高考数学压轴专题人教版备战高考《平面向量》易错题汇编附答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新】数学《平面向量》专题解析
一、选择题
1.已知四边形ABCD 是平行四边形,点E 为边CD 的中点,则BE =u u u r
A .12A
B AD -+u u u
r u u u r
B .12AB AD -u u u
r u u u r
C .12
AB AD +u u u r u u u r
D .12
AB AD -u u u r u u u r
【答案】A 【解析】 【分析】
由平面向量的加法法则运算即可. 【详解】
如图,过E 作//,EF BC 由向量加法的平行四边形法
则可知1.2
BE BF BC AB AD =+=-+u u u v u u u v u u u v u u u
v u u u v
故选A. 【点睛】
本题考查平面向量的加法法则,属基础题.
2.在ABC V 中,4AC AD =u u u r u u u r
,P 为BD 上一点,若14
AP AB AC λ=+u u u r u u u r u u u r ,则实数λ的值
( )
A .
34
B .
320
C .
316
D .38
【答案】C 【解析】 【分析】
根据题意,可得出144
λ=+u u u r u u u r u u u r
AP AB AD ,由于B ,P ,D 三点共线,根据向量共线定
理,即可求出λ. 【详解】
解:由题知:4AC AD =u u u r u u u r ,14
AP AB AC λ=+u u u
r u u u r u u u r ,
所以144
λ=+u u u r u u u r u u u r AP AB AD ,
由于B ,P ,D 三点共线,
所以1
414
λ+=, ∴316λ=
. 故选:C.
【点睛】
本题考查平面向量的共线定理以及平面向量基本定理的应用.
3.在△ABC 中,D 是BC 中点,E 是AD 中点,CE 的延长线交AB 于点,F 则( )
A .1162DF A
B A
C =--u u u r u u u r u u u r B .1134
DF AB AC =--u u u r u u u r u u u r
C .3142DF AB AC =-+u u u r u u u r u u u r
D .1126
DF AB AC =--u u u r u u u r u u u r
【答案】A 【解析】 【分析】
设AB AF λ=u u u r u u u r
,由平行四边形法则得出144
AE AF AC λ=+u u u r u u u r u u u r ,再根据平面向量共线定理
得出得出=3λ,由DF AF AD =-u u u r u u u r u u u r
,即可得出答案.
【详解】
设AB AF λ=u u u r u u u r ,111124444
AE AB A A C A AC D F λ==+=+u u u r u u u u u u
r u u u r r u u u r u u u r
因为C E F 、、三点共线,则
1
=144
λ
+
,=3λ 所以1111132262
DF AF AD AB AB AC AB AC =-=--=--u u u r u u u r u u u r u u u r u u u r u u u r u u u
r u u u r
故选:A
【点睛】
本题主要考查了用基底表示向量,属于中档题.
4.已知A ,B ,C 是抛物线24y x =上不同的三点,且//AB y 轴,90ACB ∠=︒,点C 在AB 边上的射影为D ,则CD =( ) A .4 B .2
C .2
D 2
【答案】A 【解析】 【分析】
画出图像,设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可求2
2
1
216y y -=,结合22
1244
y y CD =-即可求解 【详解】
如图:设222112112,,,,,444y y y A y B y C y ⎛⎫⎛⎫⎛⎫
- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12y y >, 由90ACB ∠=︒可得0CA CB ⋅=u u u r u u u r ,22221212
1212,,,44y y y y CA y y CB y y ⎛⎫⎛⎫--=-=-- ⎪ ⎪⎝⎭⎝⎭
u u u r u u u r ,
()2
22221212004y y CA CB y y ⎛⎫-⋅=⇔--= ⎪⎝⎭u u u r u u u r ,即()()222122212016
y y y y ---= 解得2
2
1
216y y -=(0舍去),所以2222
12124444
y y y y CD -=-==
故选:A 【点睛】
本题考查抛物线的几何性质与向量的综合应用,计算能力,逻辑推理能力,属于中档题
5.在ABC ∆中,已知3AB =
23AC =D 为BC 的三等分点(靠近C),则
AD BC ⋅u u u v u u u v
的取值范围为( )
A .()3,5
B .(5,53
C .()5,9
D .()5,7
【答案】C 【解析】 【分析】
利用向量加法法则把所求数量积转化为向量AB AC u u u r u u u r
,的数量积,再利用余弦函数求最值,
得解. 【详解】
如图,()()()
13AD BC AC CD AC AB AC CB AC AB ⎛⎫⋅=+⋅-=+⋅- ⎪⎝⎭
u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r
()()
11213333AC AB AC AC AB AC AB AC AB u u u
r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ⎛⎫⎛⎫=+-⋅-=+⋅- ⎪ ⎪⎝⎭⎝⎭
22211333
AC AB AB AC =--⋅u u u
r u u u r u u u r u u u r =8﹣11
3233
cos BAC -∠ =7﹣2cos ∠BAC ∵∠BAC ∈(0,π), ∴cos ∠BAC ∈(﹣1,1), ∴7﹣2cos ∠BAC ∈(5,9), 故选C .
