数列的概念与简单表示法 (讲新课)

合集下载

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案一、教学目标1. 了解数列的概念,理解数列的表示方法,如通项公式、项的表示等。

2. 学会用图像和数学公式表示数列。

3. 能够运用数列的性质解决实际问题。

二、教学内容1. 数列的概念:数列是按照一定的顺序排列的一列数。

2. 数列的表示方法:a) 通项公式:数列中每一项的数学表达式。

b) 项的表示:用序号表示数列中的每一项。

3. 数列的图像表示:数列的图像通常为一条直线或曲线。

4. 数列的性质:数列的项数、公差、公比等。

三、教学重点与难点1. 教学重点:数列的概念、数列的表示方法、数列的图像表示。

2. 教学难点:数列的性质及其应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳数列的性质。

2. 利用多媒体展示数列的图像,增强学生的直观感受。

3. 开展小组讨论,培养学生合作学习的能力。

五、教学步骤1. 引入数列的概念,引导学生理解数列是按照一定顺序排列的一列数。

2. 讲解数列的表示方法,如通项公式、项的表示,让学生学会用数学公式表示数列。

3. 利用多媒体展示数列的图像,让学生了解数列的图像表示方法。

4. 分析数列的性质,如项数、公差、公比等,并引导学生运用数列的性质解决实际问题。

5. 进行课堂练习,巩固所学内容。

教案设计仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学活动1. 课堂讲解:数列的概念与表示方法。

2. 实例分析:分析生活中常见的数列,如等差数列、等比数列。

3. 练习:求给定数列的前n项和。

七、数列的图像表示1. 讲解:数列图像的绘制方法。

2. 练习:绘制给定数列的图像。

八、数列的性质与应用1. 讲解:数列的性质及其应用。

2. 实例分析:运用数列的性质解决实际问题。

3. 练习:运用数列的性质解决给定问题。

九、课堂小结1. 回顾本节课所学内容,总结数列的概念、表示方法、图像表示和性质。

2. 强调数列在实际问题中的应用。

十、课后作业1. 习题:求给定数列的前n项和。

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案一、教学目标1. 了解数列的定义及其特点2. 掌握数列的表示方法,包括通项公式和前n项和公式3. 能够运用数列的概念和表示法解决实际问题二、教学内容1. 数列的定义与特点2. 数列的表示方法a. 通项公式b. 前n项和公式三、教学重点与难点1. 重点:数列的概念、特点及表示方法2. 难点:通项公式和前n项和公式的运用四、教学方法1. 采用讲授法,讲解数列的概念、特点及表示方法2. 利用例题,引导学生运用数列的知识解决问题3. 小组讨论,探讨数列在实际问题中的应用五、教学过程1. 引入数列的概念,讲解数列的定义和特点2. 介绍数列的表示方法,包括通项公式和前n项和公式3. 举例说明数列的表示方法在实际问题中的应用4. 课堂练习,让学生巩固数列的概念和表示法教案仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学评估1. 课后作业:布置有关数列概念和表示法的练习题,要求学生在规定时间内完成。

2. 课堂练习:课堂上设置一些数列相关的问题,让学生现场解答,以检验他们对数列概念和表示法的掌握程度。

3. 小组讨论:组织学生进行小组讨论,分享他们在实际问题中运用数列知识的心得,从而提高他们的合作能力和解决问题的能力。

七、教学拓展1. 数列的性质:介绍数列的单调性、周期性等性质,引导学生深入研究数列的特点。

2. 数列的分类:讲解等差数列、等比数列等常见数列的定义和性质,让学生了解数列的多样性。

八、教学反思在教学过程中,要及时关注学生的学习反馈,调整教学节奏和难度,确保学生能够跟上课程进度。

针对学生的薄弱环节,要加强针对性训练,提高他们的数列知识水平。

注重培养学生的数学思维能力和实际应用能力,使他们能够将所学知识运用到实际问题中。

九、课后作业1. 复习数列的概念和表示法,整理课堂笔记。

2. 完成课后练习题,加深对数列知识的理解。

3. 选择一个实际问题,尝试运用数列的知识解决,并将解题过程和答案提交给本节课主要讲解了数列的概念和简单表示法,学生通过学习掌握了数列的基本知识,能够运用通项公式和前n项和公式解决一些实际问题。

2.1数列的概念与简单表示法

2.1数列的概念与简单表示法

第二章 数列2.1 数列的概念与简单表示法一、 知识点 (一)数列的定义1、按一定次序排列的一列数叫做数列,数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做首项)排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第n 项。

2、数列中的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列,例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4,3,是不同的数列。

3、在数列的定义中,并没有规定数列中的数必须不同,因此 ,同一个数在数列中可以重复出现4、数列的一般形式可以写成12,,...,,...n a a a 此数列可简记为{}n a 例如;把数列1111,,,...,,...23n 简记作1n ⎧⎫⎨⎬⎩⎭5、数列的项通常用字母加右下角标表示,其中右下角标表示项的位置序号、我们还应注意到这里{}n a 与n a 是不同的:{}n a 表示数列12,,...,n a a a ;而n a 只表示这个数列的第n 项,这里{}n a 是数列的简记符号,并不表示一个集合。

(二)数列的分类根据数列的项数可以对数列进行分类 1、 项数有限的数列叫有穷数列 2、 项数无限的数列叫无穷数列补充说明:按照项与项之间的大小关系、数列的增减性,可以分为以下几类1、 递增数列:一个数列,如果从第2项起,每一项都大于它前面的一项(即1n n a a +>),这样的数列叫做递增数列。

2、 递减数列:一个数列,如果从第2项起,每一项都小于它前面的一项(即1n n a a +<), 这样的数列叫做递减数列。

3、 摆动数列:一个数列,如果从第2项起,有些项大于它的前一项,有些项小于它的前一项,这样的数列叫做摆动数列。

4、 常数列:一个数列,如果它的每一项都相等,这个数列叫做常数列。

数列的概念与简单表示法备课资料

数列的概念与简单表示法备课资料

《数列的概念与简单表示法》备课资料(2)
1.数列的表示方法
数列可以看作是以正整数集(或它的有限子集{}1
23n ,,,,为定义域的函数()n a f n =)当自变量从小到大依次取值时,所对应的一列函数值.因此,可以说数列具有特殊的函数,所以从函数的观点看,数列的表示方法有以下三种:
(1)解析法
解析法可分为通项公式和递推公式两种,通项公式已在前面论述了,递推公式是利用数列前后项之间的关系给出数列的构成规律,那么通过知道数列中的一些项,就可以求出后面的项.递推公式也是给出数列的一种重要方法.
有些数列,虽然它给出的是递推公式,但可以根据递推公式,求出它的前几项,进而归纳出它的通项公式.
(2)列表法
2.数列的分类
(1)有穷数列、无穷数列
按数列的项数是有限还是无限来分类分为有穷数列和无穷数列.切记不要按项数的多少来分,一个数列,它的项数再多,只要是有限项,那么它也是有穷数列.
(2)单调数列,摆动数列
常数列按前后项之间的大小关系来分,从第二项起,每一项都不大于它的前一项的数列,称之为递减数列;每一项都不小于它的前一项的数列,称之为递增数列;若有些项大于后面的项,有些小于后面的项,称之为摆动数列;若数列里面的所有项均为同一个常数,则称之为常数列.
递增数列和递减数列,称为单调数列.
3.已知数列的前项和公式,求数列的通项公式
在已知,求时,我们可以利用1(2)n n n a S S n -=-≥,这里常常因为忽略了条件而出错.由此求得不一定就是它的通项公式,因此,必须要验证时是否也成立,
否则通项公式只能用11(1)(2)n n n S n a S S n -=⎧=⎨-⎩ ≥来表示.。

