吉林省通化市2019-2020学年中考数学模拟试题(5)含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林省通化市2019-2020学年中考数学模拟试题(5)
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在4-,
1
2
-,1-,
8
3
-这四个数中,比2-小的数有()个.
A.1B.2C.3D.4
2.如图,已知AB和CD是⊙O的两条等弦.OM⊥AB,ON⊥CD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP.下列四个说法中:
①AB CD
=
n n;②OM=ON;③PA=PC;④∠BPO=∠DPO,正确的个数是()
A.1 B.2 C.3 D.4
3.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为()
A.205万B.4
20510
⨯C.6
2.0510
⨯D.7
2.0510
⨯
4.如图的立体图形,从左面看可能是()
A.B.
C.D.
5.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )
A .
52
B .
154 C .83
D .
103
6.由6个大小相同的正方体搭成的几何体如图所示,比较它的正视图、左视图和俯视图的面积,则( )
A .三个视图的面积一样大
B .主视图的面积最小
C .左视图的面积最小
D .俯视图的面积最小
7.如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是( )
A .
B .
C .
D .
8.在下列网格中,小正方形的边长为1,点A 、B 、O 都在格点上,则A ∠的正弦值是()n n n n
A 5
B .
5C 25
D .
12
9.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .0.25×10﹣5
B .0.25×10﹣6
C .2.5×10﹣5
D .2.5×10﹣6
10.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.1.其中说法正确的有( )
A.4个B.3个C.2个D.1个
11.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P第2018次碰到矩形的边时,点P的坐标为()
A.(1,4) B.(7,4) C.(6,4) D.(8,3)
12.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为()
A.2 B.3 C.4 D.6
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.每年农历五月初五为端午节,中国民间历来有端午节吃粽子、赛龙舟的习俗.某班同学为了更好地了解某社区居民对鲜肉粽(A)豆沙粽(B)小枣粽(C)蛋黄粽(D)的喜爱情况,对该社区居民进行了随机抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).
分析图中信息,本次抽样调查中喜爱小枣粽的人数为________;若该社区有10000人,估计爱吃鲜肉粽的人数约为________.
14.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB 的长为23a的值是_____.
15.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.
16.已知一组数据3-,x ,﹣2,3,1,6的中位数为1,则其方差为____.
17.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动
连接OC ,线段OC 的长随t 的变化而变化,当OC 最大时,t =______.当ABC ∆的
边与坐标轴平行时,t =______.
18.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:
该年级报名参加丙组的人数为 ;该年级报名参
加本次活动的总人数 ,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?
20.(6分)如图,河的两岸MN 与PQ 相互平行,点A ,B 是PQ 上的两点,C 是MN 上的点,某人在点A 处测得∠CAQ=30°,再沿AQ 方向前进20米到达点B ,某人在点A 处测得∠CAQ=30°,再沿AQ 方向
前进20米到达点B ,测得∠CBQ=60°,求这条河的宽是多少米?(结果精确到0.1米,参考数据2≈1.414,
3≈1.732)
21.(6分)已知关于x ,y 的二元一次方程组22
13ax by a x b y ab +=⎧⎨-=+⎩的解为11x y =⎧⎨=-⎩
,求a 、b 的值. 22.(8分)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;
(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:
≈1.41,≈1.73,
≈2.24,
≈2.45)
23.(8分)体育老师为了解本校九年级女生1分钟“仰卧起坐”体育测试项目的达标情况,从该校九年级136名女生中,随机抽取了20名女生,进行了1分钟仰卧起坐测试,获得数据如下: 收集数据:抽取20名女生的1分钟仰卧起坐测试成绩(个)如下:
38 46 42 52 55 43 59 46 25 38 35 45 51 48 57 49 47 53 58 49 (1)整理、描述数据:请你按如下分组整理、描述样本数据,把下列表格补充完整: 范围 25≤x≤29 30≤x≤34 35≤x≤39 40≤x≤44 45≤x≤49 50≤x≤54 55≤x≤59 人数
(说明:每分钟仰卧起坐个数达到49个及以上时在中考体育测试中可以得到满分) (2)分析数据:样本数据的平均数、中位数、满分率如下表所示: 平均数 中位数 满分率 46.8
47.5
45%
得出结论:①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为 ;
②该中心所在区县的九年级女生的1分钟“仰卧起坐”总体测试成绩如下:
平均数中位数满分率
45.3 49 51.2%
请你结合该校样本测试成绩和该区县总体测试成绩,为该校九年级女生的1分钟“仰卧起坐”达标情况做一下评估,并提出相应建议.