【点睛】
此题考查了数量积,向量加减法法则,三角函数最值等,难度不大.
6.平面向量a →与b →
的夹角为π3
,()2,0a →
=,1b →=,则2a b →→-=( )
A .3
B 6
C .0
D .2
【答案】D 【解析】 【分析】
根据向量的模的计算和向量的数量积的运算即可求出答案. 【详解】
()2,0a →
=Q ,
||2a →
∴=
2
2
222(2)||4||444421cos 43
a b a b a b a b π
→
→→
→
∴-=-=+-⋅=+-⨯⨯⨯=r r r r ,
|2|2a b ∴-=r r
,
故选:D 【点睛】
本题考查了向量的模的计算和向量的数量积的运算,属于中档题.
7.已知向量,a b r r 满足||3a =r ||4=r b ,且()4a b b +⋅=r r r ,则a r 与b r
的夹角为( )
A .
6
π B .
3
π C .
23
π D .
56
π 【答案】D 【解析】 【分析】
由()4a b b +⋅=r r r ,求得12a b ⋅=-r r ,再结合向量的夹角公式,求得3
cos ,a b 〈〉=r r
可求得向量a r 与b r
的夹角.
【详解】
由题意,向量,a b r r
满足||a =r ||4=r
b ,
因为()4a b b +⋅=r r r ,可得2164a b b a b ⋅+=⋅+=r r r r r
,解得12a b ⋅=-r r ,
所以cos ,2||||a b a b a b ⋅〈〉===-r r
r r r r
又因a r 与b r 的夹角[0,]π∈,所以a r 与b r 的夹角为
56
π
. 故选:D . 【点睛】
本题主要考查了向量的数量积的应用,其中解答中熟记向量的数量积的计算公式,以及向量的夹角公式,准确计算是解答的关键,着重考查了计算能力.
8.已知()4,3a =r ,()5,12b =-r 则向量a r 在b r
方向上的投影为( )
A .165
-
B .
165
C .1613
-
D .
1613
【答案】C 【解析】 【分析】
先计算出16a b r r
⋅=-,再求出b r ,代入向量a r 在b r 方向上的投影a b b
⋅r r
r 可得
【详解】
()4,3a =r Q ,()5,12b =-r
,
4531216a b ⋅=⨯-⨯=-r r
,
则向量a r 在b r
方向上的投影为1613a b b
⋅-=r r
r ,
故选:C. 【点睛】
本题考查平面向量的数量积投影的知识点. 若,a b r r
的夹角为θ,向量a r 在b r
方向上的投影为
cos a θ⋅r 或a b b
⋅r r
r
9.在复平面内,虚数z 对应的点为A ,其共轭复数z 对应的点为B ,若点A 与B 分别在
24y x =与y x =-上,且都不与原点O 重合,则OA OB ⋅=u u u v u u u v
( )
A .-16
B .0
C .16
D .32
【答案】B 【解析】
【分析】
先求出(4,4)OA =u u u r ,(4,4)OB =-u u u r
,再利用平面向量的数量积求解.
【详解】
∵在复平面内,z 与z 对应的点关于x 轴对称, ∴z 对应的点是24y x =与y x =-的交点.
由24y x y x
⎧=⎨=-⎩得(4,4)-或(0,0)(舍),即44z i =-, 则44z i =+,(4,4)OA =u u u r ,(4,4)OB =-u u u r
, ∴444(4)0OA OB ⋅=⨯+⨯-=u u u r u u u r
.
故选B 【点睛】
本题主要考查共轭复数和数量积的坐标运算,考查直线和抛物线的交点的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.