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。

举例说明数列的组成,如自然数数列、等差数列等。

1.2 数列的项解释数列中的每一个数称为数列的项。

强调数列项的顺序和重复性质。

1.3 数列的通项公式引导学生了解通项公式的概念,即用公式表示数列中任意一项的方法。

举例讲解如何写出简单数列的通项公式。

第二章:数列的表示法2.1 列举法讲解如何用列举法表示数列,即直接写出数列的所有项。

练习写出几个给定数列的列举表示。

2.2 公式法解释公式法表示数列的方法,即用公式来表示数列的任意一项。

举例说明如何用公式法表示等差数列和等比数列。

2.3 图像法介绍图像法表示数列的方法,即用图形来表示数列的项。

引导学生通过观察图形来理解数列的特点。

第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的数量。

举例说明如何确定一个数列的项数。

3.2 数列的单调性引导学生理解数列的单调性,即数列项的增减规律。

举例说明如何判断一个数列的单调性。

3.3 数列的周期性解释数列的周期性是指数列中项按照一定规律重复出现。

举例说明如何判断一个数列的周期性。

第四章:数列的通项公式4.1 等差数列的通项公式讲解等差数列的定义和性质。

推导等差数列的通项公式。

4.2 等比数列的通项公式讲解等比数列的定义和性质。

推导等比数列的通项公式。

4.3 其他类型数列的通项公式引导学生了解其他类型数列的通项公式。

举例讲解如何求解其他类型数列的通项公式。

第五章:数列的前n项和5.1 等差数列的前n项和讲解等差数列的前n项和的定义和性质。

推导等差数列的前n项和的公式。

5.2 等比数列的前n项和讲解等比数列的前n项和的定义和性质。

推导等比数列的前n项和的公式。

5.3 其他类型数列的前n项和引导学生了解其他类型数列的前n项和的求法。

举例讲解如何求解其他类型数列的前n项和。

第六章:数列的求和公式6.1 数列求和的定义解释数列求和是指将数列中的所有项相加得到一个数值。

数列的概念与简单表示法 课件

数列的概念与简单表示法 课件

由数列的前几项求通项公式
[典例]
(1)数列
3 5

1 2

5 11

3 7
,…的一个通项公式是
________.
(2)根据以下数列的前4项写出数列的一个通项公式.
①2×1 4,3×1 5,4×1 6,5×1 7,…;
②-3,7,-15,31,…;
③2,6,2,6,….
[解析] (1)数列可写为:35,48,151,164,…,分子满足:3 =1+2,4=2+2,5=3+2,6=4+2,…,
已知数列{an}的通项公式,判断某一个数是否是数列{an}的 项,即令通项公式等于该数,解关于n的方程,若解得n为正整 数k,则该数为数列{an}的第k项,若关于n的方程无解或有解且 为非正整数解则该数不是数列{an}中的项.
[点睛] (1)数列中的数是按一定顺序排列的.因此,如 果组成两个数列的数相同而排列顺序不同,那么它们就是 不同的数列.例如,数列4,5,6,7,8,9,10与数列10,9,8,7,6,5,4 是不同的数列.
(2)在数列的定义中,并没有规定数列中的数必须不 同,因此,同一个数在数列中可以重复出现.例如:1,- 1,1,-1,1,…;2,2,2,….
2.数列的分类
分类标准 名称
含义
按项的 个数
按项的变 化趋势
有穷数列 无穷数列 递增数列
递减数列 常数列 摆动数列
项数_有__限__的数列 项数_无__限__的数列
从第_2_项起,每一项都_大__于__它的前 一项的数列
从第_2_项起,每一项都_小__于__它的前 一项的数列
_各__项__相__等__的数列 从第_2_项起,有些项_大__于__它的前一 项,有些项小__于__它的前一项的数列

数列的概念与简单表示法 课件

数列的概念与简单表示法    课件
也可写为 an=- 3n,1n, n为n为 正正 偶奇 数数. ,
(4)将数列各项改写为93,939,9939,9 9399,…,分母都是 3, 而分子分别是 10-1,102-1,103-1,104-1,…,
所以 an=13(10n-1).
1.据所给数列的前几项求其通项公式时,需仔细观察分析, 抓住以下几方面的特征:
【解】 (1)数列的前三项:a1=12+2×1-5=-2; a2=22+2×2-5=3; a3=32+2×3-5=10. (2)∵an=n2+2n-5, ∴an+1-an=(n+1)2+2(n+1)-5-(n2+2n-5) =n2+2n+1+2n+2-5-n2-2n+5 =2n+3. ∵n∈N*,∴2n+3>0,∴an+1>an. ∴数列{an}是递增数列.
1.数列的通项公式给出了第 n 项 an 与它的位置序号 n 之间的 关系,只要用序号代替公式中的 n,就可以求出数列的相应项.
2.判断某数值是否为该数列的项,需假定它是数列中的项去 列方程.若方程有正整数解则是数列的一项;若方程无解或解不是 正整数,则不是该数列的一项.
将数列的通项变为“an=n2+2n-5”,第(2)问改为“判断数 列{an}的单调性”.
【解】 (1)各项减去 1 后为正偶数,所以 an=2n+1. (2)每一项的分子比分母少 1,而分母组成数列 21,22,23,24,…, 所以 an=2n2-n 1.
(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n;各 项绝对值的分母组成数列 1,2,3,4,…;而各项绝对值的分子组成的 数列中,奇数项为 1,偶数项为 3,即奇数项为 2-1,偶数项为 2 +1,所以 an=(-1)n·2+n-1n.
其中,有穷数列是________,无穷数列是________,递增数列 是________,递减数列是________,摆动数列是________,周期数 列是________.(将合理的序号填在横线上)

《数列的概念与简单表示法》课件

《数列的概念与简单表示法》课件
公式
等差数列的通项公式是 $a_n = a_1 + (n-1)d$,其中 $a_n$ 是第 $n$ 项,$a_1$ 是第一项,$d$ 是公差 。
等比数列的定义与特性
01
02
03
定义
等比数列是一组数,其中 任意两个相邻的数之间的 比是一个常数。
特性
等比数列的任意一项都可 以表示为前一项乘以一个 常数,这个常数被称为公 比。
金融
在金融领域,数列常用于研究投资回报、风险评估和资产定价等 。
贸易
在贸易中,数列用于分析商品销售的周期性和趋势,以及预测市场 需求。
经济学
在经济学中,数列用于研究经济增长、通货膨胀和就业等经济指标 的规律和趋势。
2023
REPORTING
THANKS
感谢观看
唯一性
一个数列只能有一个极 限。
稳定性
如果数列${ a_n }$的极 限为$a$,则对于任意 小的正数$epsilon$, 存在正整数$N$,当 $n>N$时,有$|a_n a| < epsilon$。
数列的收敛性定义与性质
收敛性定义
如果数列${ a_n }$的极限 存在,则称数列${ a_n }$ 收敛。
REPORTING
文字叙述法
文字叙述法是用文字描述数列的方法,通常包括起始值、递增值和项数等要素。
例如,数列“1, 4, 7, 10, 13”可以用文字叙述法表示为“从1开始,每次递增3,共 有5项”。
文字叙述法虽然直观易懂,但不够精确和简洁,容易产生歧义。
公式表示法
公式表示法是用数学公式来表 示数列的方法,通常包括通项 公式和求和公式等。
详细描述
数列是一种有序的数集,这些数按照 一定的次序排列,每个数称为数列的 一个项,每个项都有一个与之对应的 正整数,称为项的序号。

