别分别把5x =和5-代入32ax x bx c +++中是解题的关键.11.把方程2311x y -+=改写成用x 的式子表示y 的形式是______.12.若一个多边形外角和与内角和相等,则这个多边形是_____.【答案】四边形【分析】根据多边形的内角和公式与多边形的外角和定理列出方程,然后解方程即可求出多边形的边数:【详解】解:设这个多边形的边数是n ,则(n ﹣2)•180°=360°,解得n=4.故答案为:四边形.【点睛】本题考查了多边形内角和公式的应用,多边形的外角和,解题的关键是要能列出一元一次方程.13.若方程组2231y x my x m-=⎧⎨+=+⎩的解x,y满足30x y+≥,则m的取值范围是______.x14.若关于x的不等式326m x-<的解集是3x>,则m的值为__________.【答案】4【分析】根据解不等式,可得不等式的解集,根据不等式的解集,可得关于m的方程,根据解方程,可得答案.【详解】解3m-2x<6,得x>1.5m-3,由不等式的解集为x>3,∴ 1.5m-3=3,解得:m=4,故答案为:4.【点睛】本题考查了不等式的解集,利用不等式的解集得出关于m的方程是解题关键.15.将含30°的三角板和一把直尺如图放置,测得125∠=︒,则2∠的度数是______.【答案】35°##35度【分析】如图,根据平行线的性质,得∵DCH=∵BAC.根据三角形外角的性质,得∵BAC=∵F+∵1,推断出∵BAC=55°,进而解决此题.【详解】解:如图.由题意得,AB∵CD,∵H=90°,∵F=30°.∵∵DCH=∵BAC,∵∵BAC=∵F+∵1,∵∵BAC=30°+25°=55°,∵∵DCH=55°,∵∵CDE=∵DCH+∵H=55°+90°=145°,∵∵2=180°-∵CDE=180°-145°=35°.故答案为:35°.【点睛】本题主要考查平行线的性质、三角形外角的性质,熟练掌握平行线的性质、三角形外角的性质是解决本题的关键.16.某单位为响应政府号召,需要购买分类垃圾桶6个,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶500元/个,B型分类垃圾桶550元/个,总费用不超过3100元,则不同的购买方式有________种.【答案】3【分析】设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶()6x -个,然后根据总费用不超过3100元,列出不等式求解即可.【详解】解:设购买A 型分类垃圾桶x 个,则购买B 型分类垃圾桶()6x -个, 由题意得:()50055063100x x +-≤,解得4x ≥,又∵x 为正整数,∵x 的值可以为4、5、6,∵一共有3种购买方式,故答案为:3.【点睛】本题主要考查了一元一次不等式的实际应用,正确理解题意列出不等式是解题的关键.17.已知12x y =-⎧⎨=⎩是二元二次方程2227ax y -=-的一个解,则=a _______. 【答案】1【分析】先将12x y =-⎧⎨=⎩代入2227ax y -=-,得到关于a 的一元一次方程,然后解方程即可求解.【详解】解:将12x y =-⎧⎨=⎩代入2227ax y -=-,得: a -2×22=﹣7,解得:a =1故答案为:1【点睛】本题考查二元二次方程和根的性质定义,解题的关键是把所给的未知数的值正确代入方程得到关于a 的方程.18.ABC 的三边长为a 、b 、c ,且a 、b 满足a 2﹣4a =0,则c 的取值范围是______.【详解】解:24a a -+19.小强站在镜前,从镜子中看到镜子对面墙上挂着的电子表,其读数如图所示,则电子表的实际时刻是--------------------_____.【答案】10:21.【详解】10:2120.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_.2403,解得30060x-80x答:以后几天平均至少要完成的土方数是故答案为:80.【点睛】此题主要考查了一元一次不等式的应用,解本类工程问题,主要是找准正确的工程不等式(如本题603以天数作为基准列不等式)21.一个角的余角等于它补角的14,则这个角的度数是______度.,则其余角是(90°-的值即可.22.当x =_______时,代数式45x -与39x -的值互为相反数【答案】2【详解】∵代数式45x -与39x -的值互为相反数,∵45x -+39x -=0,∵x=2.故答案是:2.23.若x a y b =⎧⎨=⎩是方程231x y -=的一组解,则846a b -+=__________. 【答案】6【分析】将x a y b =⎧⎨=⎩代入方程2x -3y =1得到关于a ,b 的关系式,再将多项式适当变形后利用整体代入求代数式的值.【详解】解:将x a y b =⎧⎨=⎩代入方程2x -3y =1得: 2a -3b =1.原式=8-2(2a -3b )=8-2×1=6.故答案为:6.【点睛】本题主要考查了二元一次方程的解以及求代数式的值,将方程的解代入原方程是解题的关键.24.如图,已知AOB ∠与BOC ∠互为补角,OD 是AOB ∠的平分线,OE 在BOC ∠中,1,72,2BOE EOC DOE EOC ∠=∠∠=︒∠的度数为_______.【答案】72°25.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.现有27元钱,最多可以购买该商品的件数是________.【答案】10件【分析】设购买该商品x 件,先判断购买件数在5件之上,再根据总价=3×5+3×0.8×超过5件的数量,结合总价不超过27元,即可得出关于x 的一元一次不等式,求出x 的解集即可得出结论.【详解】解:设购买该商品x 件,因为共有27元,所以最多购买的件数超过5件,依题意得:3×5+3×0.8(x -5)≤27,解得:x ≤10,故答案为:10件.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.26.如图,在Rt ABC △中,90BAC ∠=︒,48C ∠=︒,AH ,BD 分别是ABC 高和角平分线,点E 为边BC 上一个点,当BDE 为直角三角形时,则CDE ∠=_____度.,当BDE 为直角三角形时,存在两种情况:分别根据三角形内和定理和外角的性质,即可得出结论.【详解】解:90BAC ∠=︒180BAC ︒-∠-∠BD 平分ABC ,21DBC ABC ∴∠=∠=︒ 当BDE 为直角三角形时,有以下两种情况:∵当BED ∠=48C ∠=CDE ∴∠∵当BDE ∠BED ∠=CDE ∴∠=综上,CDE ∠故答案为:【点睛】本题考查的是直角三角形的性质,角平分线的有关计算,三角形内和定理与外角的性质,熟知三角形的外角的性质是解答此题的关键.27.生活中到处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获,将一副学生用三角板按如图所示的方式放置.若//AE BC ,则AFD ∠的度数是__.【答案】75︒【分析】首先根据三角形内角和为180°,求得∵C 的度数,又由AE∵BC ,即可求得∵CAE 的值,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得∵AFD 的度数.【详解】解://AE BC ,45E EDC ∴∠=∠=︒,30C ∠=︒75AFD C EDC ∴∠=∠+∠=︒,故答案为75︒【点睛】本题考查三角形内角和定理,熟练掌握计算法则是解题关键.二、解答题28.解方程组225x y x y -=⎧⎨+=⎩【答案】41x y =⎧⎨=⎩. 【分析】利用加减消元法求解即可.【详解】解:225x y x y -=⎧⎨+=⎩①② 由∵-∵,得:3y =3,解得y =1,把y =1代入∵,得:x +1=5,解得:x =4,所以原方程组的解是41x y =⎧⎨=⎩. 【点睛】本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.29.如图所示,有甲、乙两个容器,甲容器盛满水,乙容器里没有水,现将甲容器中的水全部倒入乙容器,问:水会不会溢出?如果不会溢出,请你求出倒入水后乙容器中的水深;如果水会溢出,请你说明理由.(容器壁厚度忽略不计,图中数据的单位:cm )【答案】水不会溢出,理由见解析【分析】根据两个圆柱体的体积进行计算即可解答本题.【详解】解:水不会溢出.设甲容器中的水全部倒入乙容器后,乙容器中的水深xcm ,由题意,得22102020x ππ⨯⨯=⨯⨯,解得5x =,所以甲容器中的水全部倒入乙容器后,乙容器中的水深5cm ,因为510cm cm <,所以水不会溢出.【点睛】本题考查圆柱体的体积,有理数的运算,关键是分别求出两个圆柱体的体积进行比较,然后再根据体积相等进行计算.30.A 、B 两市相距300千米,现有甲、乙两车从两地同时相向而行,已知甲车的速度为40千米/小时,乙车的速度为50千米/小时,请问在相遇前,出发多长时间后两车之间的距离为30千米.【答案】3小时【分析】设在相遇前,x 小时后两车之间的距离为30千米,根据路程=速度⨯时间,可列方程求解.【详解】解:设在相遇前,x 小时后两车之间的距离为30千米.()405030030x +=-,3x =.【点睛】本题考查一元一次方程的应用,正确的理解题意,并列出方程是解题的关键.31.解方程:(1)437x x -=-(2)()()423221x x x --=-(3)3252323x x x +--=- (4)0.60.50.030.290.20.063x x x ++--=32.解不等式1211232x x -≤-,并把它的解集在数轴上表示出来.