10.已知椭圆2222:1(0)x y T a b a b +=>>
的离心率为2
,过右焦点F 且斜率为()
0k k >的直线与T 相交于A ,B 两点,若3AF FB =uu u r uu r
,则k =( )
A .2 B
C
D .1
【答案】C 【解析】 【分析】
由2
e =
可得a =
,b =,可设椭圆的方程为222
334x y c +=,
()()1122,,,A x y B x y ,并不妨设B 在x 轴上方,由3AF FB =uu u r uu r
得到12123430x x c y y +=⎧⎨+=⎩,再由
22211334x y c +=,22
222334x y c +=得到A 、B 两点的坐标,利用两点的斜率公式计算即可. 【详解】
因为c e a ===,所以2a b =,
所以a =
,b =,则椭圆方程22221x y a b
+=变为222
334x y c +=. 设()()1122,,,A x y B x y ,不妨设B 在x 轴上方,则210,0y y ><, 又3AF FB =uu u r uu r
,所以()()1122,3,c x y x c y --=-,
所以()1212
33c x x c y y ⎧-=-⎨-=⎩,12123430x x c y y +=⎧⎨+=⎩
因为A ,B 在椭圆上,所以
2
2211334
x y c +=,① 22222334
x y c +=②. 由①—9×②,得2
121212123(3)(3)3(3)(3)84
x x x x y y y y c +-++-=-,
所以
21234(3)84c x x c ⨯-=-,所以12833
x x c -=-, 所以123x c =
,2109x c =
,从而13
y =-
,29y c =
所以2(,)33A c -
,10(,)99B c c
,故9102393
k c c +=
=- 故选:C. 【点睛】
本题考查直线与椭圆的位置关系,当然本题也可以利用根与系数的关系来解决,考查学生的数学运算求解能力,是一道中档题.
11.已知向量m =r (1,cosθ),(sin ,2)n θ=-r ,且m r ⊥n r
,则sin 2θ+6cos 2θ的值为( ) A .
1
2
B .2
C .
D .﹣2
【答案】B 【解析】 【分析】
根据m r ⊥n r 可得tanθ,而sin 2θ+6cos 2
θ222
26sin cos cos sin cos θθθθθ
+=+,分子分母同除以cos 2θ,代入tanθ可得答案. 【详解】
因为向量m =r (1,cosθ),n =r
(sinθ,﹣2),
所以sin 2cos m n θθ⋅=-u r r
因为m r ⊥n r ,
所以sin 2cos 0θθ-=,即tanθ=2,
所以sin 2θ+6cos 2
θ2222
2626226
141
sin cos cos tan sin cos tan θθθθθθθ++⨯+====+++ 2. 故选:B.
【点睛】
本题主要考查平面向量的数量积与三角恒等变换,还考查运算求解的能力,属于中档题.
12.已知椭圆C :2
212
x y +=的右焦点为F ,直线l :2x =,点∈A l ,线段AF 交椭圆C
于点B ,若3FA FB =u u u v u u u v
,则AF u u u v =( )
A .2
B .2
C .3
D .3
【答案】A 【解析】 【分析】
设点()2,A n ,()00,B x y ,易知F (1,0),根据3FA FB =u u u v u u u v
,得043x =,013
y n =,根据点
B 在椭圆上,求得n=1,进而可求得2AF =u u u v
【详解】 根据题意作图:
设点()2,A n ,()00,B x y .
由椭圆C :2
212
x y += ,知22a =,21b =,21c =,
即1c =,所以右焦点F (1,0).
由3FA FB =u u u v u u u v
,得()()001,31,n x y =-. 所以()0131x =-,且03n y =. 所以043x =
,01
3
y n =. 将x 0,y 0代入2
212
x y +=,
得22
1411233n ⎛⎫⎛⎫
⨯+= ⎪ ⎪⎝⎭⎝⎭
.解得21n =,
所以
AF u u u v =
==
故选A 【点睛】
本题考查了椭圆的简单性质,考查了向量的模的求法,考查了向量在解析几何中的应用;正确表达出各点的坐标是解答本题的关键.
13.在ABC V 中,若2AB BC BC CA CA AB ⋅=⋅=⋅u u u v u u u v u u u v u u u v u u u v u u u v
,则AB BC
=u u u v u u u v ( )
A .1 B
C
D 【答案】C 【解析】 【分析】
根据题意,由AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v
可以推得AB AC =,再利用向量运算的加法法则,即可求得结果. 【详解】
由题意得,AB BC BC CA ⋅=⋅uu u v uu u v uu u v uu v ,即A A =0+BC B C ⋅uu u v uu u v uuu v
(),设BC 的中点为D ,则
AD BC ⊥,即ABC V 为等腰三角形,B=C AB AC =∠∠,
又因为2BC CA CA AB ⋅=⋅uu u v uu v uu v uu u v 即
2222222C C cos 2C 2C cos 112C +22232C 2AB BC CA A B AB BC B A CA B C
BC A BC A BC
⋅=⋅-=-+-
=-+⨯=uu u v uu u v uu v uu u v uuv uu u v uu u v uu u v uu v uuv
uu u v uu u v uu u v uu u v uu u v ()
所以AB BC
=uu u v uu u v
【点睛】
本题主要考查平面向量的线性运算.