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案

《数列的概念与简单表示法》教案第一章:数列的概念1.1 数列的定义引导学生理解数列是由按照一定顺序排列的一列数。

强调数列的有序性,即数列中每个数的位置是固定的。

1.2 数列的项解释数列中的每一个数称为数列的项。

举例说明数列的项与数列的关系。

1.3 数列的表示方法介绍数列的表示方法,包括顺序列举法和通项公式法。

举例说明如何用通项公式表示数列。

第二章:数列的通项公式2.1 通项公式的定义引导学生理解通项公式是用来表示数列中任意一项的公式。

强调通项公式中变量的含义和作用。

2.2 常见数列的通项公式举例讲解等差数列和等比数列的通项公式。

引导学生通过观察数列的特点来确定通项公式。

2.3 通项公式的应用解释如何利用通项公式来求解数列中的特定项。

举例说明通项公式在解决数列问题中的应用。

第三章:数列的性质3.1 数列的项数解释数列的项数是指数列中项的个数。

引导学生理解项数与数列的定义和表示方法的关系。

3.2 数列的单调性讲解数列的单调性,包括递增和递减。

举例说明如何判断数列的单调性。

3.3 数列的周期性解释数列的周期性是指数列中存在重复的项的模式。

举例说明如何判断数列的周期性。

第四章:数列的求和4.1 数列的求和公式引导学生理解数列的求和是指将数列中所有项相加得到的结果。

讲解数列的求和公式,包括等差数列和等比数列的求和公式。

4.2 数列的求和应用解释如何利用数列的求和公式来求解数列的和。

举例说明数列的求和公式在解决数列问题中的应用。

4.3 数列的求和性质讲解数列的求和性质,包括数列的错位相减法和分组求和法。

举例说明如何利用数列的求和性质来简化计算。

第五章:数列的综合应用5.1 数列的极限引导学生理解数列的极限是指数列项趋近于某个值的过程。

讲解数列的极限的定义和性质。

5.2 数列的极限应用解释如何利用数列的极限来解决数列问题。

举例说明数列的极限在数学分析中的应用。

5.3 数列的实际应用讲解数列在实际问题中的应用,包括数列在物理学和经济学中的例子。

数列的概念与简单表示法教案

数列的概念与简单表示法教案

数列的概念与简单表示法教案数列是指由一系列按照特定规律排列的数所组成的序列。

数列的概念和简单表示法是数学中重要的概念之一。

通过学习数列的概念和简单表示法,我们可以更好地理解数学中的序列和数的变化规律,并应用到解决实际问题中。

一、数列的概念1. 定义:数列是指由一系列按照特定规律排列的数所组成的序列。

2. 表示方法:数列可以用各种方法进行表示,常用的有列表法和通项公式法。

- 列表法:将数列的每一项按照规律列成一个列表,例如:1, 3, 5, 7, 9, ...- 通项公式法:用一个公式表示数列的第n项,例如:an =2n - 1。

3. 数列的性质:数列可以有不同的性质,例如有界性、单调性、周期性等。

- 有界性:数列中的数有上下界,即存在最大值和最小值。

- 单调性:数列中的数可以是递增的,也可以是递减的。

- 周期性:数列的数按照一定规律重复出现。

二、数列的简单表示法1. 递推公式:递推公式是指用数列的前几项来表示数列的后续项的公式。

- 递推公式的一般形式为:an+1 = f(an),其中f为确定的函数关系。

- 递推公式的例子:an+1 = an + 2,即后一项等于前一项加2。

2. 通项公式:通项公式是指用n来表示数列的第n项的公式。

- 对于等差数列,通项公式的一般形式为:an = a1 + (n - 1)d,其中a1为首项,d为公差。

- 对于等比数列,通项公式的一般形式为:an = a1 * r^(n-1),其中a1为首项,r为公比。

- 对于其他特殊数列,也可以通过观察规律,推导出通项公式。

三、教学设计建议1. 引导学生理解数列的概念:通过列举生活中的数列实例,如自然数序列、偶数序列等,引导学生理解数列的概念。

2. 举例说明不同数列的特点:通过具体的数列例子,如等差数列和等比数列,说明数列的有界性、单调性、周期性等特点。

3. 教授数列的表示方法:通过具体的数列例子,引导学生掌握列表法和通项公式法表示数列的方法。

数列的概念及简单表示法知识点讲解+例题讲解(含解析)

数列的概念及简单表示法知识点讲解+例题讲解(含解析)

