工程数学测试题及答案3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 复变函数的积分
一、选择题:
1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰
c
dz iy x )(2
( )
(A )
i 6561- (B )i 6561+- (C )i 6561-- (D )i 6
561+ 2.设c 为不经过点1与1-的正向简单闭曲线,则
dz z z z
c ⎰+-2
)
1)(1(为( ) (A )
2i π (B )2
i π- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则
=⎰+=dz z z
c c c 2
12sin ( ) (A ) i π2- (B )0 (C )i π2 (D )i π4 4.设c 为正向圆周2=z ,则
=-⎰dz z z
c
2
)1(cos ( ) (A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π
5.设c 为正向圆周21
=
z ,则=
--⎰dz z z z c
2
3)1(21
cos
( )
(A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-
6.设ξξξξ
d z
e z
f ⎰=-=4
)(,其中4≠z ,则=')i f π(( ) (A )i π2- (B )1- (C )i π2 (D )1
7.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分
dz z f z f z f z f c
⎰+'+'')
()
()(2)( ( ) (A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定
8.设c 是从0到i 2
1π
+
的直线段,则积分=⎰c
z dz ze ( )
(A )2
1e
π-
(B) 2
1e
π-
- (C)i e
2
1π+
(D) i e
2
1π-
9.设c 为正向圆周022
2=-+x y x ,则=-⎰dz z z c
1)
4sin(2π
( )
(A )
i π22 (B )i π2 (C )0 (D )i π2
2
- 10.设c 为正向圆周i a i z ≠=-,1,则
=-⎰c dz i a z
z 2
)
(cos ( ) (A )ie π2 (B )
e
i
π2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果
)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( )
(A )等于0 (B )等于1 (C )等于2 (D )不能确定 12.下列命题中,不正确的是( ) (A )积分
⎰
=--r
a z dz a
z 1
的值与半径)0(>r r 的大小无关 (B )
2)(22≤+⎰c
dz iy x ,其中c 为连接i -到i 的线段 (C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则
)(z f 在0=z 处解析
13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( )
(A)c iz +2
(B ) ic iz +2
(C )c z +2
(D )ic z +2
14.下列命题中,正确的是( )
(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v = (B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则
x
u
∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数
15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( )
(A )),(),(y x iu y x v + (B )),(),(y x iu y x v -
(C )),(),(y x iv y x u - (D )x
v i x u ∂∂-∂∂
二、填空题
1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰
c dz z 2
2.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(2
3
3.设⎰
=-=2)
2sin()(ξξξξπ
d z
z f ,其中2≠z ,则=')3(f 4.设c 为正向圆周3=z ,则
=+⎰
c
dz z
z
z 5.设c 为负向圆周4=z ,则=-⎰c z
dz i z e 5
)
(π
6.解析函数在圆心处的值等于它在圆周上的 7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰c
dz z f ,那
么)(z f 在B 内
8.调和函数xy y x =),(ϕ的共轭调和函数为
9.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a 10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为 三、计算积分 1.
⎰=+-R z dz z z z
)
2)(1(62
,其中1,0≠>R R 且2≠R ; 2.
⎰=++22
42
2z z z dz
. 四、设)(z f 在单连通域B 内解析,且满足)(1)(1B x z f ∈<-.试证 1.在B 内处处有0)(≠z f ;
2.对于B 内任意一条闭曲线c ,都有
0)
()
(=''⎰
c
dz z f z f 五、设)(z f 在圆域R a z <-内解析,若)0()()(max R r r M z f r
a z <<==-,
则),2,1()
(!)()
( =≤
n r r M n a f
n
n .
六、求积分⎰=1
z z
dz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .
七、设)(z f 在复平面上处处解析且有界,对于任意给定的两个复数b a ,,试求极限
⎰=+∞→--R z R dz b z a z z f ))(()
(lim
并由此推证)()(b f a f =(刘维尔Liouville 定理).
八、设)(z f 在)1(><R R z 内解析,且2)0(,1)0(='=f f ,试计算积分
⎰
=+1
2
2
)
()1(z dz z z f z 并由此得出
⎰
π
θθθ
20
2
)(2
cos d e f i 之值.
九、设iv u z f +=)(是z 的解析函数,证明
2
222
2
22
2
2)
)(1()
(4)
)(1ln()
)(1ln(z f z f y
z f x
z f +'=
∂+∂+
∂+∂.
十、若)(22y x u u +=,试求解析函数iv u z f +=)(.
答案
第三章 复变函数的积分
一、1.(D ) 2.(D ) 3.(B ) 4.(C ) 5.(B )
6.(A ) 7.(C ) 8.(A ) 9.(A ) 10.(C ) 11.(C ) 12.(D ) 13.(D ) 14.(C ) 15.(B ) 二、1.2 2.i π10 3.0 4.i π6 5.
12
i
π 6.平均值 7.解析 8.
C x y +-)(2
122
9.3- 10.),(y x u - 三、1.当10<<R 时,0; 当21<<R 时,i π8; 当+∞<<R 2时,0.
2.0. 六、i π2. 七、0. 八、
,8)
()1(1
22
i dz z
z f z z π=+⎰
=π=θθ
⎰
π
θ2)(2
cos 20
2
d e f i . 十、321ln 2)(ic c z c z f ++=(321,,c c c 为任意实常数).。