【答案】x≥-3,数轴见解析.【分析】去分母得:3x-6≤4x-3,移项合并得x≥-3,正确在数轴上表示即可.【详解】解:3x-6≤4x-3∵x≥-3【点睛】本题考查解一元一次不等式.33.解下列方程:(1)2953x x -=+ (2)()32362x x x -+=- (3)122136x x -+=- (4)10.3x -﹣20.5x + 1.2=34.2020年2月,受新冠病毒影响开学延迟,我市中小学各位教师为响应上级部门的号召,积极进行了网上授课.5月全民抗疫取得了阶段性胜利,网课结束.某校对七年级200名学生进行了网课摸底考试,其中数学成绩如下表所示:(1)请根据表格信息,计算这次考试中及格人数和不及格人数各有多少;(2)该校若想在下次的考试中数学成绩的及格率不低于90%,则及格人数至少得增加多少人【答案】(1)及格人数为150人,不及格人数为50人;(2)及格人数至少得增加30人.【分析】(1) 设及格人数为x 人,不及格人数为y 人,由总人数为200人与平均分为76分,列方程组,解方程组即可得到答案;(2)设及格人数增加m 人,利用及格率不低于90%,列不等式,解不等式可得答案.【详解】(1)解:设及格人数为x 人,不及格人数为y 人,则由题意得:()200874376x y x y x y +=⎧⎨+=+⎩解得15050x y =⎧⎨=⎩. 答:及格人数为150人,不及格人数为50人.(2)设及格人数增加m 人,则由题意得,15020090%m +≥⨯,解得30≥m .∵m 为整数,∵至少增加30人.答:及格人数至少得增加30人.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式的应用,掌握利用相等关系列方程组与不等关系列不等式是解题的关键.35.解不等式组:38?2(1)6x x x >--⎧⎨-≤⎩①② 【答案】24x -<≤【分析】分别解两个一元一次不等式,再写出不等式组的解集即可.【详解】解不等式∵,得2x >-,解不等式∵,得4x ≤,所以,不等式组的解集为24x -<≤.【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式的步骤是解题的关键.36.星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求∵BDC 等于140°才算合格,小明通过测量得∵A =90°,∵B =19°,∵C=40°后就下结论说此零件不合格,于是爸爸让小明解释这是为什么呢?小明很轻松地说出了原因,并用如下的两种方法解出此题.请你代小明分别写出不合格的理由.(1)如图1,连结AD并延长.(2)如图2,延长CD交AB于E.【答案】(1)证明见解析;(2)证明见解析.【分析】直接利用各个图形中的外角等于与它不相邻的两个内角和可得答案;【详解】解:(1)如图1,连结AD并延长.∠=∠+∠∠=∠+∠13,24,C B∴∠=∠+∠=∠+∠+∠+∠=∠+∠+∠BDC B C B BAC C1243=︒+︒+︒=︒≠︒199040149140,所以零件不合格.(2)如图2,延长CD交AB于E.∠=∠+∠∠=∠+∠1,1,A C BDC B∴∠=∠+∠+∠=︒+︒+︒=︒≠︒BDC B A C199040149140,所以零件不合格.【点睛】要考查了三角形的内角和外角之间的关系.三角形的任意一个外角等于与它不相邻的两个内角之和.掌握以上知识是解题的关键.37.已知方程组331x y a x y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数. (1)求a 的取值范围.(2)化简:|1|2a a -++38.我们规定,若关于x 的一元一次方程ax b =的解为x b a =-,则称该方程的为差解方程,例如.932x =的解为32x =,且39322=-,则该方程932x =就是差解方程. 请根据以上规定解答下列问题:(1)若关于x 的一元一次方程51x m -=+是差解方程,则m =________;(2)若关于x 的一元一次方程231x ab a =++是差解方程,且它的解为x a =,求代数式()20222ab +的值.39.如图,已知四边形ABCD 中,,AD CB BD ∥平分,:4:1ABC A DBA ∠∠∠=.(1)求A ∠的度数;(2)如果BDC 是直角三角形,直接写出C ∠的度数.【答案】(1)120°(2)60°【分析】(1)根据平行线的判定,可得答案;(2)根据三角形的内角和,平行线的性质,可得答案.(1)解:∵AD∵CB,∵∵ABC+∵A=180°,∵BD平分∵ABC,∵∵ABC=2∵ABD.∵∵A:∵DBA=4:1,∵∵ABC+∵A=180°,∵∵A=120°.(2)解:当∵AD∵CB,∵A=120°,∵∵DBC=∵ABD=30°.由三角形的内角和,得∵C=180°-∵DBC-∵BDC=180°-30°-90°=60°.【点睛】本题考查了平行线的判定与性质,利用平行线的判定与性质是解题关键.40.把正奇数1,3,5,……,2021,2023排成如图所示的数阵,规定从上到下依次为第1行,第2行,第3行,……,从左到右依次为第1列,第2列,第3列,…….(1)∵数阵中共有___________个数,数2023在第___________行,第___________列;∵图表中第n行第8列的数可用n表示为___________;(2)按如图所示的方法用一个“L”形框框住相邻的三个数,设被框的三个数中最小的一个数为x,是否存在这样的x使得被框的三个数的和等于1471?若存在,求出x的值;若不存在,请说明理由.n ;【答案】(1)∵1012;127;4;∵161(2)不存在,理由见解析【分析】∵由第m 个正奇数可表示为21m -可列方程212023m -=,解得1012m =,可知共有1012个数,每行有8个数,则10128126 .....4 ÷=,即可得到问题的答宲; ∵先计算出从第1行第1列的数到第n 行第8列的数共有8n 个数,则281161n n ⨯-=-,所以第n 行第8列的数是161n -;(2)假设存在这样的x ,则161621471x x x +++++=,解得479x =,由21479m -=得240m =,可知479是数阵中的第240个数,而240830÷=,可知479是数阵第30行的最后一个数,说明在数阵中"L "形框框不出这样的三个数.【详解】(1)解∵∵第m 个正奇数可表示为21m -,由212023m -=得1012m =,所以数阵中共有1012个数;10128126 .....4 ÷=所以数2023在第127行第4列,故答案为:1012;127;4;∵因为每行有8个数,所以从第1行第1个数到第n 行第8列的数共8n 个数,所以第n 行第8列的数是281161n n ⨯-=-,故答案为:161n -;(2)不存在,理由∵因为被框的三个数中最小的一个数为x ,所以161621471x x x +++++=,解得479x =,由21479m -=得240m =,240830÷=(行),可见479是数阵中第30行的第8个数,所以"L "形框框不出这样的三个数,所以不存在这样的x 使得被框的三个数的和等于1471.【点睛】本题考查了解一元一次方程、列一元一次方程解应用题,掌握用代数式表示数阵中的数是关键.41.程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?42.某校组织360名师生外出活动,计划租用甲、乙两种型号的客车;经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)已知师生行李打包后共有164件,若租用10辆甲、乙两种型号的客车,请你帮助设计出该校所有可行的租车方案;(2)若师生行李打包后共有m 件,且170 < m ≤ 184,如果所租车辆刚好把所有师生和行李载走(每辆车均以最多承载量载满),求m 的值. 【答案】(1)见解析;(2)176.【分析】(1)设租用甲车x 辆,则乙车()10x -辆,根据根据车辆所载人数不少于360人,行李件数不少于164可列出方程组()()403010360162010164x x x x ⎧+-≥⎪⎨+-≥⎪⎩,据此求得x 的取值范围,结合x 是整数解答即可;(2)设租用甲车y 辆,乙车z 辆,根据题意得:40y + 30z = 360,m = 16y + 20z ,化简得:4y = 36﹣3z ,代入m = 16y + 20z 得:m = 144 + 8z ,结合m 的取值范围可得出3.25 < z ≤ 5,根据z 、y 是非负整数以及4y = 36﹣3z ,求得z 、y 即可.【详解】解:(1)设租用甲车x 辆,则乙车()10x -辆.根据题意得:()()403010360162010164x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解得:6 ≤ x ≤ 9.∵x 是整数∵x = 6或7或8或9.共有四种方案:∵当甲车租6辆,则乙车租4辆;∵当甲车租7辆,则乙车租3辆;∵当甲车租8辆,则乙车租2辆;∵当甲车租9辆,则乙车租1辆;(2)设租用甲车y辆,乙车z辆,根据题意得:40y + 30z = 360,m = 16y + 20z化简得:4y = 36﹣3z,代入m = 16y + 20z得:m = 144 + 8z∵170 < m ≤ 184∵170 < 144+8z ≤ 184∵3.25 < z ≤ 5∵z、y是非负整数∵z = 4,y = 6,∵m = 176.【点睛】考查了一元一次不等式组的应用,解题的关键是读懂题意,找到关键描述句,进而找到所求的量的不等关系列出不等式,注意z、y是非负整数.43.