数列的概念及简单表示法一、知识梳理1.数列的定义按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 2.数列的分类3.数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析法. 4.数列的通项公式(1)通项公式:如果数列{a n }的第n 项a n 与序号n 之间的关系可以用一个式子a n =f (n )来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n }的第1项(或前几项),且从第二项(或某一项)开始的任一项a n 与它的前一项a n -1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.注意:1.若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.2.数列是按一定“次序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关.3.易混项与项数的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)1,1,1,1,…,不能构成一个数列.( ) (3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对任意n ∈N *,都有a n +1=S n +1-S n .( ) 解析 (1)数列:1,2,3和数列:3,2,1是不同的数列. (2)数列中的数是可以重复的,可以构成数列. (3)数列可以是常数列或摆动数列. 答案 (1)× (2)× (3)× (4)√2.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32B.53C.85D.23解析 a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12, a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23. 答案 D 3.(必修5P33A5改编)根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n =________.解析 由a 1=1=5×1-4,a 2=6=5×2-4,a 3=11=5×3-4,…,归纳a n =5n -4. 答案 5n -44.(2019·山东省实验中学摸底)已知数列{a n }中,a 1=1,a n +1=2a n +1(n ∈N *),S n 为其前n 项和,则S 5的值为( ) A.57B.61C.62D.63解析 由条件可得a 2=2a 1+1=3,a 3=2a 2+1=7,a 4=2a 3+1=15,a 5=2a 4+1=31,所以S 5=a 1+a 2+a 3+a 4+a 5=1+3+7+15+31=57. 答案 A5.(2018·北京朝阳区月考)数列0,1,0,-1,0,1,0,-1,…的一个通项公式a n 等于( )A.(-1)n +12B.cosn π2 C.cos n +12π D.cos n +22π解析 令n =1,2,3,…,逐一验证四个选项,易得D 正确. 答案 D6.(2019·天津河东区一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析 ∵S n =a 1(4n -1)3,a 4=32,则a 4=S 4-S 3=32.∴255a 13-63a 13=32,∴a 1=12.答案 12考点一 由数列的前几项求数列的通项【例1】 (1)已知数列的前4项为2,0,2,0,则依此归纳该数列的通项不可能是( ) A.a n =(-1)n -1+1B.a n =⎩⎨⎧2,n 为奇数,0,n 为偶数C.a n =2sin n π2D.a n =cos(n -1)π+1(2)已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析 (1)对n =1,2,3,4进行验证,a n =2sin n π2不合题意.(2)各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…,故其通项公式可以为a n =(-1)n·2n -32n . 答案 (1)C (2)a n =(-1)n ·2n -32n【训练1】 写出下列各数列的一个通项公式: (1)-11×2,12×3,-13×4,14×5,…; (2)12,2,92,8,252,…; (3)5,55,555,5 555,….解 (1)这个数列的前4项的绝对值都等于序号与序号加1的积的倒数,且奇数项为负,偶数项为正,所以它的一个通项公式是a n =(-1)n ×1n (n +1),n ∈N *.(2)数列的各项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察.即12,42,92,162,252,…,分子为项数的平方,从而可得数列的一个通项公式为a n =n 22.(3)将原数列改写为59×9,59×99,59×999,…,易知数列9,99,999,…的通项为10n -1,故所求的数列的一个通项公式为a n =59(10n -1).考点二 由a n 与S n 的关系求通项【例2】 (1)(2019·广州质检)已知S n 为数列{a n }的前n 项和,且log 2(S n +1)=n +1,则数列{a n }的通项公式为________________.(2)(2018·全国Ⅰ卷)记S n 为数列{a n }的前n 项和.若S n =2a n +1,则S 6=________. 解析 (1)由log 2(S n +1)=n +1,得S n +1=2n +1, 当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=2n , 所以数列{a n }的通项公式为a n =⎩⎨⎧3,n =1,2n ,n ≥2.(2)由S n =2a n +1,得a 1=2a 1+1,所以a 1=-1.当n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1), 得a n =2a n -1. ∴数列{a n }是首项为-1,公比为2的等比数列.∴S 6=a 1(1-q 6)1-q =-(1-26)1-2=-63. 答案 (1)a n =⎩⎨⎧3,n =12n ,n ≥2 (2)-63【训练2】 (1)已知数列{a n }的前n 项和S n =2n 2-3n ,则数列{a n }的通项公式a n =________.(2)已知数列{a n }的前n 项和S n =3n +1,则数列的通项公式a n =________. 解析 (1)a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合上式,∴a n =4n -5. (2)当n =1时,a 1=S 1=3+1=4,当n ≥2时,a n =S n -S n -1=3n +1-3n -1-1=2·3n -1. 显然当n =1时,不满足上式. ∴a n =⎩⎨⎧4,n =1,2·3n -1,n ≥2.答案 (1)4n -5 (2)⎩⎨⎧4,n =1,2·3n -1,n ≥2考点三 由数列的递推关系求通项【例3】 (1)在数列{a n }中,a 1=2,a n +1=a n +ln ⎝ ⎛⎭⎪⎫1+1n ,则a n 等于( )A.2+ln nB.2+(n -1)ln nC.2+n ln nD.1+n +ln n(2)若a 1=1,na n -1=(n +1)a n (n ≥2),则数列{a n }的通项公式a n =________. (3)若a 1=1,a n +1=2a n +3,则通项公式a n =________.(4)若数列{a n }满足a 1=1,a n +1=2a na n +2,则a n =________.解析 (1)因为a n +1-a n =ln n +1n =ln(n +1)-ln n ,所以a 2-a 1=ln 2-ln 1, a 3-a 2=ln 3-ln 2,a 4-a 3=ln 4-ln 3,a n -a n -1=ln n -ln(n -1)(n ≥2). 把以上各式分别相加得a n -a 1=ln n -ln 1,则a n =2+ln n ,且a 1=2也适合, 因此a n =2+ln n (n ∈N *).(2)由na n-1=(n +1)a n (n ≥2),得a n a n -1=nn +1(n ≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1 =n n +1·n -1n ·n -2n -1·…·34·23·1=2n +1,又a 1也满足上式,所以a n =2n +1. (3)由a n +1=2a n +3,得a n +1+3=2(a n +3).令b n =a n +3,则b 1=a 1+3=4,且b n +1b n=a n +1+3a n +3=2.所以{b n }是以4为首项,2为公比的等比数列.∴b n =4·2n -1=2n +1,∴a n =2n +1-3. (4)因为a n +1=2a n a n +2,a 1=1,所以a n ≠0,所以1a n +1=1a n +12,即1a n +1-1a n=12.又a 1=1,则1a 1=1,所以⎩⎨⎧⎭⎬⎫1a n 是以1为首项,12为公差的等差数列.所以1a n =1a 1+(n -1)×12=n 2+12=n +12. 所以a n =2n +1.规律方法 由数列的递推关系求通项公式的常用方法 (1)已知a 1,且a n -a n -1=f (n ),可用“累加法”求a n . (2)已知a 1(a 1≠0),且a na n -1=f (n ),可用“累乘法”求a n . (3)已知a 1,且a n +1=qa n +b ,则a n +1+k =q (a n +k )(其中k 可用待定系数法确定),可转化为{a n +k }为等比数列.(4)形如a n +1=Aa n Ba n +C (A ,B ,C 为常数)的数列,可通过两边同时取倒数的方法构造新数列求解.【训练3】 (1)(2019·山东、湖北部分重点中学联考)已知数列{a n }的前n 项和为S n ,若a 1=2,a n +1=a n +2n -1+1,则a n =________. (2)若a 1=1,a n +1=2n a n ,则通项公式a n =________.解析 (1)a 1=2,a n +1=a n +2n -1+1⇒a n +1-a n =2n -1+1⇒a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 3-a 2)+(a 2-a 1)+a 1, 则a n =2n -2+2n -3+…+2+1+n -1+a 1=1-2n -11-2+n -1+2=2n -1+n .(2)由a n +1=2n a n ,得a na n -1=2n -1(n ≥2),所以a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1=2n -1·2n -2·…·2·1=21+2+3+…+(n -1)=2n (n -1)2.又a 1=1适合上式,故a n =2n (n -1)2.答案 (1)2n -1+n (2)2n (n -1)2考点四 数列的性质【例4】 (1)数列{a n }的通项a n =n n 2+90,则数列{a n }中的最大项是( )A.310B.19C.119D.1060(2)数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤12,2a n -1,12<a n <1,a 1=35,则数列的第2 019项为________.解析 (1)令f (x )=x +90x (x >0),运用基本不等式得f (x )≥290,当且仅当x =310时等号成立.因为a n =1n +90n ,所以1n +90n ≤1290,由于n ∈N *,不难发现当n =9或n =10时,a n =119最大.(2)由已知可得,a 2=2×35-1=15,a 3=2×15=25,a 4=2×25=45,a 5=2×45-1=35, ∴{a n }为周期数列且T =4, ∴a 2 019=a 504×4+3=a 3=25. 答案 (1)C (2)25【训练4】 (1)已知数列{a n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 020=________.(2)若a n =n 2+kn +4且对于n ∈N *,都有a n +1>a n 成立,则实数k 的取值范围是________.解析 (1)∵a 1=1,a n +1=a 2n -2a n +1=(a n -1)2,∴a 2=(a 1-1)2=0,a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的数列,∴a 2 020=a 2=0.(2)由a n +1>a n 知该数列是一个递增数列,又通项公式a n =n 2+kn +4,所以(n +1)2+k (n +1)+4>n 2+kn +4,即k >-1-2n . 又n ∈N *,所以k >-3. 答案 (1)0 (2)(-3,+∞)三、课后练习1.(2019·山东新高考适应性调研)“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法复合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2 018这2 018个数中,能被3除余1且被7除余1的数按从小到大的顺序排成一列,构成数列{a n },则此数列共有( ) A.98项B.97项C.96项D.95项解析 能被3除余1且被7除余1的数就只能是被21除余1的数,故a n =21n -20,由1≤a n ≤2 018得1≤n ≤97,又n ∈N *,故此数列共有97项. 答案 B2.已知数列{a n }的通项公式a n =(n +2)·⎝ ⎛⎭⎪⎫67n,则数列{a n }的项取最大值时,n =________.解析 假设第n 项为最大项,则⎩⎨⎧a n ≥a n -1,a n ≥a n +1,即⎩⎪⎨⎪⎧(n +2)·⎝ ⎛⎭⎪⎫67n≥(n +1)·⎝ ⎛⎭⎪⎫67n -1,(n +2)·⎝ ⎛⎭⎪⎫67n ≥(n +3)·⎝ ⎛⎭⎪⎫67n+1,解得⎩⎨⎧n ≤5,n ≥4,即4≤n ≤5,又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574. 答案 4或53.(2019·菏泽模拟)已知数列{a n }的前n 项和为S n ,且满足S n =(-1)n·a n -12n ,记b n =8a 2·2n -1,若对任意的n ∈N *,总有λb n -1>0成立,则实数λ的取值范围为________.解析 令n =1,得a 1=-14; 令n =3,可得a 2+2a 3=18;令n =4,可得a 2+a 3=316,故a 2=14,即b n =8a 2·2n -1=2n . 由λb n -1>0对任意的n ∈N *恒成立, 得λ>⎝ ⎛⎭⎪⎫12n对任意的n ∈N *恒成立,又⎝ ⎛⎭⎪⎫12n≤12, 所以实数λ的取值范围为⎝ ⎛⎭⎪⎫12,+∞.答案 ⎝ ⎛⎭⎪⎫12,+∞4.已知数列{a n }中,a n =1+1a +2(n -1)(n ∈N *,a ∈R 且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解 (1)∵a n =1+1a +2(n -1)(n ∈N *,a ∈R ,且a ≠0),又a =-7,∴a n =1+12n -9(n ∈N *).结合函数f (x )=1+12x -9的单调性,可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0. (2)a n =1+1a +2(n -1)=1+12n -2-a2,已知对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,可知5<2-a2<6,即-10<a <-8. 即a 的取值范围是(-10,-8).。

