浦江县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浦江县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 下面各组函数中为相同函数的是( )
A .f (x )
=
,g (x )=x ﹣1
B .f (x )
=
,g (x )
=
C .f (x )=ln e x 与g (x )=e lnx
D .f (x )=(x ﹣1)0与g (x )
=
2. 函数f (x )=ax 2+bx 与f (x )
=log x (ab ≠0,|a|≠|b|)在同一直角坐标系中的图象可能是( )
A
. B
. C
.
D
.
3. cos80cos130sin100sin130︒︒-︒︒等于( ) A
B .12
C .1
2
- D
.4. 下列说法正确的是( ) A .类比推理是由特殊到一般的推理 B .演绎推理是特殊到一般的推理 C .归纳推理是个别到一般的推理 D .合情推理可以作为证明的步骤
5. 数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -= C .(1)
2
n n n a += D .21n a n =+ 6.
(﹣6≤a ≤3)的最大值为( ) A .9
B
.
C .3
D
.
7. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]
8. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π
B .48π
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
C .60π
D .72π
9. 三角函数()sin(2)cos 26
f x x x π
=-+的振幅和最小正周期分别是( )
A .3,
2
π
B .3,π
C .2,
2
π
D .2,π
10.如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是( )
A .5
B .4
C .4
D .2
11.在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为( ) A .x=1 B .x= C .x=﹣1 D .x=﹣
12.已知集合A={y|y=x 2+2x ﹣3},,则有( )
A .A ⊆B
B .B ⊆A
C .A=B
D .A ∩B=φ
二、填空题
13.自圆C :2
2
(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则PQ 的最小值为( ) A .
1310 B .3 C .4 D .2110
【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力、数形结合的思想.
14.已知函数f (x )=x m 过点(2,),则m= .
15.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= .
16.设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (﹣2)=0,当x >0时,xf ′(x )﹣f (x )>0,则使得f (x )>0成立的x 的取值范围是 .
17.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .
18.抛物线C 1:y 2=2px (p >0)与双曲线C 2:
交于A ,B 两点,C 1与C 2的
两条渐近线分别交于异于原点的两点C ,D ,且AB ,CD 分别过C 2,C 1的焦点,则= .
三、解答题
19.【常熟中学2018届高三10月阶段性抽测(一)】已知函数
()()()3244f x x a x a b x c =+--++(),,R a b c ∈有一个零点为4,且满足()01f =.
(1)求实数b 和c 的值;
(2)试问:是否存在这样的定值0x ,使得当a 变化时,曲线()y f x =在点()()
00,x f x 处的切线互相平行?若存在,求出0x 的值;若不存在,请说明理由; (3)讨论函数()()g x f x a =+在()0,4上的零点个数.
20.已知椭圆:
,离心率为
,焦点F 1(0,﹣c ),F 2(0,c )过F 1的直线交椭圆
于M ,N 两点,且△F 2MN 的周长为4. (Ⅰ)求椭圆方程;
(Ⅱ) 直线l 与y 轴交于点P (0,m )(m ≠0),与椭圆C 交于相异两点A ,B 且.若
,
求m 的取值范围.
21.求点A (3,﹣2)关于直线l :2x ﹣y ﹣1=0的对称点A ′的坐标.
22.已知数列{a n}的首项为1,前n项和S n满足=+1(n≥2).
(Ⅰ)求S n与数列{a n}的通项公式;
(Ⅱ)设b n=(n∈N*),求使不等式b1+b2+…+b n>成立的最小正整数n.
23.函数f(x)是R上的奇函数,且当x>0时,函数的解析式为f(x)=﹣1.
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求函数f(x)的解析式.
24.已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.
(Ⅰ)若任意的x∈[﹣1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;(Ⅱ)若对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4,试求实数b的取值范围.
浦江县第二中学校2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】D
【解析】解:对于A:f(x)=|x﹣1|,g(x)=x﹣1,表达式不同,不是相同函数;
对于B:f(x)的定义域是:{x|x≥1或x≤﹣1},g(x)的定义域是{x}x≥1},定义域不同,不是相同函数;
对于C:f(x)的定义域是R,g(x)的定义域是{x|x>0},定义域不同,不是相同函数;
对于D:f(x)=1,g(x)=1,定义域都是{x|x≠1},是相同函数;
故选:D.