若关于x的不等式组1532223xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有4个整数解,求a的取值范围.44.如图,在边长为1个单位长度的小正方形组成的网格中,三角形ABC的三个顶点A、B、C均在格点上,请按要求完成下列作图.(1)作出三角形ABC绕着C点逆时针旋转90°得到的三角形A1B1C1.(2)作出三角形ABC关于直线l对称的三角形A2B2C2.【答案】(1)见解析;(2)见解析【分析】(1)利用旋转变换的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)利用轴对称变换的性质分别作出A,B,C的对应点A2,B2,C2即可.【详解】解:(1)如图,三角形A1B1C1即为所求.(2)如图,三角形A2B2C2即为所求.【点睛】本题考查作图-旋转变换,轴对称变换等知识,解题的关键是掌握旋转变换,轴对称变换的性质,正确作出图形.45.某水果店从水果生产基地用6400元购进了葡萄和苹果共500千克,葡萄的进价每千克20元,苹果的进价每千克8元,(1)求该水果店购进葡萄和苹果各多少千克?(2)苹果的销售价为每千克12元,在运输过程中葡萄损耗了20%、若水果店老板计划要在这次买卖中获利不少于2000元、则葡萄的售价最少应为多少?【答案】(1)该水果店购进葡萄200千克,苹果300千克;(2)萄的售价最少应为30元.【分析】(1)根据题意列出二元一次方程组求解即可;(2)根据题意设未知数列出不等式求解即可.【详解】解:(1)设该水果店购进葡萄x千克,苹果y千克,由题意列方程得:500 2086400x yx y+=⎧⎨+=⎩,解得:200300xy=⎧⎨=⎩.答:该水果店购进葡萄200千克,苹果300千克(2)设葡萄的售价为m元,根据题意列不等式得:()12300200120%64002000m⨯+⨯--≥,解得:30≥m,答:葡萄的售价最少应为30元.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解题的关键根据题意列出方程组和不等式.46.随着科技的发展,智能制造逐渐成为一种可能的生产方式.重庆某电子零部件生产商原来采用自动化程度较低的传统生产方式,工厂有熟练工人和新工人共100人,熟练工平均每天能生产30个零件,新工人平均每天能生产20个零件,所有工人刚好用30天完成了一项7.2万个零件的生产任务.(1)请问该工厂有熟练工,新工人各多少人?(请列二元一次方程组解题)(2)今年,某自动化技术团队为工厂提供了A、B两种不同型号的机器人,且两种机器人都可以单独完成零件的生产.已知A型机器人的售价为80万元/台,B型机器人的售价为120万元/台.工厂准备采购价值840万元的机器人设备,两种机器人都至少购买一台,若840万元刚好用完,求出所有可能的购买方案.(3)已知一个零件的毛利润(只扣除了原材料成本)为10元,若选择传统生产方式,熟练工每月基本工资3000元,新工人每月基本工资2000元,在基本工资之上,工厂还需额外支付计件工资5元/件,传统生产方式的设备成本忽略不计.若选择智能制造方式生产,A型机器人每月生产零件1.5万个,B型机器人每月能生产零件2.7万个,1台A 型机器人需要8名技术人员操控,一台B型机器人需要12名技术人员操控,技术人员每人工资1万元,实际生产过程中,一台A型机器人平均每月的总成本为6万元(包含所有设备成本和维护成本),一台B型机器人平均每月的总成本为8万元(包含所有设备成本和维护成本).请你比较传统的生产方式和(2)中的所有购买方案对应的智能生产方式,哪种生产方式每月的总利润最大,最大利润为多少万元?(注:每月均按30天计算)【答案】(1)该工厂有熟练工40名,新工人60名;(2)购买方案有三种,方案一:购买A型机器人3台,B型机器人5台;方案二:购买A型机器人6台,B型机器人3台;方案一:购买A型机器人9台,B型机器人1台;(3)选择智能制造生产方式获得台;(3)传统方式:每天生产零件:30×40+20×60=2400个,每月生产:2400×30=720000个=7.2万个,毛利润:7.2×10=72万元,每月的总利润:72-40×0.3-60×0.2-7.2×5=12万元;智能模式:方案一:生产零件:3×1.5+5×2.7=18万个,毛利润;18×10=180万元,每月的总利润:180-3×6-5×8-(3×8+5×12)×1=38万元;方案二:生产零件:6×1.5+3×2.7=17.1万个,毛利润;17.1×10=171万元,每月的总利润:171-6×6-3×8-(6×8+3×12)×1=27万元;方案三:生产零件:9×1.5+1×2.7=16.2万个,毛利润;16.2×10=162万元,每月的总利润:162-9×6-1×8-(9×8+1×12)×1=16万元,综上,选择智能制造生产方式获得利润最大,此时购进A 型机器人3台,B 型机器人5台,最大利润为38万元.【点睛】本题考查了二元一次方程组的应用,二元一次方程组中的方案问题,弄清题意,找准各量间的关系,认真计算是解题的关键.47.如图1,点O 为直线AB 上一点,过点O 作射线OC ,使3BOC AOC ∠=∠,将一直角三角板的直角顶点放在点O 处,边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转45︒至图2的位置,则MOC ∠=______°.(2)将图1中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在AOC ∠的内部,试探究AOM ∠与NOC ∠之间满足什么等量关系,并说明理由.(3)将图1中的三角尺绕着点O 以每秒15︒的速度按逆时针方向旋转;同时,射线OC 也绕着点O 以每秒5︒的速度按逆时针方向旋转,当一方先完成旋转一周时停止,另一方同时也停止转动,当射线OC 恰好平分MON ∠时,求此时三角板绕点O 的运动时间t 的值. 【答案】(1)90;(2)45AOM CON ∠=∠+︒;(3)18s .【分析】(1)先根据平角定义结合已知条件求出∵AOC 和∵BOC 的度数,再根据旋转角的定义即可得到结论;(2)根据余角定义把∵AOM 用∵AON 表示出来,再把∵CON 用∵AON 表示出来,求∵AOM 与∵CON 的差,即可得到结论;(3)先根据已知条件设OM 的旋转角度为15t ,OC 的旋转角度为5t ,再根据OM 比OC 多旋转180°,列出方程即可得到结论;【详解】(1)∵3BOC AOC ∠=∠,180BOC AOC ∠+∠=︒,∵3180AOC AOC ∠+∠=︒,∵45AOC ∠=︒,145BOC ∠=︒,由题意可知,45BOM ∠=︒,∵90COM BOC BOM ∠=∠-∠=︒.(2)当ON 在AOC ∠内部时,45AON CON ∠+∠=︒,。
【浙教版】七年级数学下期末一模试题(带答案)(1)
![【浙教版】七年级数学下期末一模试题(带答案)(1)](https://img.taocdn.com/s3/m/8f9ef384783e0912a3162a92.png)
一、选择题1.下列事件属于必然事件的是( )A.掷一枚均匀的硬币,正面朝上B.车辆行驶到下一路口,遇到绿灯。
C.若a2=b2,则a=b D.若|a|>|b|,则a2>b22.下列事件中,是必然事件的是( )A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.操场上小明抛出的篮球会下落C.车辆随机到达一个路口,刚好遇到红灯D.明天气温高达30C ,一定能见到明媚的阳光3.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件4.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分AFC的面积是()A.8 B.10 C.20 D.325.下列说法错误的是()A.所有的等边三角形都是全等三角形B.全等三角形面积相等C.三条边分别相等的两个三角形全等D.成轴对称的两个三角形全等6.如图,直线l1与l2相交,且夹角为45°,点P在角的内部,小明用下面的方法作点P的对称点:先以l1为对称轴作点P关于l1的对称点P1,再以l2为对称轴作点P1关于l2的对称点P2,然后再以l1为对称轴作点P2关于l1的对称点P3,以l2为对称轴作点P3关于l2的对称点P4,...,如此继续,得到一系列的点P1,P2,...,Pn,若点Pn与点P重合,则n的值可以是()A.2019 B.2018 C.2017 D.20167.若一个三角形的三边长分别为3,7,x,则x的值可能是()A.6 B.3 C.2 D.118.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E ,BC=EF ,∠C=∠F ;④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组9.给出下列四组条件:①AB=DE ,BC=EF ,AC=DF ; ②AB=DE ,∠B=∠E .BC=EF ;③∠B=∠E ,AC =DF ,∠C=∠F ; ④AB=DE ,AC=DF ,∠B=∠E .其中,能使△ABC ≌△DEF 的条件共有( )A .1组B .2组C .3组D .4组10.某地海拔高度h 与温度T 的关系可用T=21-6h 来表示(其中温度单位为℃,海拔高度单位为km),则该地区某海拔高度为2 000 m 的山顶上的温度为 ( )A .9 ℃B .7 ℃C .6 ℃D .3 ℃11.