第1讲 数列的概念及简单表示法

第1讲 数列的概念及简单表示法

第1讲数列的概念及简单表示法一、知识梳理1.数列的有关概念(1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项.(2)数列的分类(3)数列的表示法数列有三种表示法,它们分别是列表法、图象法和解析式法.2.数列的通项公式(1)数列的通项公式如果数列{a n}的第n项与序号n之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n }的前n 项和S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.常用结论1.数列与函数的关系数列是一种特殊的函数,即数列是一个定义在正整数集或其子集{1,2,3,…,n }上的函数,当自变量依次从小到大取值时所对应的一列函数值.2.在数列{a n }中,若a n 最大,则⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,若a n 最小,则⎩⎪⎨⎪⎧a n ≤a n -1,a n ≤a n +1.二、教材衍化1.在数列{a n }中,a 1=1,a n =1+(-1)na n -1(n ≥2),则a 5等于( )A.32 B.53 C.85D .23解析:选D.a 2=1+(-1)2a 1=2,a 3=1+(-1)3a 2=12,a 4=1+(-1)4a 3=3,a 5=1+(-1)5a 4=23. 2.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式a n = .答案:5n -4一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)相同的一组数按不同顺序排列时都表示同一个数列.( ) (2)所有数列的第n 项都能使用通项公式表示.( ) (3)数列{a n }和集合{a 1,a 2,a 3,…,a n }是一回事.( ) (4)若数列用图象表示,则从图象上看都是一群孤立的点.( ) (5)一个确定的数列,它的通项公式只有一个.( )(6)若数列{a n }的前n 项和为S n ,则对∀n ∈N +,都有a n =S n -S n -1.( ) 答案:(1)× (2)× (3)× (4)√ (5)× (6)× 二、易错纠偏常见误区(1)忽视数列是特殊的函数,其自变量为正整数集N +或其子集{1,2,…,n }; (2)根据S n 求a n 时忽视对n =1的验证.1.在数列-1,0,19,18,…,n -2n 2中,0.08是它的第 项.解析:依题意得n -2n 2=225,解得n =10或n =52(舍).答案:102.已知S n =2n +3,则a n = .解析:因为S n =2n +3,那么当n =1时,a 1=S 1=21+3=5;当n ≥2时,a n =S n -S n -1=2n+3-(2n -1+3)=2n -1(*).由于a 1=5不满足(*)式,所以a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2由数列的前几项求数列的通项公式(师生共研)(1)数列1,3,6,10,15,…的一个通项公式是( )A .a n =n 2-(n -1)B .a n =n 2-1C .a n =n (n +1)2D .a n =n (n -1)2(2)已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是 .【解析】 (1)设此数列为{a n },则由题意可得a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,…仔细观察数列1,3,6,10,15,…可以发现:1=1,3=1+2,6=1+2+3,10=1+2+3+4.…所以第n 项为1+2+3+4+5+…+n =n (n +1)2,所以数列1,3,6,10,15,…的通项公式a n =n (n +1)2.(2)各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子数比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式可以为a n =(-1)n·2n -32n .【答案】 (1)C (2)a n =(-1)n·2n -32n解决此类问题,需抓住下面的特征:(1)各项的符号特征,通过(-1)n或(-1)n+1来调节正负项.(2)考虑对分子、分母各个击破或寻找分子、分母之间的关系.(3)相邻项(或其绝对值)的变化特征.(4)拆项、添项后的特征.(5)通过通分等方法变化后,观察是否有规律.[注意]根据数列的前几项求其通项公式其实是利用了不完全归纳法,蕴含着“从特殊到一般”的数学思想,由不完全归纳法得出的结果不一定是准确的!1.数列{a n }的前4项是32,1,710,917,则这个数列的一个通项公式是a n = .解析:数列{a n }的前4项可变形为2×1+112+1,2×2+122+1,2×3+132+1,2×4+142+1,故a n =2n +1n 2+1.答案:2n +1n 2+12.数列3,7,11,15,…的一个通项公式是 .解析:因为7-3=11-7=15-11=4,即a 2n -a 2n -1=4,所以a 2n =3+(n -1)×4=4n -1,所以a n =4n -1.答案:a n =4n -1由a n 与S n 的关系求通项公式a n (师生共研)(1)(2020·河南三市联考)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1的值为( )A.12B.14C.18D .116(2)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a 1= ,{a n }的通项公式为 .【解析】 (1)因为S n =a 1(4n -1)3,a 4=32,所以S 4-S 3=255a 13-63a 13=32,所以a 1=12,故选A.(2)数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n , 当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1), 所以(2n -1)a n =2,所以a n =22n -1. 当n =1时,a 1=2,上式也成立. 所以a n =22n -1.【答案】 (1)A (2)2 a n =22n -1(1)已知S n 求a n 的三个步骤 ①先利用a 1=S 1求出a 1;②用n -1替换S n 中的n 得到一个新的关系式,利用a n =S n -S n -1(n ≥2)便可求出当n ≥2时a n 的表达式;③注意检验n =1时的表达式是否可以与n ≥2的表达式合并. (2)S n 与a n 关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化. ①利用a n =S n -S n -1(n ≥2)转化为只含S n ,S n -1的关系式,再求解; ②利用S n -S n -1=a n (n ≥2)转化为只含a n ,a n -1的关系式,再求解.1.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N +),则a n = .解析:当n ≥2时,a n =S n -S n -1=2n +1;当n =1时,a 1=S 1=4≠2×1+1.所以a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2. 答案:⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥22.若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式a n = .解析:由S n =23a n +13,得当n ≥2时,S n -1=23a n -1+13,两式相减,整理得a n =-2a n -1,又当n =1时,S 1=a 1=23a 1+13,所以a 1=1,所以{a n }是首项为1,公比为-2的等比数列,故a n =(-2)n -1.答案:(-2)n-1由递推关系求数列的通项公式(师生共研)分别求出满足下列条件的数列的通项公式.(1)a1=0,a n+1=a n+(2n-1)(n∈N+);(2)a1=1,a n+1=2n a n(n∈N+);(3)a1=1,a n+1=3a n+2(n∈N+).【解】(1)a n=a1+(a2-a1)+…+(a n-a n-1)=0+1+3+…+(2n-5)+(2n-3)=(n-1)2,所以数列的通项公式为a n=(n-1)2.(2)由于a n +1a n =2n ,故a 2a 1=21,a 3a 2=22,…,a na n -1=2n -1,将这n -1个等式叠乘, 得a n a 1=21+2+…+(n -1)=2n (n -1)2,故a n =2n (n -1)2,所以数列的通项公式为a n =2n (n -1)2.(3)因为a n +1=3a n +2,所以a n +1+1=3(a n +1),所以a n +1+1a n +1=3,所以数列{a n +1}为等比数列,公比q =3,又a 1+1=2,所以a n +1=2·3n -1,所以该数列的通项公式为a n =2·3n-1-1.由递推关系求数列的通项公式的常用方法1.在数列{a n}中,若a1=2,a n+1=a n+2n-1,则a n=.解析:a1=2,a n+1=a n+2n-1⇒a n+1-a n=2n-1⇒a n=(a n-a n-1)+(a n-1-a n-2)+…+(a3-a2)+(a2-a1)+a1,则a n=2n-2+2n-3+…+2+1+a1=1-2n-11-2+2=2n-1+1.答案:2n-1+12.若a1=1,na n-1=(n+1)a n(n≥2),则数列{a n}的通项公式a n=.解析:由na n-1=(n+1)a n(n≥2),得a na n-1=nn+1(n≥2).所以a n =a n a n -1·a n -1a n -2·a n -2a n -3·…·a 3a 2·a 2a 1·a 1=n n +1·n -1n ·n -2n -1·…·34×23×1=2n +1,(*) 又a 1也满足(*)式,所以a n =2n +1. 答案:2n +1数列的函数特征(多维探究) 角度一 数列的单调性已知数列{a n }的通项公式为a n =3n +k2n,若数列{a n }为递减数列,则实数k 的取值范围为( )A .(3,+∞)B .(2,+∞)C .(1,+∞)D .(0,+∞)【解析】 因为a n +1-a n =3n +3+k 2n +1-3n +k 2n =3-3n -k2n +1,由数列{a n }为递减数列知,对任意n ∈N +,a n +1-a n =3-3n -k2n +1<0,所以k >3-3n 对任意n ∈N +恒成立,所以k ∈(0,+∞).故选D.【答案】 D(1)解决数列单调性问题的三种方法①用作差比较法,根据a n +1-a n 的符号判断数列{a n }是递增数列、递减数列还是常数列; ②用作商比较法,根据a n +1a n (a n >0或a n <0)与1的大小关系进行判断;③结合相应函数的图象直观判断. (2)求数列最大项或最小项的方法①可以利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;②利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.角度二 数列的周期性等差数列{a n}的公差d<0,且a21=a211,则数列{a n}的前n项和S n取得最大值时的项数n的值为()A.5 B.6C.5或6 D.6或7【解析】由a21=a211,可得(a1+a11)(a1-a11)=0,因为d<0,所以a1-a11≠0,所以a1+a11=0,又2a6=a1+a11,所以a6=0.因为d<0,所以{a n}是递减数列,所以a1>a2>…>a5>a6=0>a7>a8>…,显然前5项和或前6项和最大,故选C.