14.如图,在圆O 中,若弦AB =3,弦AC =5,则AO uuu v ·BC uuu v
的值是
A .-8
B .-1
C .1
D .8
【答案】D
【解析】
【分析】
【详解】 因为AO AC CO AB BO =+=+u u u v u u u v u u u v u u u v u u u v ,所以1()2
AO AC BO AB CO =+++u u u v u u u v u u u v u u u v u u u v , 而BC AC AB BO CO =-=-u u u v u u u v u u u v u u u v u u u v ,所以1()2
BC AC AB BO CO =-+-u u u v u u u v u u u v u u u v u u u v ,则 1()()4
AO BC AC AB CO BO AC AB BO CO ⋅=+++-+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 1()()()()()()4AC AB AC AB AC AB BO CO CO BO AC AB =+-++-++-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v ()()CO BO BO CO ++-u u u v u u u v u u u v u u u v
221(||4AC AB AC BO AC CO AB BO AB CO =-+⋅-⋅+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v 22||)CO AC CO AB BO AC BO AB BO CO +⋅-⋅+⋅-⋅+-u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v
2211(||)()42
AC AB AC BO AB CO =-+⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)[()]42
AC AB AB BC BO AB CO =-++⋅-⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)()42
AC AB AB BC BC BO =-+⋅+⋅u u u v u u u v u u u v u u u v u u u v u u u v 2211(||)42
AC AB AO BC =-+⋅u u u v u u u v u u u v u u u v 所以221(||)82
AO BC AC AB ⋅=-=u u u v u u u v u u u v u u u v ,故选D
15.如图,在等腰直角ABC ∆中,D ,E 分别为斜边BC 的三等分点(D 靠近点B ),过E 作AD 的垂线,垂足为F ,则AF =u u u v
( )
A .3155
AB AC +u u u v u u u v B .
2155AB AC +u u u v u u u v C .481515
AB AC +u u u v u u u v D .841515AB AC +u u u v u u u v 【答案】D
【解析】
【分析】 设出等腰直角三角形ABC 的斜边长,由此结合余弦定理求得各边长,并求得
cos DAE ∠,由此得到45
AF AD =u u u r u u u r ,进而利用平面向量加法和减法的线性运算,将45
AF AD =u u u r u u u r 表示为以,AB AC u u u r u u u r 为基底来表示的形式. 【详解】
设6BC =,则32,2AB AC BD DE EC =====,
22π2cos 4
AD AE BD BA BD BA ==+-⋅⋅10=,101044cos 2105DAE +-∠==⨯, 所以45AF AF AD AE ==,所以45
AF AD =u u u r u u u r . 因为()
1133AD AB BC AB AC AB =+=+-u u u r u u u r u u u r u u u r u u u r u u u r 2133
AB AC =+u u u r u u u r , 所以421845331515AF AB AC AB AC ⎛⎫=⨯+=+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r . 故选:D
【点睛】
本小题主要考查余弦定理解三角形,考查利用基底表示向量,属于中档题.
16.设a r ,b r 不共线,3AB a b =+u u u r r r ,2BC a b =+u u u r r r ,3CD a mb =+u u u r r r ,若A ,C ,D 三点共线,则实数m 的值是( )
A .23
B .15
C .72
D .152
【答案】D
【解析】
【分析】
计算25AC a b =+u u u r r r ,得到()
253a b a mb λ+=+r r r r ,解得答案. 【详解】
∵3AB a b =+u u u r r r ,2BC a b =+u u u r r r ,∴25AC AB BC a b =+=+u u u r u u u r u u u r r r
, ∵A ,C ,D 三点共线,∴AC CD λ=u u u r u u u r ,即()
253a b a mb λ+=+r r r r , ∴235m λλ=⎧⎨=⎩,解得23
152m λ⎧=⎪⎪⎨⎪=⎪⎩
. 故选:D . 【点睛】
本题考查了根据向量共线求参数,意在考查学生的计算能力和转化能力.
17.在ABC V 中,E 是AC 的中点,3BC BF =u u u r u u u r ,若AB a =u u u r r ,AC b =u u u r r ,则EF =u u u r ( )
A .2136
a b -r r B .1133a b +r r C .1124a b +r r D .1133a b -r r 【答案】A
【解析】
【分析】
根据向量的运算法则计算得到答案.