下列说法中:①40°35′=2455′;②如果∠A+∠B =180°,那么∠A 与∠B 互为余角;③经过两点有一条直线,并且只有一条直线;④在同一平面内,不重合的两条直线不是平行就是相交.正确的个数为( ).A .1个B .2个C .3个D .4个 12.下列计算正确的是( ) A .236236x x x ⋅= B .330x x ÷= C .()33326xy x y = D .()32n n n x x x ÷=二、填空题13.如图是一个可以自由转动的转盘,被等分成六个扇形.请在转盘适当的扇形区域内涂上阴影,使自由转动的该转盘停止转动时,指针指向阴影区域的概率是_____.14.有5张看上去无差别的卡片,上面分别写着0,π,,,1.333,随机抽取1张,做了2000次实验,则取出的数是无理数的频率是_____. 15.如图,长方形OABC 中,8OA =,6AB =,点D 在边BC 上,且3CD DB =,点E 是边OA 上一点,连接DE ,将四边形ABDE 沿DE 折叠,若点A 的对称点'A 恰好落在边OC 上,则OE 的长为____.16.如图,点P 是AOB 内任意一点,OP =10cm ,点P 与点1P 关于射线OA 对称,点P 与点2P 关于射线OB 对称,连接12PP 交OA 于点C ,交OB 于点D ,当△PCD 的周长是10cm 时,∠AOB 的度数是______度.17.已知ABC 的三边长分别为a ,b ,c ,则a b c b c a c a b --+--+-+=______.18.同一温度的华氏度数y(℉)与摄氏度数x(℃)之间的函数解析式是y =95x +32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为__ __℃.19.如图,ED//AC ,BE//CD ,若C 60∠=︒,则E _______∠=︒20.若23x =,25y =,则22x y +=____________.三、解答题21.如图是芳芳设计的自由转动的转盘,上面写有10个有理数。
最新初一数学下期末第一次模拟试题(含答案)
![最新初一数学下期末第一次模拟试题(含答案)](https://img.taocdn.com/s3/m/b76170a3580216fc710afd7f.png)
最新初一数学下期末第一次模拟试题(含答案)一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有 A .1个B .2个C .3个D .4个 2.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=3.已知关于x 的不等式组 的解中有3个整数解,则m 的取值范围是( )A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤54.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°5.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是( ) 队名 比赛场数 胜场 负场 积分 前进 14 10 4 24 光明 14 9 5 23 远大 14 7 a 21 卫星 14 4 10 b 钢铁 14 0 14 14 ……………A .负一场积1分,胜一场积2分B .卫星队总积分b =18C .远大队负场数a =7D .某队的胜场总积分可以等于它的负场总积分6.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多7.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠1=∠AC .∠1=∠4D .∠A=∠38.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE9.已知32x y =-⎧⎨=-⎩是方程组12ax cy cx by +=⎧⎨-=⎩的解,则a 、b 间的关系是( )A .491b a -=B .321a b +=C .491b a -=-D .941a b +=10.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( )A .3B .5C .7D .911.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°12.在平面直角坐标系中,点P(1,-2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____. n/年 2 4 6 8… h/m2.63.23.84.4…14.64的立方根是_______.15.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是_____.16.如图,已知直线,AB CD 相交于点O ,如果40BOD ∠=︒,OA 平分COE ∠,那么DOE ∠=________度.17.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.18.若不等式组1x x a⎧⎨⎩><有解,则a 的取值范围是______.19.已知方程组236x y x y +=⎧⎨-=⎩的解满足方程x +2y =k ,则k 的值是__________.20.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.三、解答题21.某运输公司现将一批152吨的货物运往A ,B 两地,若用大小货车15辆,则恰好能一次性运完这批货.已知这两种大小货车的载货能力分别为12吨/辆和8吨/辆,其运往A ,B 两地的运费如下表所示:目的地(车型) A 地(元/辆) B 地(元/辆) 大货车 800 900 小货车400600(1)求这15辆车中大小货车各多少辆.(用二元一次方程组解答)(2)现安排其中的10辆货车前往A 地,其余货车前往B 地,设前往A 地的大货车为x 辆,前往A ,B 两地总费用为w 元,试求w 与x 的函数解析式.22.(1)(感知)如图①,//AB CD ,点E 在直线AB 与CD 之间,连接AE 、CE ,试说明AEC A DCE ∠=∠+∠.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E 作//EF AB .1A ∴∠=∠( ),//AB CD Q (已知),EF //AB (辅助线作法),//EF CD ∴( ),2DCE ∴∠=∠( ), 12AEC ∠=∠+∠Q ,AEC A DCE ∴∠=∠+∠ ( ).(2)(探究)当点E 在如图②的位置时,其他条件不变,试说明360A AEC C ∠+∠+∠=︒.(3)(应用)如图③,延长线段AE 交直线CD 于点M ,已知130A ∠=︒,120DCE ∠=︒,则MEC ∠的度数为 .(请直接写出答案)23.如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线CD上的一个动点。
【人教版】七年级数学下期末第一次模拟试题(带答案)
![【人教版】七年级数学下期末第一次模拟试题(带答案)](https://img.taocdn.com/s3/m/937cd4ccf18583d04864592d.png)
一、选择题1.已知关于x 的不等式组1021x x x a -⎧<⎪⎨⎪+>⎩有且只有一个整数解,则a 的取值范围是( )A .11a -<≤B .11a -≤<C .31a -<≤-D .31a -≤<- 2.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .03.由方程组71x m y m +⎧⎨-⎩==可得出x 与y 的关系式是( ) A .x+y=8 B .x+y=1 C .x+y=-1 D .x+y=-8 4.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,可列式为( )A .2256x y x y +=⎧⎨=⎩B .2265x y x y+=⎧⎨=⎩ C .22310x y x y +=⎧⎨=⎩ D .22103x y x y +=⎧⎨=⎩ 5.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .452710320x y x y -=⎧⎨+=⎩C .452710320x y x y +=⎧⎨+=⎩D .427510203x y x y -=⎧⎨-=⎩6.如果点A (a ,b )在第二象限,那么a 、b 的符号是( )A .0>a ,0>bB .0<a ,0>bC .0>a ,0<bD .0<a ,0<b 7.已知点M (9,﹣5)、N (﹣3,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交8.若23a =-,2b =--,()332c =--,则a ,b ,c 的大小关系是( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 9.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠= 10.若a b <,则下列不等式中不正确的是( )A .11+<+a bB .a b ->-C .22a b --<--D .44a b < 11.若0a <,则关于x 的不等式221ax x -<+的解集为( ) A .32x a <- B .32x a >- C .32x a >- D .32x a <- 12.