【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题.2.【答案】D
【解析】解:A、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,A不正确;
B、由图得f(x)=ax2+bx的对称轴x=﹣>0,则,不符合对数的底数范围,B不正确;
C、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义域上是增
函数,C不正确;
D、由f(x)=ax2+bx=0得:x=0或x=,由图得,则,所以f(x)=log x在定义
域上是减函数,D正确.
【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力.
3.【答案】D
【解析】
试题分析:原式()()
=︒︒-︒︒=︒+︒=︒=︒+︒=-︒
cos80cos130sin80sin130cos80130cos210cos30180cos30
=
考点:余弦的两角和公式.
4.【答案】C
【解析】解:因为归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤,
故选C.
【点评】本题考查合情推理与演绎推理,考查学生分析解决问题的能力,属于基础题.
5.【答案】C
【解析】
试题分析:可采用排除法,令1n =和2n =,验证选项,只有(1)
2
n n n a +=,使得121,3a a ==,故选C . 考点:数列的通项公式. 6. 【答案】B
【解析】解:令f (a )=(3﹣a )(a+6)=﹣+,而且﹣6≤a ≤3,由此可得函数f
(a )的最大值为,
故(﹣6≤a ≤3)的最大值为=,
故选B .
【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.
7. 【答案】B
【解析】解:设x 1∈{x|f (x )=0}={x|f (f (x ))=0}, ∴f (x 1)=f (f (x 1))=0, ∴f (0)=0, 即f (0)=m=0, 故m=0;
故f (x )=x 2
+nx ,
f (f (x ))=(x 2+nx )(x 2+nx+n )=0, 当n=0时,成立;
当n ≠0时,0,﹣n 不是x 2
+nx+n=0的根, 故△=n 2
﹣4n <0,
故0<n <4;
综上所述,0≤n+m <4; 故选B .
【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.
8. 【答案】
【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,
又V 四棱锥P -ABCD =1
3
S 矩形ABCD ·PO
=13abR ≤23R 3. ∴2
3
R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 9. 【答案】B 【解析】()sin
cos 2cos
sin 2cos 26
6
f x x x x π
π
=-+
3331cos 2sin 23(cos 2sin 2)22
x x x x =-=- 3cos(2)6
x π
=+,故选B .
10.【答案】 D
【解析】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴, 建立空间直角坐标系,
设AE=a ,D 1F=b ,0≤a ≤4,0≤b ≤4,P (x ,y ,4),0≤x ≤4,0≤y ≤4,
则F (0,b ,4),E (4,a ,0),
=(﹣x ,b ﹣y ,0),
∵点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,
∴当E 、F 分别是AB 、C 1D 1上的中点,P 为正方形A 1B 1C 1D 1时, PE 取最小值,
此时,P (2,2,4),E (4,2,0),
∴|PE|min ==2
.
故选:D .
【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.
11.【答案】C
【解析】解:由题意可得抛物线y 2=2px (p >0)开口向右, 焦点坐标(,0),准线方程x=﹣,
由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5, 即4﹣(﹣)=5,解之可得p=2 故抛物线的准线方程为x=﹣1. 故选:C .
【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.
12.【答案】B
【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,
∴y≥﹣4.
则A={y|y≥﹣4}.
∵x>0,
∴x+≥2=2(当x=,即x=1时取“=”),
∴B={y|y≥2},
∴B⊆A.
故选:B.
【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.
二、填空题
13.【答案】D
【解析】
14.【答案】﹣1.
【解析】解:将(2,)代入函数f(x)得:=2m,
解得:m=﹣1;
故答案为:﹣1.
【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.
15.【答案】10.
【解析】解:由z=3﹣i,得
z•=.
故答案为:10.
【点评】本题考查公式,考查了复数模的求法,是基础题.
16.【答案】(﹣2,0)∪(2,+∞).
