2021年数学说课稿初中四篇【整合汇编】

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年数学说课稿初中四篇
数学说课稿初中篇1
一、说教材分析:
1、教材的地位和作用
“平方根”是省编教材初中数学第三册第十章“实数”的第一节内容。

由于实际计算中需要引入无理数,使数的范围从有理数扩充到了实数,完成了初中阶段数的扩展。

运算方面,在乘方的基础上以引入了开方运算,使代数运算得以完善。

因此,本节课是今后学习根式运算、方程、函数等知识的重要基础。

2、教学目标:(依据教材和大纲确定)
⑴、使学生理解平方根的概念,了解平方与开平方的关系。

⑵、学会平方根的表示法和求非负数的平方根。

⑶、通过上述知识的教学,培养学生的“实践第一”的观点;体验数学________于实践,又服务于实践的思想。

⑷、对学生进行爱国主义的思想教育。

3、教学重点、难点与关键:
重点:平方根的概念。

难点:平方根的概念和表示。

关键:求平方根(即开平方)运算要靠它的逆运算平方来进行。

二、说教学方法和手段:
根据教材内容结合初二学生的认知特点,采用边启发、边分析、层层设疑、讲练结合的教学方式。

同时,利用媒体形象直观地展示引例、例题及练习。

帮助学生理解概念,活跃课堂气氛,增大教学密度,提高教学效率。

三、说学法指导:
学生通过动手、动口、动脑等活动;主动探索,发现问题;互动合作、解决问题;归纳概括、形成能力。

增强数学应用意识、协作学习意识,养成及时归纳总结的良好学习习惯,使学生的主体地位得以体现。

四、说教学程序:
教学环节教学程序设计意图
教师活动学生活动
创设情境
引入新课
1、出示引例1:(投影片显示)
一艘轮船由A码头出发,朝正东方向行驶3千米至C处,然后朝正北方向行驶2千米至B处,问A、B相距多少千米?
2、提出问题:⑴已知一个数要求这个数的平方,该如何求?
⑵已知一个数的平方,要求这个数,又该如何求?
⑶符合这样条件的数有几个?该如何表示?(依据己有的知识经验估计学生会回答------正方形的面积是边长的平方。

)思考,探索问题解决的途径。

复习己学知识
复习乘方运算法则。

培养学生逆向思维能力。

诱发学生寻找解题途径。

交流对话
探索新知引例2:(投影片显示)
已知一个正方形的面积等于4cm2,求它的边长。

引导学生观察分析、思考。

强调指出应根据实际情况确定边长的值。

总结:
已知某数的平方要求这个数,用式子来表示就应是:已知
x2=a,求x的值。

这和我们一开始提出的问题,求一个已知数的平方正好相反。

要解决这样一个问题,就须在数学上引进一个新的概念――平方根。

引导学生举例。

简要介绍数的产生与发展。

思考、发现:
逆用乘方运算。

深入探究,如设一边长为xcm,依题意有x2=4,∵22=4,(-2)2=4
∴满足x2=4的x的值可以是2,也可以是-2,但正方形的边长不能是负数,∴x=2即这个正方形的边长是2cm。

归纳总结得出平方根的概念:如果一个数的平方等于a,那么这个数叫做a的平方根(也叫二次方根)。

理解并会表示平方根
举例。

了解培养学生用逆向思维的观点去分析问题,发现问题中蕴涵着的一些相互联系的量(面积与边长),再通过设未知数,
从而将实际问题转化为方程与乘方运算问题,体验问题解决的思想方法。