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0a b> 二、填空题13.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.14.已知x a y b =⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解,则2a b -=_____. 15.如果方程组25x bx ay =⎧⎨+=⎩的解与方程组41y by ax =⎧⎨+=⎩的解相同,则+a b 的值为______.16.到x 轴距离为2,到y 轴距离为3的点的坐标为___________.17.若点P 位于x 轴上方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,则点P 的坐标是_____________.18.用“<”连接2的平方根和2的立方根_________.19.将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,60A ︒∠=,30D ︒∠=;45E B ︒∠=∠=),当90ACE ︒∠<且点E 在直线AC 的上方,使ACD △的一边与三角形ECB 的某一边平行时,写出ACE ∠的所有可能的值____.20.若关于x 的不等式2x ﹣m≥1的解集如图所示,则m =_____.三、解答题21.一个进行数值转换的运行程序如图所示,从“输入有理数x ”到“结果是否大于0”称为“一次操作”(1)下面命题是真命题有①当输入x =3后,程序操作仅进行一次就停止.②当输入x =﹣1后,程序操作仅进行一次就停止.③当输入x 为负数时,无论x 取何负数,输出的结果总比输入数大.④当输入x <3,程序操作仅进行一次就停止.(2)探究:是否存在正整数x ,使程序只能进行两次操作,并且输出结果小于12?若存在,请求出所有符合条件的x 的值;若不存在,请说明理由.22.某企业在疫情复工准备工作中,为了贯彻落实“生命重于泰山,疫情就是命令,防控就是责任”的思想.计划购买300瓶消毒液,已知甲种消毒液每瓶30元,乙种消毒液每瓶18元.(1)若该企业购买两种消毒液共花费7500元,则购买甲、乙两种消毒液各多少瓶? (2)若计划购买两种消毒液的总费用不超过9600元,则最多购买甲种消毒液多少瓶? 23.某环卫公司通过政府采购的方式计划购进一批A ,B 两种型号的新能源汽车据了解,2辆A 型汽车和3辆B 型汽车的进价共计80万元;3辆A 型汽车和2辆B 型汽车的进价共计95万元.(1)求A ,B 两种型号的汽车每辆进价分别为多少万元;(2)该公司计划恰好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),并使得购进的B 种型号的新能源汽车数量多于A 种型号的新能源汽车数量,请直接写出该公司的采购方案.24.在直角坐标系中,ABC 顶点C 的坐标为()1m ,.90C ∠=︒,//BC x 轴,直线//l y 轴,,BC a AC b ==,ABC 与111A B C △关于直线l 对称,222A B C △与111A B C △关于y 轴对称,333A B C △与222A B C △关于x 轴对称.(1)问ABC 与222A B C △通过平移能重合吗?若不能说明其理由,若能请你说出一个平移方案(平移的单位数用m 、a 表示):(2)试写出点33A B 、坐标(注:结果可用含a 、b 、m 的代数式表示).25.先化简,再求值:()222233a ab a ab ⎛⎫--- ⎪⎝⎭,其中|2|a +与3b -互为相反数. 26.在边长为1的小正方形组成的网格中,把一个点先沿水平方向平移a 格(当a 为正数时,表示向右平移.当a 为负数时,表示向左平移),再沿竖直方向平移b 格(当b 为正数时,表示向上平移.当b 为负数时,表示向下平移),得到一个新的点,我们把这个过程记为(,)a b .例如,从A 到B 记为:1,()3A B →++.从C 到D 记为:(1,2)C D →+-,回答下列问题:(1)如图1,若点A 的运动路线为:A B C A →→→,请计算点A 运动过的总路程.(2)若点A 运动的路线依次为:(2,3)A M →++,(1,1)M N →+-,(2,2)N P →-+,(4,4)P Q →+-.请你依次在图2上标出点M 、N 、P 、Q 的位置.(3)在图2中,若点A 经过(,)m n 得到点E ,点E 再经过(,)p q 后得到Q ,则m 与p 满足的数量关系是 .n 与q 满足的数量关系是 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】首先解每个不等式,然后根据不等式组的整数解的个数,确定整数解,从而确定a 的范围.【详解】 解:1021x x x a -⎧<⎪⎨⎪+>⎩①② 解①得1x <且0x ≠,解②得12a x ->. 若不等式组只有1个整数解,则整数解是1-.1212a -∴-≤<- 所以31a -≤<-,故选:D .【点睛】此题考查的是一元一次不等式组的解法和一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了. 2.C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.3.A解析:A【分析】将第二个方程代入第一个方程消去m 即可得.【详解】71x m y m +⎧⎨-⎩=①=②,将②代入①,得:x+y-1=7,则x+y=8,故选A . 【点睛】本题考查了解一元一次方程和二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4.A解析:A【分析】设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x 、y 的二元一次方程组,此题得解.【详解】设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据题意得:2256x y x y +=⎧⎨=⎩. 故选:A .【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.C解析:C【分析】根据等量关系式“①4辆板车运货量+5辆卡车运货量=27吨;②10辆板车运货量+3辆卡车运货量=20吨”根据相等关系就可设未知数列出方程.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4x+5y=27;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10x+3y=20.可列方程组为452710320x y x y +⎧⎨+⎩==. 故选:C .【点睛】由关键性词语“4辆板车和5辆卡车一次能运27吨货”,“10辆板车和3车卡车一次能运货20吨”,找到等量关系是解决本题的关键.6.C解析:C【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【详解】∵点A (a ,b )在第二象限,∴a <0,b >0;故选:C .【点睛】此题考查直角坐标系中点的坐标,熟记各象限内点的坐标特征是解题的关键.7.D解析:D【分析】根据点M 、N 的坐标可得直线MN 的解析式,由此即可得.【详解】(9,5),(3,5)M N ---,∴直线MN 的解析式为5y =-,则直线MN 与x 轴平行,与y 轴垂直相交,故选:D .【点睛】本题考查了直线与坐标轴的位置关系,正确求出直线的解析式是解题关键.8.D解析:D【分析】根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.【详解】解:∵3a ==-,b =,()22c ==--=,∴c b a >>,故选:D .【点睛】本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简. 9.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.10.C解析:C【分析】根据不等式的性质来解答即可.不等式的性质为:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A :不等式a <b 两边都加1,不等号的方向不变,原变形正确,故此选项不符合题意;B :不等式a <b 两边都乘以-1,不等号的方向改变,原变形正确,故此选项不符合题意;C :不等式a <b 两边都乘-1再加上-2,不等号的方向改变,原变形不正确,故此选项符合题意;D :不等式a <b 两边都除以4,不等号的方向不变,原变形正确,故此选项不符合题意; 故选:C .【点睛】本题考查了利用不等式的性质进行不等式的变形.解题的关键是熟练掌握不等式的性质并正确运用.11.B解析:B【分析】先移项,再合并,最后把系数化为1,即可求出答案.【详解】移项,得:212ax x -<+,合并同类项得:(2)3a x -<,∵0a <,∴20a -<, ∴32x a >-, 故选:B .【点睛】 本题主要考查了一元一次不等式的解法,要注意系数化为1时,因为0a <,所以不等号的方向要改变.12.B解析:B【分析】由题意可得a 、b 的大小关系和符号关系,从而根据不等式的基本性质和有理数乘除法的符号法则可以得到正确解答.【详解】解:由题意可得:a<b ,-a>b ,所以由不等式的性质可得:b-a>0,a+b<0,故A 、C 错误; 又由题意可得a 、b 异号,所以B 正确,D 错误;故选B .【点睛】本题考查数轴的应用,利用数形结合的思想方法、不等式的性质和有理数乘除法的符号法则求解是解题关键.