【答案】 C解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.已知数列{a n}满足a n=(n-λ)2n(n∈N +),若{a n}是递增数列,则实数λ的取值范围是.解析:因为数列{a n}是递增数列,所以a n+1>a n,所以(n+1-λ)2n+1>(n-λ)2n,化为λ<n+2,对任意的n∈N+都成立.所以λ<3.答案:(-∞,3)核心素养系列13 逻辑推理——数列的通项公式逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程.主要包括两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比推理;一类是从一般到特殊的推理,推理形式主要有演绎推理.已知数列{a n }的前n 项和S n =n 2a n (n ≥2),且a 1=1,通过计算a 2,a 3,猜想a n 等于( )A.2(n +1)2B.2n (n +1)C.12n -1D .12n -1【解析】 法一(归纳推理):因为S n =n 2a n ,所以a n +1=S n +1-S n =(n +1)2a n +1-n 2a n , 故a n +1=nn +2a n ,当n =2时,a 1+a 2=4a 2,a 1=1, 所以a 2=13.所以a 1=1=21×2,a 2=13=22×3,a 3=22+2a 2=12×13=16=23×4,a 4=33+2a 3=35×16=110=24×5,a 5=44+2a 4=23×110=115=25×6,由此可猜想a n =2n (n +1).法二(演绎推理):因为a 1=1,S n =n 2a n ,所以n ≥2时,a n =S n -S n -1=n 2a n -(n -1)2a n-1,即(n +1)(n -1)a n =(n -1)2a n -1,所以a na n -1=n -1n +1,所以a n a n -1·a n -1a n -2·…·a 2a 1=n -1n +1×n -2n ×n -3n -1·…·24×13,即a n a 1=2n (n +1),所以a n =2n (n +1). 【答案】 B本题是从特殊到一般的归纳,是不完全归纳,解答此类问题的具体策略:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k 或(-1)k +1,k ∈N +处理.1.在数列1,2,7,10,13,…中219是这个数列的第项.解析:数列1,2,7,10,13,…,即数列1,3×1+1,3×2+1,3×3+1,3×4+1,…,所以该数列的通项公式为a n=3(n-1)+1=3n-2,所以3n-2=219=76,所以n=26,故219是这个数列的第26项.答案:262.已知数列{a n}满足a1=1,a n+1=a2n-2a n+1(n∈N+),则a2 020等于.解析:因为a1=1,所以a2=(a1-1)2=0,a3=(a2-1)2=1,a4=(a3-1)2=0,…,可知数列{a n}是以2为周期的周期数列,所以a2 020=a2=0.答案:0[基础题组练]1.已知数列{a n }的通项公式为a n =n 2-8n +15,则( ) A .3不是数列{a n }的项 B .3只是数列{a n }的第2项 C .3只是数列{a n }的第6项 D .3是数列{a n }的第2项和第6项解析:选D.令a n =3,即n 2-8n +15=3.整理,得n 2-8n +12=0,解得n =2或n =6.故选D.2.已知数列{a n }满足:任意m ,n ∈N +,都有a n ·a m =a n +m ,且a 1=12,则a 5=( )A.132B.116C.14D .12解析:选A.由题意,得a 2=a 1a 1=14,a 3=a 1·a 2=18,所以a 5=a 3·a 2=132.3.在数列{a n }中,“|a n +1|>a n ”是“数列{a n }为递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B.“|a n +1|>a n ”⇔a n +1>a n 或-a n +1>a n ,充分性不成立,数列{a n }为递增数列⇔|a n +1|≥a n +1>a n 成立,必要性成立,所以“|a n +1|>a n ”是“数列{a n }为递增数列”的必要不充分条件.故选B.4.已知数列{a n }满足a n +1=1-1a n (n ∈N *),且a 1=2,则( )A .a 3=-1B .a 2 019=12C .S 3=3D .S 2 019=2 019解析:选A.数列{a n }满足a 1=2,a n +1=1-1a n (n ∈N *),可得a 2=12,a 3=-1,a 4=2,a 5=12,…所以a n -3=a n ,数列的周期为3.a 2 019=a 672×3+3=a 3=-1.S 6=3,S 2 019=2 0192.5.设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n =( ) A.13n -1 B.2n (n +1) C.6(n +1)(n +2)D .5-2n 3解析:选B.由题意知,S n +na n =2, 当n ≥2时,S n -1+(n -1)a n -1=2, 所以(n +1)a n =(n -1)a n -1, 从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,则a n =2n (n +1),当n =1时上式成立,所以a n =2n (n +1).6.数列1,23,35,47,59,…的一个通项公式a n = .解析:由已知得,数列可写成11,23,35,…,故通项公式可以为n2n -1.答案:n2n -17.若数列{a n }满足a 1·a 2·a 3·…·a n =n 2+3n +2,则数列{a n }的通项公式为 . 解析:a 1·a 2·a 3·…·a n =(n +1)(n +2), 当n =1时,a 1=6;当n ≥2时,⎩⎪⎨⎪⎧a 1·a 2·a 3·…·a n -1·a n =(n +1)(n +2),a 1·a 2·a 3·…·a n -1=n (n +1),故当n ≥2时,a n =n +2n,所以a n=⎩⎨⎧6,n =1,n +2n ,n ≥2,n ∈N *.答案:a n =⎩⎪⎨⎪⎧6,n =1,n +2n ,n ≥2,n ∈N*8.(2020·重庆(区县)调研测试)已知数列{a n }的前n 项和为S n ,a 1=1,2S n =(n +1)a n ,则a n = .解析:由2S n =(n +1)a n 知,当n ≥2时,2S n -1=na n -1,所以2a n =2S n -2S n -1=(n +1)a n-na n -1,所以(n -1)a n =na n -1,所以当n ≥2时,a n n =a n -1n -1,所以a n n =a 11=1,所以a n =n .答案:n9.已知数列{a n }的前n 项和为S n . (1)若S n =(-1)n +1·n ,求a 5+a 6及a n ; (2)若S n =3n +2n +1,求a n .解:(1)因为a 5+a 6=S 6-S 4=(-6)-(-4)=-2, 当n =1时,a 1=S 1=1,当n ≥2时, a n =S n -S n -1=(-1)n +1·n -(-1)n ·(n -1)= (-1)n +1·[n +(n -1)]=(-1)n +1·(2n -1), 又a 1也适合此式,所以a n =(-1)n +1·(2n -1). (2)因为当n =1时,a 1=S 1=6;当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2×3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2×3n -1+2,n ≥2.10.(2020·安徽合肥四校联考)已知数列{a n }满足a 1=3,a n +1=4a n +3. (1)写出该数列的前4项,并归纳出数列{a n }的通项公式;(2)证明:a n +1+1a n +1=4.解:(1)a 1=3,a 2=15,a 3=63,a 4=255.因为a 1=41-1,a 2=42-1,a 3=43-1,a 4=44-1,…,所以归纳得a n =4n -1.(2)证明:因为a n +1=4a n +3,所以a n +1+1a n +1=4a n +3+1a n +1=4(a n +1)a n +1=4.[综合题组练]1.(2020·河南焦作第四次模拟)已知数列{a n }的通项公式为a n =2n ,记数列{a n b n }的前n 项和为S n ,若S n -22n +1+1=n ,则数列{b n }的通项公式为b n = .解析:因为S n -22n +1+1=n ,所以S n =(n -1)·2n +1+2.所以当n ≥2时,S n -1=(n -2)2n +2,两式相减,得a n b n =n ·2n ,所以b n =n ;当n =1时,a 1b 1=2,所以b 1=1.综上所述,b n =n ,n ∈N *.故答案为n .答案:n2.(2020·新疆一诊)数列{a n }满足a 1=3,a n -a n a n +1=1,A n 表示{a n }的前n 项之积,则A 2 019= .解析:由a n -a n a n +1=1,得a n +1=1-1a n,又a 1=3,则a 2=1-1a 1=23,a 3=1-1a 2=1-32=-12,a 4=1-1a 3=1-(-2)=3,则数列{a n }是周期为3的周期数列,且a 1a 2a 3=3×⎝⎛⎭⎫23×⎝⎛⎭⎫-12=-1,则A 2 019=(a 1a 2a 3)·(a 4a 5a 6)·…·(a 2017a 2 018a 2 019)=(-1)673=-1.答案:-13.已知S n 为正项数列{a n }的前n 项和,且满足S n =12a 2n +12a n (n ∈N +). (1)求a 1,a 2,a 3,a 4的值; (2)求数列{a n }的通项公式.解:(1)由S n =12a 2n +12a n (n ∈N +),可得a 1=12a 21+12a 1,解得a 1=1; S 2=a 1+a 2=12a 22+12a 2,解得a 2=2;同理a 3=3,a 4=4. (2)S n =12a 2n +12a n ,① 当n ≥2时,S n -1=12a 2n -1+12a n -1,② ①-②得(a n -a n -1-1)(a n +a n -1)=0. 由于a n +a n -1≠0, 所以a n -a n -1=1, 又由(1)知a 1=1,故数列{a n }是首项为1,公差为1的等差数列,故a n =n .4.设数列{a n }的前n 项和为S n .已知a 1=a (a ≠3),a n +1=S n +3n ,n ∈N +. (1)设b n =S n -3n ,求数列{b n }的通项公式; (2)若a n +1≥a n ,n ∈N +,求a 的取值范围. 解:(1)依题意得S n +1-S n =a n +1=S n +3n , 即S n +1=2S n +3n ,由此得S n +1-3n +1=2(S n -3n ),即b n +1=2b n , 又b 1=S 1-3=a -3,因此,所求通项公式为b n =(a -3)2n -1,n ∈N +. (2)由(1)可知S n =3n +(a -3)2n -1,n ∈N +,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2n -1-3n -1-(a -3)2n -2=2×3n -1+(a -3)2n-2,a n +1-a n =4×3n -1+(a -3)2n -2 =2n -2⎣⎢⎡⎦⎥⎤12·⎝⎛⎭⎫32n -2+a -3,所以,当n ≥2时, a n +1≥a n ⇒12⎝⎛⎭⎫32n -2+a -3≥0⇒a ≥-9,又a2=a1+3>a1,a≠3.所以,所求的a的取值范围是[-9,3)∪(3,+∞).。