24.(10分)如图,已知△ABC,分别以AB,AC为直角边,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,连结BD,CE交于点F,设AB=m,BC=n.
(1)求证:∠BDA=∠ECA.
(2)若m=2,n=3,∠ABC=75°,求BD的长.
(3)当∠ABC=____时,BD最大,最大值为____(用含m,n的代数式表示)
(4)试探究线段BF,AE,EF三者之间的数量关系。
25.(10分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.这次调查的市民人数为________人,m=________,n=________;补全条形统计图;若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
26.(12分)二次函数y=x2﹣2mx+5m的图象经过点(1,﹣2).
(1)求二次函数图象的对称轴;
(2)当﹣4≤x≤1时,求y的取值范围.
27.(12分)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、
BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.
请根据图中信息解答下列问题:求这天的温度y与时间x(0≤x≤24)的函数关系式;求恒温系统设定的恒定温度;若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.B
【解析】
【分析】
比较这些负数的绝对值,绝对值大的反而小.
【详解】
在﹣4、﹣1
2
、﹣1、﹣
8
3
这四个数中,比﹣2小的数是是﹣4和﹣
8
3
.故选B.
【点睛】
本题主要考查负数大小的比较,解题的关键时负数比较大小时,绝对值大的数反而小. 2.D
【解析】
如图连接OB、OD;
∵AB=CD,
∴»AB=»CD,故①正确
∵OM⊥AB,ON⊥CD,
∴AM=MB,CN=ND,
∴BM=DN,
∵OB=OD,
∴Rt△OMB≌Rt△OND,
∴OM=ON,故②正确,
∵OP=OP,
∴Rt△OPM≌Rt△OPN,
∴PM=PN,∠OPB=∠OPD,故④正确,
∵AM=CN,
∴PA=PC,故③正确,
故选D.
3.C
【解析】
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】2 050 000将小数点向左移6位得到2.05,
所以2 050 000用科学记数法表示为:20.5×106,
故选C.
【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
4.A
【解析】
【分析】
根据三视图的性质即可解题.
【详解】
解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,
故选A.
【点睛】
本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.
5.A
【解析】
【分析】
过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.
【详解】
过E作EG∥BC,交AC于G,则∠BCE=∠CEG.
∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.
∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.
∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.
∵AC=10,∴3k+5k+4k=10,∴k=5
6
,∴EF=3k=
5
2
.
故选A.
【点睛】
本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.
6.C
【解析】
试题分析:根据三视图的意义,可知正视图由5个面,左视图有3个面,俯视图有4个面,故可知主视图的面积最大.
故选C
考点:三视图
7.B
【解析】
【分析】
根据俯视图中每列正方形的个数,再画出从正面看得到的图形即可.
【详解】
解:主视图,如图所示:
.
故选B . 【点睛】
本题考查由三视图判断几何体;简单组合体的三视图.用到的知识点为:主视图是从物体的正面看得到的图形;看到的正方体的个数为该方向最多的正方体的个数. 8.A 【解析】 【分析】
由题意根据勾股定理求出OA ,进而根据正弦的定义进行分析解答即可. 【详解】
解:由题意得,2OC =,4AC =,
由勾股定理得,2225AO AC OC =+=
5
OC sinA OA ∴=
=
故选:A . 【点睛】
本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边. 9.D 【解析】 【分析】
根据科学记数法的定义,科学记数法的表示形式为a×
10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0). 【详解】
解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而60.0000025 2.510-=⨯. 故选D . 10.B
【解析】
【分析】
根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.
【详解】
由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;
由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;
当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;
乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.
故选B.
【点睛】
本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.