二、填空题13.【分析】根据题意列出代数式解答即可【详解】解:故答案为:【点睛】此题考查解一元一次不等式关键是根据题意列出代数式解答解析:1.1【分析】根据题意列出代数式解答即可.【详解】解:{}{}{}3.9 1.81+--()()()()39318211⎡⎤=-+-----⎣⎦..0902=+..11=.故答案为:11.. 【点睛】此题考查解一元一次不等式,关键是根据题意列出代数式解答.14.3【分析】把代入方程组得到关于a 和b 的二元一次方程组求解即可【详解】解:∵是方程组的解∴解得∴故答案为:3【点睛】本题考查二元一次方程组的解解二元一次方程组掌握解二元一次方程组的方法是解题的关键 解析:3【分析】把x a y b =⎧⎨=⎩代入方程组,得到关于a 和b 的二元一次方程组,求解即可. 【详解】解:∵x a y b =⎧⎨=⎩是方程组2025x y x y -=⎧⎨+=⎩的解, ∴2025a b a b -=⎧⎨+=⎩, 解得21a b =⎧⎨=⎩, ∴23a b -=,故答案为:3.【点睛】本题考查二元一次方程组的解、解二元一次方程组,掌握解二元一次方程组的方法是解题的关键.15.1【分析】把代入方程组即可得到一个关于ab 的方程组即可求解【详解】解:由题意可知:为的解将代入得①×2-②得将代入①得故答案为:1【点睛】本题考查了二元一次方程组的解的定义理解定义是关键解析:1【分析】把24x y =⎧⎨=⎩代入方程组51bx ay by ax +=⎧⎨+=⎩,即可得到一个关于a ,b 的方程组,即可求解. 【详解】解:由题意可知:24x y =⎧⎨=⎩为51bx ay by ax +=⎧⎨+=⎩的解,∴将2x =,4y =代入得,245421b a b a +=⎧⎨+=⎩①②, ①×2-②,得69a =,32a =, 将32a =代入①得,32452b +⨯=,12b =, 31122a b ⎛⎫+=+-= ⎪⎝⎭, 故答案为:1.【点睛】本题考查了二元一次方程组的解的定义,理解定义是关键.16.(32)(﹣32)(﹣3﹣2)或(3﹣2)【分析】根据点到x 轴的距离是纵坐标的绝对值点到y 轴的距离是横坐标的绝对值可得答案【详解】解:∵点到x 轴的距离是2到y 轴的距离是3∴该点的坐标是(32)(﹣3解析:(3,2),(﹣3,2),(﹣3,﹣2)或(3,﹣2)【分析】根据点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,可得答案.【详解】解:∵点到x 轴的距离是2,到y 轴的距离是3,∴该点的坐标是(3,2),(﹣3,2),(﹣3,﹣2)或(3,﹣2),故答案为:(3,2),(﹣3,2),(﹣3,﹣2)或(3,﹣2).【点睛】本题考查了点的坐标,利用点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值是解题关键.17.【分析】设点P 的坐标为先根据点P 的位置可得再根据点到坐标轴的距离即可得【详解】设点P 的坐标为点位于轴上方轴左侧点P 距离轴4个单位长度距离轴2个单位长度即则点P 的坐标为故答案为:【点睛】本题考查了点到 解析:(2,4)-【分析】设点P 的坐标为(,)a b ,先根据点P 的位置可得0,0a b <>,再根据点到坐标轴的距离即可得.【详解】设点P 的坐标为(,)a b ,点P 位于x 轴上方,y 轴左侧,0,0a b ∴<>,点P 距离x 轴4个单位长度,距离y 轴2个单位长度,4,2b a ∴==,4,2b a ∴=-=,即2,4a b =-=,则点P 的坐标为(2,4)-,故答案为:(2,4)-.【点睛】本题考查了点到坐标轴的距离、点坐标,掌握理解点到坐标轴的距离是解题关键. 18.<<【分析】先表示出2的平方根与立方根再根据有理数的大小比较可得答案【详解】解:2的平方根为±2的立方根为∴<<故答案为:<<【点睛】本题主要考查立方根解题的关键是掌握平方根算术平方根与立方根的定义 解析:2-<32<2.【分析】先表示出2的平方根与立方根,再根据有理数的大小比较可得答案.【详解】解:2的平方根为±2,2的立方根为32,∴2-<32<2,故答案为:2-<32<2.【点睛】本题主要考查立方根,解题的关键是掌握平方根、算术平方根与立方根的定义. 19.30°或45°【分析】分2种情况进行讨论:当CB ∥AD 时当EB ∥AC 时根据平行线的性质和角的和差关系分别求得∠ACE 角度即可【详解】解:当时;当时故答案为:30°或45°【点睛】本题主要考查了平行线解析:30°或45°【分析】分2种情况进行讨论:当CB ∥AD 时,当EB ∥AC 时,根据平行线的性质和角的和差关系分别求得∠ACE 角度即可.【详解】解:当//CB AD 时,18060120,1209030ACB ACE ︒︒︒︒︒︒∠=-=∠=-=;当//EB AC 时,45ACE E ︒∠=∠=.故答案为:30°或45°.【点睛】本题主要考查了平行线的性质,解题时注意分类讨论思想的运用,分类时不能重复,也不能遗漏.20.3【分析】根据不等式的解集可得关于m 的方程根据解方程可得答案【详解】解:解不等式得x≥由不等式的解集是x≥2得=2解得m =3故答案为:3【点睛】本题主要考查的是一元一次不等式的解法将数轴和不等式结合 解析:3【分析】根据不等式的解集,可得关于m 的方程,根据解方程,可得答案.【详解】解:解不等式得 x≥12+m , 由不等式的解集是x≥2,得12+m =2, 解得m =3,故答案为:3.【点睛】本题主要考查的是一元一次不等式的解法,将数轴和不等式结合起来观察是解题的关键.三、解答题21.(1)②③;(2)存在,x 的值为2.【分析】(1)①把3x =输入程序,通过计算得到结果小于0,从而可判断①错误;②把1x =-输入程序,通过计算得到结果大于0,从而可判断②正确;③输入负数x ,结果为36x -+,由不等式的基本性质可判断③正确;④令 2.5x =代入程序,进行验证,可判断④;(2)由程序只能进行两次操作,可得:3609120x x -+≤⎧⎨->⎩且912x -<12,解不等式组结合x为整数,从而可得答案.【详解】解:(1)①当输入x =3后,结果为:3×(﹣3)+6=﹣3,返回,所以程序操作仅进行一次就停止错误.②当输入x =﹣1后,结果为:﹣1×(﹣3)+6=9,程序操作仅进行一次就停止,正确. ③当输入x 为负数时,结果为:36x -+, x <0,3x ∴->0,36x ∴-+>6,∴ 无论x 取何负数,输出的结果总比输入数大,正确.④当输入x <3,如x =2.5时,结果为:2.5×(﹣3)+6=﹣1.5,所以程序操作仅进行一次就停止,错误,故答案为:②③.(2)存在,2x =,理由如下:∵程序只能进行两次操作第一次计算的代数式是(﹣3x +6),第二次输出的代数式是(﹣3)×(﹣3x +6)+6=9x ﹣12,∴3609120x x -+≤⎧⎨->⎩, 解不等式组得2x ≥,又因为9x ﹣12<12∴ 9x <24∴ x <83, ∴823x ≤≤, ∵x 为整数,所以x =2.【点睛】本题考查的是代数式的值,程序框图的含义,不等式的基本性质,一元一次不等式组的解法,掌握以上知识是解题的关键.22.(1)175,125;(2)350【分析】(1)设购买甲种消毒液x 瓶,购买乙种消毒液y 瓶,根据题意列出方程组求解; (2)设购买甲种消毒液a 瓶,根据总费用不超过9600元,列不等式求解.【详解】解:(1)设购买甲种消毒液x 瓶,购买乙种消毒液y 瓶,依题意得:30030187500x y x y +=⎧⎨+=⎩,解得175125x y =⎧⎨=⎩,答:购买甲种消毒液175瓶,购买乙种消毒液125瓶;(2)设购买甲种消毒液a 瓶,依题意得:30a +18(300-a )≤9600 ,解得a ≤350 ,答:最多购买甲种消毒液350瓶.【点睛】本题考查二元一次方程组和不等式的应用,解题的关键是根据题意列出方程组和不等式进行求解.23.(1)A ,B 两种型号的汽车每辆进价分别为25万元,10万元;(2)购进A 型号的新能源汽车2台,B 型号的新能源汽车15台;购进A 型号的新能源汽车4台,B 型号的新能源汽车10台【分析】(1)设A 型汽车每辆的进价为x 万元,B 型汽车每辆的进价为y 万元,根据“2辆A 型汽车、3辆B 型汽车的进价共计80万元, 3辆A 型汽车、2辆B 型汽车的进价共计95万元”,列出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,根据总价=单价×数量,即可得出关于m ,n 的二元一次方程,结合m ,n 均为正整数即可得出各购买方案 .【详解】解:(1)设A ,B 两种型号的汽车每辆进价分别为x 万元,y 万元.依题意,列出的方程组为23803295x y x y +=⎧⎨+=⎩, 解这个方程组,得2510x y =⎧⎨=⎩. 答:A ,B 两种型号的汽车每辆进价分别为25万元,10万元.(2)设购进A 型汽车m 辆,购进B 型汽车n 辆,m<n ,依题意,得:25m+ 10n=200,∴m=8-25n ∵m ,n 均为正整数,∴n 为5的倍数,∴m=6,n=5或m=4,n=10或m=2,n=15,∵m<n,∴m=6,n=5不合题意舍去,∴共2种购买方案方案一:购进A 型车4辆,B 型车10辆;方案二:购进A 型车2辆,B 型车15辆.答:购进A 型号的新能源汽车2台,B 型号的新能源汽车15台;购进A 型号的新能源汽车4台,B 型号的新能源汽车10台.【点睛】本题考查了二元一次方程组的运用以及二元一次方程的综合应用,解题的关键是找准等量关系,正确列出二元一次方程(组).24.