2.1数列的概念与简单表示法课件人教新课标

2.1数列的概念与简单表示法课件人教新课标
递推公式也是给出数列的一种方法.
题型1
根据数列的前几项写出数 列的一个通项公式
解决本类问题关键是视察归纳 各项与对应的项数之间的联系.同 时.要善于利用我们熟知的一些基本 数列,建立合理的联想,转化而到 达问题的解决.
例1
视察下面数列的特点,用适当 的数填空,并写出每个数列的一个
通项公式:
(1)
思路二
利用数列的单调性求解. 判断数列的单调性往往只需要比较相 邻两项an和an+1的大小。这一点源于函数的 单调性而有充分利用了数列的特殊性.
思路三 利用an最大的一个必要条件 求解.
an≥an-1 an≥an+1
第一求得满足条件的n的取值范围,然 后找出此范围内的正整数的值,最后比较它 们对应项的大小,其中最大的一项就是an的 最大值.
例3 已知数列{an}满足下列条件,写出它
的前5项,并归纳出数列的一个通项公式。 a1=0,an+1=an+(2n-1)
解: ∵ a1=0,an+1=an+(2n-1)
∴ a2=a1+(2×1-1)=1 a3=a2+(2×2-1)=4 a4=a3+(2×3-1)=9 a5=a4+(2×4-1)=16
a4=Xa3+Y=X(5X+Y)+Y 即:23=5a2+Xa+Y ②
联立① 、②得方程组 2X+Y=5
5a2+Xa+Y=23
解之得: X=2 或
Y=1
X= -3 Y=11
课堂小结
1、数列的概念
数列是按照一定次序构成的一列数,其中数 列中数的有序性是数列的灵魂.
2、数列的通项公式

数列的概念与简单表示法(优秀课件)

数列的概念与简单表示法(优秀课件)
(2)∵an=-n2+4n-1= -(n-2)2+3 ∴当n=2时,an取到最大值3
注意:an=-n2+4n-1可看成以n为自变量的一个函数 (3) -13是这个数列中的项吗?
思有考什20么:21/不上6/8同述?数列的通项an=-n2+4n-1与函数f (x)= -x2+4x-1
递增数列:对任意n∈N*,总有an+1>an (或an+1-an>0) 递减数列:对任意n∈N*,总有an+1<an (或an+1-an<0) 例2、已知数列{an}的通项公式为an=n2+n,其中n∈N*, 求证{an}是个递增数列。 证明:∵对任意n∈N*,an+1-an=(n+1)2+(n+1)-(n2+n)
2021/6/8
三、数列的通项公式:
如果数列{an}的第n项an与序号n之间的关系可以 用一个公式来表示,那么这个公式就叫做这个数列的 通项公式,简称通项。
例如:an=n2 就是数列1,4,9,16,…的一个通项公式 注意:①通项公式的主要作用是“知序号可求项”
如:数列{n2}的第11项是__1_2_1___
=2n+2>0 ∴{an}是个递增数列
2021/6/8
四、数列与函数的关系:
从函数的观点看,数列可以看成以正整数集N* (或它的有限子集{1,2,…,n})为定义域的函数 an=f (n),当自变量按照从小到大的顺序依次取值时, 所对应的一列函数值.
注意,在数列{an}中 项: a1,a2,a3,…,an,….
第二章 数 列
§2.1 数列的概念与简单表示法
古希腊毕达哥拉斯学派数学家曾研究过三 角形数:1,3,6,10,···

数列的概念与简单表示法(第一课时)

数列的概念与简单表示法(第一课时)

数列的概念与简单表示法(第一课时)教学设计案例一、教学目标(一)知识与技能:1.理解数列及其相关概念,了解数列和函数之间的关系;2.了解数列的通项公式,并会用通项公式写出数列的任意一项;3.对于比较简单的数列,会根据其前几项写出它的通项公式.(二)过程与方法:1.采用探究法,按照思考、交流、实验、观察、分析、得出结论的方法实行启发式教学;2.发挥学生的主体作用,作好探究性学习;3.理论联系实际,激发学生的学习积极性.(三)情感态度与价值观:1.通过日常生活中的大量实例,鼓励学生动手试验.理论联系实际,激发学生对科学的探究精神和严肃认真的科学态度,培养学生的辩证唯物主义观点;2.通过本节课的学习,体会数学来源于生活,提升数学学习的兴趣.二、教学重点数列及其相关概念,通项公式及其应用.三、教学难点根据一些数列的前几项抽象、归纳数列的通项公式.四、教学过程导入新课师课本图2.1-1中的三角形数分别是多少?生1,3,6,10,….师图2.1-2中的正方形数呢?生1,4,9,16,25,….师 像这样按一定次序排列的一列数你能否再举一些?生 -1的正整数次幂:-1,1,-1,1,…;无穷多个数1排成一列数:1,1,1,1,….生 一些分数排成的一列数:32,154,356,638,9910,….讲授新课[合作探究]折纸问题师 请同学们想一想,一张纸能够重复对折多少次?请同学们随便取一张纸试试 生 一般折5、6次就不能折下去了,厚度太高了.师 你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样? 生 随着对折数厚度依次为:2,4,8,16,…,256,…;①随着对折数面积依次为21,41,81 ,161 ,…,2561 ,….生 对折8次以后,纸的厚度为原来的256倍,其面积为原来的1/256,再折下去太困难了.师 说得很好,随数学水平的提升,我们的思维会更加理性化.请同学们观察上面我们列出的这个列一列的数,看它们有何共同特点?生 均是一列数.生 还有一定次序.师 它们的共同特点:都是有一定次序的一列数.[教师精讲]1.数列的定义:按一定顺序排列着的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,所以,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,所以,同一个数在数列中能够重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….同学们能举例说明吗?生例如,上述例子均是数列,其中①中,“2”是这个数列的第1项(或首项),“16”是这个数列中的第4项.3.数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列.例如数列1,2,3,4,5,6是有穷数列.无穷数列:项数无限的数列.例如数列1,2,3,4,5,6…是无穷数列.2)根据数列项的大小分:递增数列:从第2项起,每一项都大于它的前一项的数列.递减数列:从第2项起,每一项都小于它的前一项的数列.常数数列:各项相等的数列.摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列.请同学们观察:课本P 28的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列?生这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列. [知识拓展]师 你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项?生 256是这数列的第8项,我能写出它的第n 项,应为a n =2n . [合作探究]同学们看数列2,4,8,16,…,256,…①中项与项之间的对应关系, 项 2 4 8 16 32↓ ↓ ↓ ↓ ↓序号 1 2 3 4 5你能从中得到什么启示?生 数列能够看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数a n =f(n ),当自变量从小到大依次取值时对应的一列函数值.反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们能够得到一个数列f(1),f(2),f(3),…,f(n ),….师 说的很好.如果数列{a n }的第n 项a n 与n 之间的关系能够用一个公式来表示,那么这个公式就叫做这个数列的通项公式. [例题剖析] 1.根据下面数列{a n }的通项公式,写出前5项:(1)a n =1 n n ;(2)a n =(-1)n ·n .师 由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项.解:(1)n =1,2,3,4,5.a 1=21;a 2=32;a 3=43;a 4=54;a 5=65.(2)n =1,2,3,4,5.a 1=-1;a 2=2;a 3=-3;a 4=4;a 5=-5. 2.根据下面数列的前几项的值,写出数列的一个通项公式:(1)3,5,7,9,11,…;(2)32,154,356,638,9910,…;(3)0,1,0,1,0,1,…;(4)1,3,3,5,5,7,7,9,9,…;(5)2,-6,12,-20,30,-42,….师 这里只给出数列的前几项的值,哪位同学能写出这些数列的一个通项公式?(给学生一定的思考时间)解:(1)a n =2n +1;(2)a n =)12)(12(2+-n n n ;(3)a n =2)1(1n-+;(4)将数列变形为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,…, ∴a n =n +2)1(1n -+;(5)将数列变形为1×2,-2×3,3×4,-4×5,5×6,…,∴a n =(-1)n +1n (n +1).师 这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数表现出的规律性的东西,然后再通过归纳写出这个数列的通项公式.[合作探究]师 函数与数列的比较(由学生完成此表):函数 数列(特殊的函数) 定义域 R 或R 的子集N *或它的有限子集{1,2,…,n } 解析式y=f(x) a n =f(n ) 图象 点的集合 一些离散的点的集合师 对于函数,我们能够根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列:4,5,6,7,8,9,10…;② 1,21 ,31 ,41 ,…③的图象.根据这数列的通项公式画出数列②、③的图象为师 数列4,5,6,7,8,9,10,…②的图象与我们学过的什么函数的图象相关?生 与我们学过的一次函数y=x+3的图象相关.师 数列1,21 ,31 ,41 ,…③的图象与我们学过的什么函数的图象相关? 生 与我们学过的反比例函数x y 1 的图象相关.师 这两数列的图象有什么特点?生 其特点为:它们都是一群孤立的点.它们都位于y 轴的右侧,即特点为:它们都是一群孤立的,都位于y 轴的右侧的点.本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,体现新课程的理念.[课堂小结]对于本节内容应着重掌握数列及相关定义,会根据通项公式求其任意一项,并会根据数列的前n 项求一些简单数列的通项公式.布置作业课本33页习题2.1 A 组第1、2题.五、板书设计数列的概念与简单表示法(一) 定义1.数列例12.项3.一般形式例24.分类5.通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列
典例剖析 应用概念
例1.写出下面数列的一个通项公式,使它的前4项分 别是下列各数:
(1)1, 1 ,1 , 1 ; 23 4
an