使学生养成及时归纳总结的良好学习习惯
巩固平方根概念
突出教学重点
向学生渗透“实践第一”的辨证唯物主义观点。

课堂练习
比较探究
归纳总结教材第87页练习,个别口答。

通过练习,引导学生比较探究,寻找规律,得出法则(用投影片显示)。

强调正数有两个平方根,决不能丢掉任何一个。

若丢掉了一个,都是错误的。

平方根的表示法。

(强调,特别注意的是≠±,其中a是非负数。


开平方的定义。

求一个数的平方根就是开平方运算,要靠它的逆运算平方运算来进行。

独立思考完成。

共同校对,矫正。

得出法则:一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

共同校对,矫正,使语言精练准确。

理解,掌握。

使学生及时巩固用平方根的概念来解决问题的方法,培养学生的类比能力;提高学生的解题能力和归纳总结能力。

让学生明确平方与开平方是互为逆运算关系。

例题分析
反馈调控
形成能力出示例一:下列各数有没有平方根?若有,求出它的平方根;若没有,请说明理由。

⑴36 ⑵ 0.16 ⑶ (-4)2 ⑷ -32 ⑸ 0 ⑹⑺ -|a|-4 ⑻ 2
引导学生分析比较:⑴、要判断一个数有没有平方根,就要看它是不是负数,若是负数就没有平方根,不是负数就有平方根。

⑵求平方根时,要注意利用平方根的定义来求。

板书解题过程:……
指出:在解具体问题时,要灵活运用法则;带分数开平方时,要先把带分数化成假分数结合平方根的概念与法则,探索思路方法,口述解题思路。

掌握解题过程的书写格式。

培养分析比较能力。

领会解决问题的思路。

渗透比较思想,让学生体验数学________于实践,又服务于实践的思想。

梳理概括
形成结构师生一起讨论得出(投影片显示):1、一个正数有正、负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

2、正数a的平方根的表示方法为±。

3、带分数开平方时,要先把带分数化成假分数。

师生一起讨论得出
突破教学难点。

培养学生的归纳总结能力。

应用新知
体验成功出示练习(投影片显示):
1、判断正误,并且改错:(用投影片显示题目)
⑴100的平方根是10
⑵非负数一定有平方根
⑶9 的平方根是±3
⑷2的平方根是±
2、教材第89页练习2、
3、4
巡视、小组辅导
选取小组代表回答,给予积极的评价,并强调注意点:正数有两个平方根,决不能丢掉任何一个。

若丢掉了一个,都是错误的。

②正确表示平方根。

③根据实际情况来确定适用的方法。

小组讨论,互相质疑,校对,矫正。

共同完成。

书写练习4的解题过程。

培养学生的合作精神。

使学生及时巩固用平方根的定义和法则解决问题的方法,规范解题格式。

同时使学生注意解题的关键。

问题迁移出示练习(投影片显示)
1、什么数的平方根是它的本身?
2、求下列各式中x的值:
⑴ x2=25 ⑵ 2x2-32=0
⑶ 4(x+2)2-81=0
(这里估计学生会联想到引例2解决过类问题)巡视、小组辅导。

投影有代表性的学生的解答过程,给予积极的评价。

阅读题目
先独立思考后分小组讨论,发现,质疑,达成共识。

书写解题过程。

使学生再深入探索平方根的定义与法则,培养学生的转化思想、发散思维和合作精神。

规范书写解题过程。

知识整理
形成系统提问:
①这节课学习了用什么知识解决哪类问题?②解决问题的一般步骤是什么?应注意哪些问题?
③并学到了哪些思考问题的方法?④介绍开方最早见于我国的《九章算术》,比国外早一千多年。

出示“想一想”:()2 = ? (- )2 =?
(从知识、能力等方面)对所学内容加以概括,相互讨论,回答,补充,共同整理。

加深学生对知识的理解,形成知识系统,为今后继续学习实数性质的应用打下基础。

爱国主义教育。

加深学生对平方根概念及其表示法的理解。

布置作业巩固提高⑴完成作业本上的题目。

⑵兴趣题:已知某数的平方根是x+2和3x-14,求这个数。

课后结合自身水平独立完成相应的习题:
⑴基础一般的学生完成作业本。

⑵基础稍好的学生完成作业本和兴趣题。

让学生巩固所学内容并进行自我评价,但考虑学生基础的差异性,故进行分层次要求。

板书设计
10.1平方根
投影学生练习
……例一:
解:(板演详细解题过程)……平方根概念:……开平方概念:……法则:……
设计说明:
㈠、指导思想:
依据学生已有的基础及教材所处的地位和作用,遵循现代教学思想和学生的认知规律;在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成;对学生进行爱国主义的思想教育,培养学生良好的个人品质;使学生体验数学的“实践第一”和数学________于实践,又服务于实践的思想。