(1)能,ABC 向左平移2(m -a )个单位;(2)A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【分析】(1)根据平移的性质判断能否通过平移使ABC 与222A B C △重合,根据直角坐标系和三角形的边长判断平移的单位;(2)根据平移的特点并结合直角坐标系即可确定点33A B 、坐标.【详解】(1)由图可知能通过平移使ABC 与222A B C △重合,∵点C (m ,1),BC =a又ABC 与111A B C △关于直线l 对称,∴点C 1(m -2a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点C 2(﹣m +2a ,1)∴平移单位:m -(﹣m +2a )=2(m -a )个单位使ABC 与222A B C △重合, (2)∵点C (m ,1),BC =a ,AC =b∴点A (m ,1+b ),点B (m -a ,1)又ABC 与111A B C △关于直线l 对称,∴点A 1(m -2a ,1+b ),B 1(m -a ,1)∵222A B C △与111A B C △关于y 轴对称,∴点A 2(﹣m +2a ,1+b ),B 2(﹣m +a ,1)∵333A B C △与222A B C △关于x 轴对称∴点A 3(﹣m +2a ,﹣1﹣b ),B 3(﹣m +a ,﹣1)【点睛】本题主要考查平面直角坐标系,点的坐标、平面图形的平移的性质,轴对称图形的性质,解题的关键是平面图形的平移的性质,轴对称图形的性质,利用数形结合的数学思想. 25.ab ;-6.【分析】原式去括号合并得到最简结果,利用相反数及非负数的性质求出a 与b 的值,代入计算即可求出值.【详解】解:原式=2a 2-2ab-(2a 2-3ab )=2a 2-2ab-2a 2+3ab= ab , ∵2a +∴,∴a+2=0,30b -=,解得:a=-2,3b =,当a=-2,b=3时,原式=-6.【点睛】此题考查了整式的加减-化简求值,以及算术平方根的非负性,熟练掌握运算法则是解本题的关键.26.解:(1)A 运动过的总路程是14;(2)见解析;(3)5m p +=;0n q +=【分析】(1)按照先左右后上下的顺序列出算式,再计算即可;(2)根据题意画出图即可;(3)根据A 、Q 水平相距的单位,可得m 、p 的关系;根据A 、Q 水平相距的单位,可得n 、q 的关系.【详解】解:(1)∵点A 的运动路线为:A B C A →→→,则根据题意可得:1,()3A B →++,(2,1)B C →++,(3,4)C A →--,∴点A 运动过的总路程是:1321|3||4|14++++-+-=;(2)根据题意,点M 、N 、P 、Q 的位置如下图示:(3)∵点A 经过(,)m n 得到点E ,点E 再经过(,)p q 后得到Q ,根据题意可得:5m p +=,0n q +=.故答案为5m p +=,0n q +=.【点睛】本题考查了坐标与图形变化-平移,横坐标,右移加,左移减;纵坐标,上移加,下移减.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【好题】七年级数学下期末第一次模拟试题含答案(1)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70°2.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( )A .1B .0C .-2D .-13.已知关于x 的不等式组 的解中有3个整数解,则m 的取值范围是( )A .3<m≤4B .4≤m<5C .4<m≤5D .4≤m≤54.在平面直角坐标中,点M(-2,3)在( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.下面不等式一定成立的是( ) A .2aa < B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >6.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°7.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩8.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( ) A .4cm B .2cm ;C .小于2cmD .不大于2cm9.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°10.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.11.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4 D .()8,412.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,0二、填空题13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.14.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.15.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论: ①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降 ③音乐手机4月份的销售额比3月份有所下降 ④今年1-4月中,音乐手机销售额最低的是3月 其中正确的结论是________(填写序号).16.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____.17.已知a 、b 满足(a ﹣1)22b +,则a+b=_____. 18.关于x 的不等式组352223x x x a -≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________.19.已知点(0,)A a 和点(5,0)B ,且直线AB 与坐标轴围成的三角形的面积为10,则a 的值为________.20.不等式30x -+>的最大整数解是______三、解答题21.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数. 小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由; (2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.22.问题情境:如图1,//AB CD ,128PAB ∠=︒,124PCD ∠=︒,求APC ∠的度数.小明的思路是过点P 作//PE AB ,通过平行线性质来求APC ∠.(1)按照小明的思路,写出推算过程,求APC ∠的度数.(2)问题迁移:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D 两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由.(3)在(2)的条件下,当点P 在线段OB 上时,请直接写出APC ∠与α、β之间的数量关系.23.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?24.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.25.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据∠AOM=90°﹣∠COM即可求解.【详解】∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO⊥BC,∴∠AOC=90°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.故选B.【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.2.D解析:D 【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:2423m n m n -=⎧⎨-=⎩①② ②-①得m+n=-1. 故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n 这个整体式子的值.3.C解析:C 【解析】 【分析】表示出不等式组的解集,由解集中有3个整数解,确定出m 的范围即可. 【详解】不等式组解集为1<x <m ,由不等式组有3个整数解,且为2,3,4,得到4<m≤5, 故选C . 【点睛】此题考查了一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.4.B解析:B 【解析】 ∵−2<0,3>0, ∴(−2,3)在第二象限, 故选B.5.D解析:D 【解析】 【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案. 【详解】A. 当0a ≤时,2aa ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确; 故选D . 