(1)n1
1 n
(2)2,0,2,0。
an 1 (1)n1
思考1:数列(2)的通项公式唯一吗?
思考2:你现在有更快的方法解决《开心辞典》第 二关的题目吗?
CCTV
中央电视台开心辞典节目 中曾经出现过这样的一道题:
观察以下几个数的特点, 按照其中的规律说出括号里的 数是几? 2,5,10,17,(26),37,…
第二关:325是否满足这些数的规律?
观察归纳 形成概念
【探究一】请同学们观察下列情境中的四组数,通过小 组讨论,探究它们的共同规律.
(1)一尺之棰,日取其半,万世不竭.——《庄子》
0.2,0.1,0.05,0.02,0.01 (5)15,5,16,16,28,32,51 (6)3,3,3,3,L
(3)数列与集合有什么区 别?
集合讲究:无序性、互异性、 确定性,
数列讲究:有序性、可重复性、 确定性.
问题导引 深化概念
(1)1,1 2
,1 ,1 48
,L
(2)1,3,6,10,L
······
a1
a2
an
问题导引 深化概念
(1)1,1 2
,1 ,1 48
,L
(2)1,3,6,10,L
问题1: (1) “1, 2, 3, 4, 5”与 “5, 4, 3, 2, 1”是同一个数列 吗?
——数列的有序性
(3)1,4,9,16,L
(2)(5)和(6)这两组 数是数列吗?
(4)100,50,20,5,2,1,0.5, ——数列的项可重复性
(1)1, 1 ,1 , 1 ; 23 4
an

(1)n1
1 n
(2)2,0,2,0.
an 1 (1)n1
写通项公式的一般方法: ①由各项的特点,找出各项共同的构成规律。 ②通过观察、归纳研究数列中的项与序号之间的
关系,写出一个满足条件的最简捷的公式。
典例剖析 应用概念
例2.下图中的三角形称为谢宾斯基三角形,在下图4个 三角形中,着色三角形的个数依次构成一个数列的前 4项,请写出这个数列的一个通项公式,并在直角坐标 系中画出它的图象.
问题2:你能用不同的标准给 下列数列进行分类吗?
(提示:分类标准可以为 “项数”和“项的大小”)
(3)1,4,9,16,L
数列的分类
(4)100,50,20,5,2,1,0.5, (1)按项数分:
0.2,0.1,0.05,0.02,0.01 项数有限的数列叫有穷数列
(5)15,5,16,16,28,32,51 (6)3,3,3,3,L
(1)1, 1 ,1 , 1 ; 23 4
an

(1)n1
1 n
(2)2,0,2,0。
an 1 (1)n1
思考1:数列(2)的通项公式唯一吗?
思考2:你现在有更快的方法解决《开心辞典》第 二关的题目吗? 思考3:用观察法求数列通项应该怎样思考?
典例剖析 应用概念
例1.写出下面数列的一个通项公式,使它的前4项分 别是下列各数:
CCTV
中央电视台开心辞典节目 中曾经出现过这样的一道题:
观察以下几个数的特点, 按照其中的规律说出括号里的 数是几? 2,5,10,17,(26),37,…
an n2 1
第二关:325是否满足这些数的规律?
典例剖析 应用概念
例1.写出下面数列的一个通项公式,使它的前4项分 别是下列各数:
【探究二】:数系?哪个是变 有限子集{1,2,…,n})
动的量,哪个是随之变动的量? 的函数
你能联想到以前学过的哪些相
关内容?
问题导引 深化概念
序号n 1 2 3 4
(1)项an
1,1 2
,1 4
,1 8
,L
序号n 1 2 3 4
函数值

y f (x) 自变量
,1 ,1 48
,L
(2)1,3,6,10,L
(3)1,4,9,16,L
(4)100,50,20,5,2,1,0.5, 0.2,0.1,0.05,0.02,0.01
共同特点:?
1. 都是一列数; 2. 都有一定的顺序
按一定顺序排列着的
一列数称为
数列中的每一个数叫做
这个数列的
各项依次叫做这个数列的
第1项,第2项,···,第n项,
项数无限的数列叫无穷数列 (2)按项之间的大小关系:
递增数列, 递减数列,
摆动数列, 常数列。
问题导引 深化概念
序号n 1 2 3 4
(1)项an
1,1 2
,1 4
,1 8
,L
序号n 1 2 3 4
函数值

y f (x)
an n
自变量
序号
(3)项an 1,4,9,16,L
数列可以看作是一个定义
(1)1,1 2
,1 4
,1 8
,L
(单位:尺)
(2)三角形数
(2)1,3,6,10,L
(3)正方形数
(3)1,4,9,16,L
(4)目前通用人民币面额按从大到小顺序构成一列数(单位:元)
(4)100,50,20,5,2,1,0.5,0.2,0.1,0.05,0.02,0.01
观察归纳 形成概念
(1)1,1 2
的通项公式.
问题导引 深化概念
(1)项an
1,1 2
,1 ,1 48
,L
序号n 1 2 3 4
an
( 1 )n1 2
(3)项an 1,4,9,16,L
序号n 1 2 3 4
an n2
问题2:类比函数的表示 方法,你还能用其他方法 表示数列(1)、数列(3) 吗?
数列与函数的比较
函数
定义域 解析式 图像
(1)
(2)
(3)
(4)
归纳反思 提高认识
本节课主要学习:
1、数列有关的概念 2、数列与函数的关系 3、观察法求数列的通项公式
布置作业 延伸课堂
1、书面作业 必做:教材P33 练习A 1,2 , 3 选作:教材P34 练习B 1, 2
2、预习作业 预习课本第30页和第31页,思考下列问题: (1)递推公式与通项公式有什么区别? (2)递推公式的作用
aann f n(n) 序号
(3)项an 1,4,9,16,L
问题1:你能求出这个函数的 解析式吗?
【探究二】:数列中的项和它
数列通项公式
的序号是什么关系?哪个是变
如果数列{an}的第n项
动的量,哪个是随之变动的量?与序号n之间的关系可以
你能联想到以前学过的哪些相 用一个公式来表示,那么
关内容?
这个公式就叫做这个数列
相关文档
最新文档