【解析】解:设g(x)=,则g(x)的导数为:
g′(x)=,
∵当x>0时总有xf′(x)﹣f(x)>0成立,
即当x>0时,g′(x)>0,
∴当x>0时,函数g(x)为增函数,
又∵g(﹣x)====g(x),
∴函数g(x)为定义域上的偶函数,
∴x<0时,函数g(x)是减函数,
又∵g(﹣2)==0=g(2),
∴x>0时,由f(x)>0,得:g(x)>g(2),解得:x>2,
x<0时,由f(x)>0,得:g(x)<g(﹣2),解得:x>﹣2,
∴f(x)>0成立的x的取值范围是:(﹣2,0)∪(2,+∞).
故答案为:(﹣2,0)∪(2,+∞).
17.【答案】存在x∈R,x3﹣x2+1>0.
【解析】解:因为全称命题的否定是特称命题,
所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系.
18.【答案】.
【解析】解:由题意,CD过C1的焦点,根据,得x C=,∴b=2a;
由AB过C2的焦点,得A(c,),即A(c,4a),
∵A(c,4a)在C1上,
∴16a2=2pc,
又c=a,
∴a=,
∴==.
故答案为:.
【点评】本题考查双曲线、抛物线的简单性质,考查学生的计算能力,属于中档题.
三、解答题
19.【答案】(1)1
,14
b c =
=;(2)答案见解析;(3)当1a <-或0a >时,()g x 在()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点. 【解析】试题分析:
(1)由题意得到关于实数b ,c 的方程组,求解方程组可得1
,14
b c =
=;
(3)函数
()g x 的导函数()()2132444g x x a x a ⎛
⎫=+--+ ⎪⎝
⎭',结合导函数的性质可得当1a <-或0a >时,()g x 在
()0,4有两个零点;当10a -≤≤时,()g x 在()0,4有一个零点.
试题解析:
(1)由题意()()01
{ 440
f c f b c =+=-+=,解得1
{ 41
b c =
=;
(2)由(1)可知()()3
2
4f x x a x =+--1414a x ⎛⎫
+
+ ⎪⎝⎭
, ∴()()2132444f x x a x a ⎛⎫=+--+
⎪⎝⎭
'; 假设存在0x 满足题意,则()()2000132444f x x a x a ⎛⎫
=+--+
⎪⎝
⎭
'是一个与a 无关的定值, 即()2
0001
24384
x a x x -+--
是一个与a 无关的定值, 则0240x -=,即02x =,平行直线的斜率为()1724
k f ==-'; (3)()()()3
2
4g x f x a x a x =+=+-1414a x a ⎛⎫
-+
++ ⎪⎝⎭
, ∴()()2132444g x x a x a ⎛
⎫=+--+
⎪⎝⎭', 其中()21441244a a ⎛⎫∆=-++= ⎪⎝
⎭()22
4166742510a a a ++=++>,
设()0g x '=两根为1x 和()212x x x <,考察()g x 在R 上的单调性,如下表
1°当0a >时,()010g a =+>,()40g a =>,而()15
2302
g a =--
<, ∴()g x 在()0,2和()2,4上各有一个零点,即()g x 在()0,4有两个零点; 2°当0a =时,()010g =>,()40g a ==,而()15
202
g =-
<, ∴()g x 仅在()0,2上有一个零点,即()g x 在()0,4有一个零点;
3°当0a <时,()40g a =<,且13024g a ⎛⎫=->
⎪⎝⎭
, ①当1a <-时,()010g a =+<,则()g x 在10,2⎛⎫ ⎪⎝⎭和1,42⎛⎫
⎪⎝⎭
上各有一个零点,
即()g x 在()0,4有两个零点;
②当10a -≤<时,()010g a =+≥,则()g x 仅在1,42⎛⎫
⎪⎝⎭
上有一个零点, 即()g x 在()0,4有一个零点;
综上:当1a <-或0a >时,()g x 在()0,4有两个零点; 当10a -≤≤时,()g x 在()0,4有一个零点.