11.B
【解析】
如图,
经过6次反弹后动点回到出发点(0,3),
∵2018÷6=336…2,
∴当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,
点P的坐标为(7,4).
故选C.
12.B
【解析】
【分析】
根据三角形的中位线等于第三边的一半进行计算即可.
【详解】
∵D、E分别是△ABC边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=6,
∴DE=BC=1.
故选B.
【点睛】
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.120人,3000人
【解析】
【分析】
根据B的人数除以占的百分比得到调查的总人数,再用总人数减去A、B、D的人数得到本次抽样调查中喜爱小枣粽的人数;利用该社区的总人数×爱吃鲜肉粽的人数所占的百分比得出结果.
【详解】
调查的总人数为:60÷10%=600(人),本次抽样调查中喜爱小枣粽的人数为:600﹣180﹣60﹣240=120(人);
若该社区有10000人,估计爱吃鲜肉粽的人数约为:10000
180
600
⨯=3000(人).
故答案为120人;3000人.
【点睛】
本题考查了条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.
14.2
【解析】
【分析】
【详解】
试题分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.
∵PE⊥AB,3,半径为2,
∴AE=1
2
3PA=2,根据勾股定理得:PE=1,
∵点A在直线y=x上,∴∠AOC=45°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD=2
∵⊙P的圆心是(2,a),
∴a=PD+DC=2+2.
【点睛】
本题主要考查的就是垂径定理的应用以及直角三角形勾股定理的应用,属于中等难度的题型.解决这个问题的关键就是在于作出辅助线,将所求的线段放入到直角三角形中.本题还需要注意的一个隐含条件就是:直线y=x或直线y=-x与x轴所形成的锐角为45°,这一个条件的应用也是很重要的.
15.40°
【解析】
【分析】
直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.
【详解】
如图所示:
∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠5=180°-(∠6+∠7)=40°. 故答案为40°. 【点睛】
主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键. 16.3 【解析】
试题分析:∵数据﹣3,x ,﹣3,3,3,6的中位数为3,∴1
12x +=,解得x=3,∴数据的平均数=16
(﹣3﹣3+3+3+3+6)=3,∴方差=1
6
[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.
考点:3.方差;3.中位数.
17. 2432
55
和 【解析】 【分析】
(1)由等腰三角形的性质可得AD=BD ,从而可求出OD=4,然后根据当O ,D ,C 共线时,OC 取最大值求解即可;
(2)根据等腰三角形的性质求出CD ,分AC ∥y 轴、BC ∥x 轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可. 【详解】
(1)1
5,,42
BC AC CD AB AD BD AB ∴==⊥∴==
=, 1
90,,42
AOB AD BD OD AB ︒∠==∴=
=Q , 当O ,D ,C 共线时,OC 取最大值,此时OD ⊥AB. ∵,4OD AB OD AD BD ⊥===, ∴△AOB 为等腰直角三角形,
∴OA t ==
= ;
(2)∵BC=AC ,CD 为AB 边的高, ∴∠ADC=90°,BD=DA=1
2
AB=4,
∴,
当AC ∥y 轴时,∠ABO=∠CAB , ∴Rt △ABO ∽Rt △CAD ,
∴AO AB
CD AC
=,即
8
35
t
=,
解得,t=24
5
,
当BC∥x轴时,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,
∴AO AB
BD BC
=,即
8
45
t
=,
解得,t=32
5
,
则当t=24
5
或
32
5
时,△ABC的边与坐标轴平行.
故答案为t=24
5
或
32
5
.
【点睛】
本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.
18..
【解析】
【分析】
直接利用甲车比乙车早半小时到达目的地得出等式即可.
【详解】
解:设乙车的速度是x千米/小时,则根据题意,
可列方程:.
故答案为:.
【点睛】
此题主要考查了由实际问题抽象出分式方程,正确表示出两车所用时间是解题关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组
【解析】
(1)参加丙组的人数为21人;
(2)21÷10%=10人,则乙组人数=10-21-11=10人,
如图:
(3)设需从甲组抽调x 名同学到丙组, 根据题意得:3(11-x )=21+x 解得x=1.