【详解】 1223EF EC CF AC CB =+=+u u u r u u u r u u u r u u u r u u u r ()
12212336AC AB AC AB AC =+-=-u u u r u u u r u u u r u u u r u u u r 2136a b =-r r . 故选:A .
【点睛】
本题考查了向量的基本定理,意在考查学生的计算能力和转化能力.
18.下列说法中说法正确的有( )
①零向量与任一向量平行;②若//a b r r ,则()a b R λλ=∈r
r ;③()()a b c a b c ⋅⋅=⋅⋅r r r r r r ④||||||a b a b +≥+r r r r ;⑤若0AB BC CA ++=u u u r u u u r u u u r r
,则A ,B ,C 为一个三角形的三个顶点;⑥一个平面内只有一对不共线的向量可作为表示该平面内所有向量的基底;
A .①④
B .①②④
C .①②⑤
D .③⑥
【答案】A
【解析】
【分析】 直接利用向量的基础知识的应用求出结果.
【详解】
对于①:零向量与任一向量平行,故①正确; 对于②:若//a b r r ,则()a b R λλ=∈r r ,必须有0b ≠r r ,故②错误;
对于③:()()
a b c a b c ⋅⋅=⋅⋅r r r r r r ,a r 与c r 不共线,故③错误; 对于④:a b a b +≥+r r r r ,根据三角不等式的应用,故④正确;
对于⑤:若0AB BC CA ++=u u u r u u r r ,则,,A B C 为一个三角形的三个顶点,也可为0r ,故⑤
错误;对于⑥:一个平面内,任意一对不共线的向量都可以作为该平面内所有向量的基底,故⑥错误.
综上:①④正确.
故选:A.
【点睛】
本题考查的知识要点:向量的运算的应用以及相关的基础知识,主要考察学生的运算能力和转换能力,属于基础题.
19.下列命题为真命题的个数是( ) ①{x x x ∀∈是无理数},2x 是无理数;
②若0a b ⋅=r r ,则0a =r r 或0b =r r
;
③命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”的逆否命题为真命题; ④函数()x x
e e
f x x
--=是偶函数. A .1
B .2
C .3
D .4
【答案】B
【解析】
【分析】
利用特殊值法可判断①的正误;利用平面向量垂直的等价条件可判断②的正误;判断原命题的真假,利用逆否命题与原命题的真假性一致的原则可判断③的正误;利用函数奇偶性的定义可判断④的正误.综合可得出结论.
【详解】
对于①中,当x =时,22x =为有理数,故①错误; 对于②中,若0a b ⋅=r ,可以有a b ⊥r r ,不一定要0a =r r 或0b =r r ,故②错误;
对于③中,命题“若220x y +=,x ∈R ,y ∈R ,则0x y ==”为真命题,
其逆否命题为真命题,故③正确;
对于④中,()()x x x x
e e e e
f x f x x x
-----===-, 且函数的定义域是(,0)(0,)-∞+∞U ,定义域关于原点对称,
所以函数()x x
e e
f x x
--=是偶函数,故④正确. 综上,真命题的个数是2.
故选:B.
【点睛】
本题考查命题真假的判断,涉及全称命题的真假的判断、逆否命题真假的判断、向量垂直等价条件的应用以及函数奇偶性的判断,考查推理能力,属于中等题.
20.已知向量5(,0)2a =r ,(0,5)b =r 的起点均为原点,而终点依次对应点A ,B ,线段AB 边上的点P ,若OP AB ⊥u u u r u u u r ,OP xa yb =+u u u r r r ,则x ,y 的值分别为( )
A .
15,45
B .43,13-
C .45,15
D .13-,43 【答案】C
【解析】
【分析】 求得向量5(,5)2OP x y =u u u r ,5(,5)2
AB b a =-=-u u u r r r ,根据OP AB ⊥u u u r u u u r 和,,A B P 三点共线,列出方程组,即可求解.
【详解】 由题意,向量5(,0)2a =r ,(0,5)b =r ,所以5(,5)2
OP xa yb x y =+=u u u r r r , 又由5(,5)2
AB b a =-=-u u u r r r , 因为OP AB ⊥u u u r u u u r ,所以252504
OP AB x y ⋅=-+=u u u r u u u r ,可得4x y =, 又由,,A B P 三点共线,所以1x y +=, 联立方程组41
x y x y =⎧⎨
+=⎩,解得41,55x y ==. 故选:C .
【点睛】
本题主要考查了向量的坐标运算,以及向量垂直的坐标运算和向量共线定理的应用,着重考查了运算与求解能力.。