点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y =f (x )在[a ,b ]内所有使f ′(x )=0的点,再计算函数y =f (x )在区间内所有使f ′(x )=0的点和区间端点处的函数值,最后比较即得. 20.【答案】
【解析】解:(Ⅰ)由题意,4a=4, =,
∴a=1,c=,
∴
=
,
∴椭圆方程方程为
;
(Ⅱ)设l 与椭圆C 交点为A (x 1,y 1),B (x 2,y 2)
由
得(k 2+2)x 2+2kmx+(m 2
﹣1)=0
△=(2km )2﹣4(k 2+2)(m 2﹣1)=4(k 2﹣2m 2
+2)>0(*)
∴x 1+x 2=﹣,x 1x 2=,
∵,,
∴λ=3
∴﹣x1=3x2
∴x1+x2=﹣2x2,x1x2=﹣3x22,
∴3(x1+x2)2+4x1x2=0,
∴3(﹣)2+4•=0,
整理得4k2m2+2m2﹣k2﹣2=0
m2=时,上式不成立;m2≠时,,
由(*)式得k2>2m2﹣2
∵k≠0,
∴>0,
∴﹣1<m<﹣或<m<1
即所求m的取值范围为(﹣1,﹣)∪(,1).
【点评】本题主要考查椭圆的标准方程、基本性质和直线与椭圆的综合问题.直线和圆锥曲线的综合题是高考的重点题目,要强化学习.
21.【答案】
【解析】解:设点A(3,﹣2)关于直线l:2x﹣y﹣1=0的对称点A′的坐标为(m,n),
则线段A′A的中点B(,),
由题意得B在直线l:2x﹣y﹣1=0上,故2×﹣﹣1=0 ①.
再由线段A′A和直线l垂直,斜率之积等于﹣1得×=﹣1 ②,
解①②做成的方程组可得:
m=﹣,n=,
故点A′的坐标为(﹣,).
【点评】本题考查求一个点关于直线的对称点的坐标的方法,注意利用垂直及中点在轴上两个条件.22.【答案】
【解析】解:(Ⅰ)因为=+1(n≥2),
所以是首项为1,公差为1的等差数列,…
则=1+(n﹣1)1=n,…
从而S n=n2.…
当n=1时,a1=S1=1,
当n>1时,a n=S n﹣S n﹣1=n2﹣(n﹣1)2=2n﹣1.
因为a1=1也符合上式,
所以a n=2n﹣1.…
(Ⅱ)由(Ⅰ)知b n===,…
所以b1+b2+…+b n=
==,…
由,解得n>12.…
所以使不等式成立的最小正整数为13.…
【点评】本小题主要考查数列、不等式等基础知识,考查运算求解能力,考查化归与转化思想23.【答案】
【解析】(1)证明:设x2>x1>0,∵f(x1)﹣f(x2)=(﹣1)﹣(﹣1)=,
由题设可得x2﹣x1>0,且x2•x1>0,∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),
故f(x)在(0,+∞)上是减函数.
(2)当x<0时,﹣x>0,f(﹣x)=﹣1=﹣f(x),∴f(x)=+1.
又f(0)=0,故函数f(x)的解析式为f(x)=.
24.【答案】
【解析】解:(Ⅰ)因为x∈[﹣1,1],则2+x∈[1,3],
由已知,有对任意的x∈[﹣1,1],f(x)≥0恒成立,
任意的x∈[1,3],f(x)≤0恒成立,
故f(1)=0,即1为函数函数f(x)的一个零点.
由韦达定理,可得函数f(x)的另一个零点,
又由任意的x∈[1,3],f(x)≤0恒成立,
∴[1,3]⊆[1,c],
即c≥3
(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4恒成立,
即f(x)max﹣f(x)min≤4,
记f(x)max﹣f(x)min=M,则M≤4.
当||>1,即|b|>2时,M=|f(1)﹣f(﹣1)|=|2b|>4,与M≤4矛盾;
当||≤1,即|b|≤2时,M=max{f(1),f(﹣1)}﹣f()=
﹣f()=(1+)2≤4,
解得:|b|≤2,
即﹣2≤b≤2,
综上,b的取值范围为﹣2≤b≤2.
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.。