答:应从甲抽调1名学生到丙组 (1)直接根据条形统计图获得数据;
(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图; (3)设需从甲组抽调x 名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解 20.17.3米. 【解析】
分析:过点C 作CD PQ ⊥于D ,根据3060CAB CBD ∠=︒∠=︒,,得到30,ACB ∠=︒ 20AB BC ==,在Rt △CDB 中,解三角形即可得到河的宽度. 详解:过点C 作CD PQ ⊥于D ,
∵3060CAB CBD ∠=︒∠=︒, ∴30,ACB ∠=︒ ∴20AB BC ==米, 在Rt △CDB 中,
∵90BDC ,∠=︒ sin ,CD
CBD BC
∠= ∴sin60,CD
BC
︒=
3,20
CD = ∴103CD =米,
∴17.3CD ≈米.
答:这条河的宽是17.3米.
点睛:考查解直角三角形的应用,作出辅助线,构造直角三角形是解题的关键.
21.12a b =-⎧⎨=-⎩或21a b =⎧⎨
=⎩
【解析】 【分析】
把11x y =⎧⎨=-⎩代入二元一次方程组22
13ax by a x b y ab +=⎧⎨-=+⎩
得到关于a ,b 的方程组,经过整理,得到关于b 的一元二次方程,解之即可得到b 的值,把b 的值代入一个关于a ,b 的二元一次方程,求出a 的值,即可得到答案. 【详解】
把11x y =⎧⎨=-⎩代入二元一次方程组22
13ax by a x b y ab +=⎧⎨-=+⎩
得: 22
13a b a b ab ①
②
-=⎧⎨+=+⎩, 由①得:a=1+b ,
把a=1+b 代入②,整理得: b 2+b-2=0,
解得:b= -2或b=1, 把b= -2代入①得:a+2=1, 解得:a= -1, 把b=1代入①得: a-1=1, 解得:a=2,
即12a b =-⎧⎨=-⎩或21a b =⎧⎨=⎩
.
【点睛】
本题考查了二元一次方程组的解,正确掌握代入法是解题的关键. 22.(1)5.6
(2)货物MNQP 应挪走,理由见解析. 【解析】 【详解】
(1)如图,作AD ⊥BC 于点D
Rt △ABD 中, AD=ABsin45°=42
=22 在Rt △ACD 中,∵∠ACD=30° ∴2 5.6≈
即新传送带AC 的长度约为5.6米. (2)结论:货物MNQP 应挪走. 在Rt △ABD 中,BD=ABcos45°
=42
=222
在Rt △ACD 中,CD=ACcos30°= 3
42=262
∴CB=CD —BD=(
26-22=2
6-2 2.1≈
∵PC=PB —CB ≈4—2.1=1.9<2 ∴货物MNQP 应挪走.
23.(1)补充表格见解析;(2)①61;②见解析. 【解析】 【分析】
(1)根据所给数据分析补充表格即可.(2)①根据概率公式计算即可. ②根据平均数、中位数分别进行分析并根据分析结果给出建议即可. 【详解】
(1)补充表格如下: 范围 25≤x≤29 30≤x≤34 35≤x≤39 40≤x≤44 45≤x≤49 50≤x≤54 55≤x≤59 人数
1
3
2
7
3
4
(2)
①估计该校九年级女生在中考体育测试中1分钟“仰卧起坐”项目可以得到满分的人数为136×20
≈61, 故答案为:61;
②从平均数角度看,该校女生1分钟仰卧起坐的平均成绩高于区县水平,整体水平较好;
从中位数角度看,该校成绩中等水平偏上的学生比例低于区县水平,该校测试成绩的满分率低于区县水平;
建议:该校在保持学校整体水平的同事,多关注接近满分的学生,提高满分成绩的人数.
【点睛】
本题考查的是统计表的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.
24.135°m+n
【解析】
试题分析:
(1)由已知条件证△ABD≌△AEC,即可得到∠BDA=∠CEA;
(2)过点E作EG⊥CB交CB的延长线于点G,由已知条件易得∠EBG=60°,BE=2,这样在Rt△BEG
中可得,BG=1,结合BC=n=3,可得GC=4,由长可得△ABD≌△AEC可得
(3)由(2)可知,,BC=n,因此当E、B、C三点共线时,EC最大n
+,此时
BD最大=EC最大n
+;
(4)由△ABD≌△AEC可得∠AEC=∠ABD,结合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,从而可得EF2=BE2-BF2=2AE2-BF2.