㈡、教学目标的确定:
根据《教学大纲》的要求(使学生理解平方根的概念,了解平方与开平方的关系;理解并学会平方根的概念和表示。

),结合教材内容及学生实际,从知识、能力、情感等方面确定了这节课的教学目标。

㈢、关于教法和学法
采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,用实例和生活语言激发学生学习兴趣,调节学习情绪,让学生在乘方运算及其逆运算及平方根性质法则的比较中主动
发现问题;应用数学思想方法分析讨论,解决问题;在练习训练中提高解题能力,培养良好学习习惯。

同时,采用媒体辅助教学,增大教学密度,更好地揭示了问题的本质,突破教学难点,提高教学效率。

㈣、关于教学程序的设计
在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:
①注重目标控制,面向全体学生,启发式与探究式教学。

②注重学生参与知识的形成过程,增强学习数学的信心,体验应用数学知识解决问题的乐趣。

③注重师生间、同学间的互动协作,共同提高。

④注重知能统一,让学生在获取知识的同时,掌握方法,灵活运用。

数学说课稿初中篇2
说教材:
1.地位和作用:
本节内容是北师版初中数学初一下册第五章《三角形》的第一节。

目的是让学生在对三角形已有的认识的基础上,经历从现
实世界中探究出几何模型的过程,科学认识三角形的相关知识、基本要素及其表示方法,然后引导学生通过实验、比较等操作活动来探究三角形三边之间的关系;是"数学________于生活,而又应用于生活"的重要体现,是对三角形认识的深化,也是今后继续系统探究三角形全等、三角形相似等知识的基础。

2.教学目标:
根据本节课在教材中的地位和作用,结合课程标准要求"教学内容应体现基础性,要有利于学生主动地进行数学学习活动,让学生能积极参与数学学习活动,对数学有好奇心和求知欲"的理念。

确定本节课的教学目标如下:
(1)知识与技能:
结合具体实例,经历从现实生活中抽象出几何模型的过程,小学语文教学视频进一步认识三角形的概念及其基本要素;经历观察、操作、猜想、推理、交流等活动的过程,掌握三角形三边之间的关系。

(2)过程与方法:
通过动手实践、自主探索,培养学生自主学习的能力;通过师生互动探究,培养学生合作交流的能力。

(3)情感态度与价值观:
在教学中渗透数学美、数学分类思想,培养学生浓厚的学习热情;同时树立知识________于生活,又服务于生活的观点。

3.教学重难点:
由于学生在小学的学习,对三角形已有所认识,生活中也看到不少的三角形模型,也有了两点之间线段最短的生活经验。

因此,学生对知识的学习可能并不是特别困难,但对从现实生活中抽象出几何模型,"数学生活化"思想的理解,以及建立模型后通过自主、合作、探究等多种学习方式,展示知识的形成过程,由众多特例总结归纳三角形三边关系的理解可能会存在一定的困难。

因此,我确定本节课的重难点为:
教学重点:
①认识三角形的概念、基本要素及表示方法。

②三角形三边关系的探究与理解。

教学难点:三角形三边关系的探究与理解。

4.教材处理:
为了突出重点、突破难点:我对教材做了部分调整,以"猜谜、摆图案"激发学生的学习兴趣,以"生活中的三角形"为切入口,渗透"数学________于生活,而又应用于生活"的数学理念。

让学生更加积极地投入到之后的实验探索中,主动获取知识。

在练习题上巧设坡度,降低难度,弱化学习障碍的影响。

数学说课稿初中篇3
【教材分析】
《代数式》是浙教版七上实验教材第四章第二节课程。

本节是在完成了实数数集的扩充,了解了字母表示数后,进一步学习代数式及列代数式。

从数到式是学生认识上“质”的飞跃,是研究方程、不等式、函数等数学知识的基础,可以说本节是“代数”之始。

同时,本节课所渗透的特殊到一般的辨证思想和数学建模的思想方法,对学生今后的数学学习和发展都有非常重要的意义。

【学生情况分析】
在本节内容学习之前,学生已具有了如下的“现有发展区”。

但对初一新生来说,从“数”到“式”这种认识上的飞跃没有足够的心理准备,对用字母表示数的理解还不深刻,尤其是数学的应用意识和应用能力还较弱,所以用代数式表示实际问题中的数量关系会感到难于理解。