【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.6.A解析:A 【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.7.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.8.D解析:D 【解析】 【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案. 【详解】当PC ⊥l 时,PC 是点P 到直线l 的距离,即点P 到直线l 的距离2cm ,当PC 不垂直直线l 时,点P 到直线l 的距离小于PC 的长,即点P 到直线l 的距离小于2cm ,综上所述:点P 到直线l 的距离不大于2cm , 故选:D .考查了点到直线的距离,利用了垂线段最短的性质.9.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.10.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.11.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.12.B解析:B 【解析】 【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论. 【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0. 故选: B. 【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.二、填空题13.m>-2【解析】【分析】首先解关于x 和y 的方程组利用m 表示出x+y 代入x+y >0即可得到关于m 的不等式求得m 的范围【详解】解:①+②得2x+2y =2m+4则x+y =m+2根据题意得m+2>0解得m >解析:m >-2【解析】 【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围. 【详解】 解:2133x y m x y -=+⎧⎨+=⎩①②,①+②得2x +2y =2m +4, 则x +y =m +2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.15.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额解析:④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是 60×18%=10.8(万元),4月份音乐手机的销售额是 65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为:④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.16.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩ 【解析】【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==. 故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.17.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab 的值进而得出答案【详解】∵(a ﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a ,b 的值,进而得出答案.【详解】∵(a ﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.18.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a 的不等式组求出即可【详解】解不等式3x -5≤2x -2得:x≤3解不能等式2x+3>a 得:x >∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a 的不等式组,求出即可.【详解】解不等式3x-5≤2x -2,得:x≤3,解不能等式2x+3>a ,得:x >32a -, ∵不等式组有且仅有4个整数解,∴-1≤32a -<0, 解得:1≤a <3,∴整数a 的值为1和2,故答案为:1,2.【点睛】 本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可【详解】解:假设直角坐标系的原点为O 则直线与坐标轴围成的三角形是以OAOB 为直角边的直角三角形∵和点∴∴∴∴故答案为:±4【点睛 解析:±4【解析】【分析】根据三角形的面积公式和已知条件列等量关系式求解即可.【详解】解:假设直角坐标系的原点为O ,则直线AB 与坐标轴围成的三角形是以OA 、OB 为直角边的直角三角形,∵(0,)A a 和点(5,0)B ,∴||OA a =,5OB =,∴11||51022OAB S OA OB a ∆=⨯⨯=⨯⨯=, ∴||4=a ,∴4a =±,故答案为:±4. 【点睛】本题主要考查了三角形的面积和直角坐标系的相关知识,需注意坐标轴上到一个点的距离为定值的点有2个.20.2【解析】解不等式-x+3>0可得x <3然后确定其最大整数解为2故答案为2点睛:此题主要考查了不等式的解法和整数解得确定解题关键是利用不等式的基本性质3解不等式然后才能从解集中确定出最大整数解解析:2【解析】解不等式-x+3>0,可得x <3,然后确定其最大整数解为2.故答案为2.点睛:此题主要考查了不等式的解法和整数解得确定,解题关键是利用不等式的基本性质3解不等式,然后才能从解集中确定出最大整数解.三、解答题21.(1)CPD αβ∠=∠+∠,理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【解析】【分析】(1)过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;(2)分两种情况:①点P 在A 、M 两点之间,②点P 在B 、O 两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出结论.【详解】解:(1)∠CPD =∠α+∠β,理由如下:如图,过P 作PE ∥AD 交CD 于E .∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE +∠CPE =∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.22.(1)108°;(2)∠APC=α+β,理由见解析;(3)∠APC=β-α.【解析】【分析】(1)过P作PE∥AB,先推出PE∥AB∥CD,再通过平行线性质可求出∠APC;(2)过P作PE∥AB交AC于E,先推出AB∥PE∥DC,然后根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案;(3)过点P作PE∥AB交OA于点E,同(2)中方法根据平行线的性质得出α=∠APE,β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=128°,∠PCD=124°,∴∠APE=52°,∠CPE=56°,∴∠APC=∠APE+∠CPE=108°;(2)∠APC=α+β.理由如下:如图2,过P作PE∥AB交AC于E,∵AB∥CD,∴AB∥PE∥CD,∴α=∠APE,β=∠CPE,∴∠APC=∠APE+∠CPE=α+β;(3)∠APC=β-α.理由如下:过点P作PE∥AB交OA于点E,同(2)可得,α=∠APE,β=∠CPE,∴∠APC=∠CPE-∠APE=β-α.【点睛】本题主要考查了平行线的性质与平行公理,解题的关键是过拐点作平行线,利用平行线的性质解决问题.23.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x台,则乙种型号的电视机y台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x台,则乙种型号的电视机(50-x)台.则1500x+2100(50-x)≤76000,解得:x≥4813.则50≥x≥4813.∵x 是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.24.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.25.(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】【分析】(1)由两个统计图可以发现第一次22名优秀的同学占55%,故该班总人数为2255%=40÷;(2)第四次优秀人数为:4085%=34⨯,第三次优秀率为3240×100%=80%,据此可以补全统计图;(3)根据图像可以写出优秀人数逐渐增多,增大的幅度逐渐减小等信息.【详解】解:(1)由题意可得:该班总人数是:22÷55%=40(人); 故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人), 第三次优秀率为:3240×100%=80%; 如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点睛】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.。