试题解析:
(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,
∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,
∴△EAC≌△BAD,
∴∠BDA=∠ECA;
(2)如下图,过点E作EG⊥CB交CB的延长线于点G,
∴∠EGB=90°,
∵在等腰直角△ABE,∠BAE=90°,,
∴∠ABE=45°,BE=2,
∵∠ABC=75°,
∴∠EBG=180°-75°-45°=60°,
∴BG=1,
∴GC=BG+BC=4,
∴=
∵△EAC≌△BAD,
∴
(3)由(2)可知,2m,BC=n,因此当E、B、C三点共线时,EC最大2m n
+,
∵BD=EC,
∴BD最大=EC最大2m n
+,此时∠ABC=180°-∠ABE=180°-45°=135°,
即当∠ABC=135°时,BD最大2m n
+;
(4)∵△ABD≌△AEC,
∴∠AEC=∠ABD,
∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,
∴∠ABD+∠ABE+∠CEB=90°,
∴∠BFE=180°-90°=90°,
∴EF2+BF2=BE2,
又∵在等腰Rt△ABE中,BE2=2AE2,
∴2AE2=EF2+BF2.
点睛:(1)解本题第2小题的关键是过点E作EG⊥CB的延长线于点G,即可由已知条件求得BE的长,进一步求得BG和EG的长就可在Rt△EGC中求得EC的长了,结合(1)中所证的全等三角形即可得到BD的长了;(2)解第3小题时,由题意易知,当AB和BC的值确定后,BE的值就确定了,则由题意易得当E、B、C三点共线时,2m n
+是EC的最大值了.
25.(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.
【解析】
【分析】
(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.
【详解】
试题分析:
试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:
(3)100000×32%=32000(人),
答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.26.(1)x=-1;(2)﹣6≤y≤1;
【解析】
【分析】
(1)根据抛物线的对称性和待定系数法求解即可;
(2)根据二次函数的性质可得.
【详解】
(1)把点(1,﹣2)代入y=x2﹣2mx+5m中,
可得:1﹣2m+5m=﹣2,
解得:m=﹣1,
所以二次函数y=x2﹣2mx+5m的对称轴是x=
2
1 2
-=-,
(2)∵y=x2+2x﹣5=(x+1)2﹣6,
∴当x=﹣1时,y取得最小值﹣6,
由表可知当x=﹣4时y=1,当x=﹣1时y=﹣6,
∴当﹣4≤x≤1时,﹣6≤y≤1.
【点睛】
本题考查了二次函数图象与性质及待定系数法求函数解析式,熟练掌握二次函数的图象与性质是解题的关键.
27.(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x
⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系
统最多关闭10小时,蔬菜才能避免受到伤害.
【解析】
分析:(1)应用待定系数法分段求函数解析式;
(2)观察图象可得;
(3)代入临界值y=10即可.
详解:(1)设线段AB 解析式为y=k 1x+b (k≠0)
∵线段AB 过点(0,10),(2,14)
代入得1
10214b k b ⎧⎨+⎩== 解得1210
k b ⎧⎨⎩== ∴AB 解析式为:y=2x+10(0≤x <5)
∵B 在线段AB 上当x=5时,y=20
∴B 坐标为(5,20)
∴线段BC 的解析式为:y=20(5≤x <10)
设双曲线CD 解析式为:y=
2k x (k 2≠0) ∵C (10,20)
∴k 2=200
∴双曲线CD 解析式为:y=200x
(10≤x≤24) ∴y 关于x 的函数解析式为:()210(05)20(510)2001024x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩
(2)由(1)恒温系统设定恒温为20°
C (3)把y=10代入y=
200x
中,解得,x=20 ∴20-10=10
答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.
点睛:本题为实际应用背景的函数综合题,考查求得一次函数、反比例函数和常函数关系式.解答时应注意临界点的应用.。