【教学目标】
根据学习任务分析和学生认知特点,我从三方面确定本节课的教学目标:
知识与技能目标的“了解”、“运用”与“发展”是根据课程标准的要求和学生原有的认知、能力水平来确定的。

过程、方法目标和情感、态度目标是根据本节教材的独特性、抽象性,突出“非智力因素”的培养而确定的,以使学生在获得对数学理解的同时,在思维能力、情感态度与价值观等方面得到进步和发展。

【重点难点】
教学重点:代数式的概念及用代数式表示常用的数量关系。

教学难点:用代数式表示实际问题中的数量关系。

【教法学法】
根据以上分析,为了充分发挥学生“现有发展区”的积极作用,帮助学生解决“最近发展区”的认知矛盾,促成“最近发展区”向“目标发展区”转化,依据美国著名心理学家加德纳的多元智能理论和波利亚的问题解决理论,我确定本节课的教学方法为以问题解决为主的情境教学法,融入地方文化、参观情景、导游角色、问题解决等元素,让学生体会数学源于生活,又服务于生活的一般规律;并附以实物和多媒体教学,创设有趣、直观的教学情景,激发学习兴趣,烘托重点。

在学法上引导学生采用“融、验、探、合”四字学习法,即融入情景,在情景中快乐学习;体验过程,在过程中建构知识;
自主探索,在探索中培养品质;合作交流,在交流中获取经验,充分发挥学生的主体性,变“学会”为“会学”。

数学说课稿初中篇4
一、本课数学内容的本质、地位、作用分析:
《从问题到方程》是苏科版数学教材七年级上册第四章第一节的内容。

方程是中学数学的重要内容,方程思想也是中学数学的重要思想之一。

这节课设计的主要意图是想让学生意识到方程的出现是源于解决实际问题的需要,是刻画现实世界的有效的数学模型,为后面解一元一次方程以及用一元一次方程解决实际问题作铺垫,是后续学习的基础。

从数学学科本身来看,方程是代数学的核心内容;从数学教学来看,它对于培养学生运用数学解决实际问题的应用意识、提高解决实际问题的能力和体现数学的应用价值都具有重要的作用和意义。

二、教学目标分析:
1、知识与能力目标:
①探索实际问题中的相等关系,并用方程描述;通过对多种实际问题中数量关系的分析,使学生初步感受方程是刻画现实世界的有效模型。

②在学生根据问题寻找相等关系并根据相等关系列出方程的过程中,培养学生获取信息、分析问题、处理问题的能力。

2、过程与方法目标:
让学生经历将一些实际问题抽象为方程问题的过程。

经历运用数学符号和图形描述现实世界的过程。

3、情感态度与价值观目标:
①通过对多种实际问题的分析,培养学生克服困难的意志品质。

②体验在生活中学数学、用数学的价值,感受学习数学的乐趣。

4、教学重点、难点:
重点:
1、理解题意,寻求数量间的相等关系并列出方程。

2、让学生初步感受方程是解决问题的方法。

难点:寻找实际问题中的相等关系。

三、教学问题诊断:
我设计了以下四个环节来完成教学的。

在(一)“体验问题,感受方程魅力”环节中,我现场用学生的年龄和老师的年龄编题,并设置了两个问题:
问题(1):算老师的年龄,激发了学生的好奇心,借此拉近老师和学生情感上的距离,激发学生学习兴趣。

问题(2):没有立刻解决,而是设置了一个悬念,激发学生的学习热情。

引出了本课课题:从问题到方程!
最后通过天平的动画演示让学生感受方程是表达数量之间相等关系的“天平”,让学生对方程有直观的感受。

在(二)“解剖问题,建立方程模型”环节中,我也设计了两个问题:
问题一:排球联赛的题目:
这道题目是以问题串的'形式呈现,从最简单的问题入手,不急于告诉学生是用方程来解决问题,而是由易到难,让学生逐步体会方程解法的优越性。

关于学生对问题(3)的解答,我预设了两种情况:
1、如果学生只会用算术方法,就继续让学生思考能否只列一个式子就能把问题解决,再进一步引导学生找出实际问题中的相等关系列出方程。

2、如果有个别学生用方程解法,就因势利导,让他和算术方法比较,感受方程解法在解决这个问题时更简便,体会方程解法的优越。

排球联赛的问题主要是让学生感到用算术方法解决复杂问
题时的困难,体会方程解法的优越。

问题二:试一试的题目:
这是一开始上课时设置的疑问,通过对前一个问题的剖析,让学生尝试用方程来解决刚才设置年龄问题的悬念,体会到用方程方法解决这个问题简单易懂。

同时师生共同归纳出用方程解决问题的几个关键步骤,为下面的教学做了铺垫。

在(三)“探究问题,领悟方程内涵”环节中,我设计一道有关气温变化的题目。

用白居易的诗句“人间四月芳菲尽,山寺桃花始盛开”引出,让学生感受生活中处处有数学,数学离不开生活。

我的预设如下:
1、这题由学生独立完成。

学生在分析问题、寻找相等关系时,可能思路不同,得出的相等关系不同,从而所列方程也不同。

只要是正确的,我都会加以鼓励,让学生都能体验成功的喜悦。

2、这里有一个难点就是如何理解“海拔每升高100m,气温下降0.60度”。

我利用动画演示当海拔升高100米、升高200米、…升高xm时气温下降高度的变化,从而分化难点。

3、师生通过引导学生归纳总结从问题到方程的一般步骤,培养学生归纳概括的能力。

为后面用方程解决问题埋下伏笔。

在(四)“运用模型,实践方程作用”环节中,我设计了两个问题让学生独立完成,实践方程作用。

学生可能会直接列方程而没有设出未知数,也可能在间接设未知数时不知道选择最简便的方法。

所以本环节一方面培养学生运用知识解决问题的能力,另一方面规范解题格式,巩固所学内容。

同时使学生进一步经历列方程研究实际问题的过程,培养学生将实际问题抽象为数学问题的能力,再次感受数学源于生活。

在学习感悟的环节中,主要让学生围绕两个问题谈谈自己在这节课中的收获。

目的是明确知识,培养抽象概括能力,提高学生的思维水平。

最后以数学大师笛卡尔的名言小结,“夸大”方程的作用,在学生心目中产生名人效应,对今后方程的学习与应用更加充满兴趣,同时提高了学生的数学文化素养。

四、本节课的教法特点以及预期效果分析
本节课主要采用师生共同探究学习法进行教学,由教师引导,学生自主探索、观察、归纳。

在教学设计中,以生活中的实际问题为例来创设情境,引导学生关注身边的事。

在课堂上努力营造一种学生自主探究的氛围,引导学生去分析思考和归纳总
结,进而达到对知识的“发现”和接受的目的。

有意识地给学生创造一个欣赏数学、探索数学的平台,渗透给学生由实际问题抽象为方程模型这一过程中蕴涵的符号化、模型化的思想。

利用多媒体和动感天平演示来辅助教学,充分调动学生的积极性。

在教学过程中我主要在以下几个方面做了新的尝试:
1、体现学生的主体意识。

本设计中,教师始终把学生放在主体的地位,让学生通过对列算式与列方程这两种主要方法进行比较,分别归纳出它们的特点,让学生感受到从算术方法到代数方法是数学的进步,让学生通过合作与交流,得出同一个问题的不同解答方法,让学生对本节课的学习内容、方法、注意点等进行归纳。

2、体现学生思维的层次性。

教师首先引导学生尝试用算术方法解决问题,然后再逐步引导学生列出含未知数的式子,寻找相等关系列出方程。

在寻找相等关系、设未知数及作业的布置等环节中,让学生展示不同层次的思维活动,经历合作探究新知的过程。

3、渗透方程建模的思想。

把实际问题中的数量关系用方程形式表示出来,就是建立一种数学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力。

相关文档
最新文档