高考数学一轮复习抛物线专项练习(含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学一轮复习抛物线专项练习(含解析)平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线。

下面是查字典数学网整理的2021年高考数学一轮复习抛物线专题练习,期望岁考生复习有关心。

(2021泰州中学检测)给定圆P:x2+y2=2x及抛物线S:y2=4x,过圆心P作直线l,此直线与上述两曲线的四个交点,自上而下顺次记为A,B,C,D,假如线段AB,BC,CD的长按此顺序构成一个等差数列,求直线l的方程.
[解] 圆P的方程为(x-1)2+y2=1,则其直径长|BC|=2,圆心为P(1,0),设l的方程为ky=x-1,即x=ky+1,代入抛物线方程得:y2=4ky+4,设A(x1,y1),D(x2,y2),有
则(y1-y2)2=(y1+y2)2-4y1y2=16(k2+1).
故|AD|2=(y1-y2)2+(x1-x2)2=(y1-y2)2+2
=(y1-y2)2=16(k2+1)2,
因此|AD|=4(k2+1).
依照等差数列性质得2|BC|=|AB|+|CD|=|AD|-|BC|,
|AD|=3|BC|=6,即4(k2+1)=6,k=,
即l方程为x-y-=0或x+y-=0.
2.(2021苏州调研)设抛物线y2=2px(p0)的焦点为F,通过点F的直线交抛物线于A,B两点,点C在抛物线的准线上,且BCx轴.求证:直线AC 通过原点O.
【常规证法】抛物线y2=2px(p0)的焦点为F,明显直线AB的斜率不为0,当AB斜率不存在时,直线AP方程为x=,不妨设A在第一象限,则易知A,B,C,现在kOA==2,kOC==2.kOA=kOC,
A,O,C三点共线,即直线AC通过原点O.
当AB斜率存在且不为0时,设直线AB方程为y=k代入y2=2px得k 2x2-(k2+2)px+=0,
设A(x1,y1),B(x2,y2),则x1x2=,
(y1y2)2=p4,由题意知y1y20,y1y2=-p2
kOC======kOA
直线AC过原点O,
综上,直线AC通过原点O.
【巧妙证法】因为抛物线y2=2px(p0)的焦点为F,而直线AB的斜率不为零,因此通过点F的直线AB的方程可设为x=my+.代入抛物线方程消去x得y2-2pmy-p2=0.
若记A(x1,y1),B(x2,y2),则y1,y2是该方程的两个根,因此y1y 2=-p2.
因为BCx轴,且点C在准线x=-上,因此点C的坐标为,
故直线CO的斜率为k===,即k也是直线OA的斜率,因此直线AC 通过原点O.
3.(2021南师附中检测)设A(x1,y1),B(x2,y2)为抛物线y2=2px(p0)
上位于x轴两侧的两点.
(1)若y1y2=-2p,证明直线AB恒过一个定点;
(2)若p=2,AOB(O是坐标原点)为钝角,求直线AB在x轴上的截距的取值范畴.
[解] (1)设直线AB在x轴上的截距为t,则可设直线AB的方程为x= my+t.代入y2=2px得y2=2p(my+t),即y2-2pmy-2pt=0,因此-2p=y1y2=-2pt,因此t=1,即直线AB恒过定点(1,0).
(2)因为AOB为钝角,因此0,即x1x2+y1y20.y=2px1,y=2px2,yy=2 px12px2,因此x1x2===t2,故x1x2+y1y2=t2-2pt=t2-4t.解不等式t2-4t0,得00)
把点P(-2,-4)代入得(-4)2=-2p(-2).
解得p=4,抛物线方程为y2=-8x.
当焦点在y轴负半轴上时,设方程为x2=-2py(p0),
把点P(-2,-4)代入得(-2)2=-2p(-4).
解得p=.抛物线方程为x2=-y.
综上可知抛物线方程为y2=-8x或x2=-y.
[答案] y2=-8x或x2=-y
4.(2021广东高考)已知抛物线C的顶点为原点,其焦点F(0,c)(c0)到直线l:x-y-2=0的距离为.设P为直线l上的点,过点P作抛物线C的两条切线PA,PB,其中A,B为切点.
(1)求抛物线C的方程;
(2)当点P(x0,y0)为直线l上的定点时,求直线AB的方程;
(3)当点P在直线l上移动时,求|AF||BF|的最小值.
[解题思路] (1)由点到直线的距离求c的值,得到F(0,c)后可得抛物线的方程;(2)采纳设而不求策略,先设出A(x1,y1),B(x2,y2),结合导数求切线PA,PB的方程,代入点P的坐标,依照结构,可得直线AB的方程;(3)将|AF||BF|转化为关于x(或y)的函数,再求最值.
[解] (1)依题意,设抛物线C的方程为x2=4cy(c0),
由点到直线的距离公式,得=,
解得c=1(负值舍去),故抛物线C的方程为x2=4y.
(2)由x2=4y,得y=x2,其导数为y=x.
设A(x1,y1),B(x2,y2),则x=4y1,x=4y2,
切线PA,PB的斜率分别为x1,x2,
因此切线PA的方程为y-y1=(x-x1),
即y=x-+y1,即x1x-2y-2y1=0.
同理可得切线PB的方程为x2x-2y-2y2=0.
因为切线PA,PB均过点P(x0,y0),
因此x1x0-2y0-2y1=0,x2x0-2y0-2y2=0,
因此和为方程x0x-2y0-2y=0的两组解.
因此直线AB的方程为x0x-2y-2y0=0.
(3)由抛物线定义可知|AF|=y1+1,|BF|=y2+1,
因此|AF||BF|=(y1+1)(y2+1)=y1y2+(y1+y2)+1.
由消去x并整理得到关于y的方程为y2+(2y0-x)y+y=0.
由一元二次方程根与系数的关系得
y1+y2=x-2y0,y1y2=y.
因此|AF||BF|=y1y2+(y1+y2)+1
=y+x-2y0+1.
又点P(x0,y0)在直线l上,因此x0-y0-2=0,
即x0=y0+2,
因此y+x-2y0+1=2y+2y0+5=22+,
因此当y0=-时,|AF||BF|取得最小值,且最小值为.
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

其中“师傅”更早则意指春秋时国君的老师。

《说文解字》中有注曰:“师教人以道者之称也”。

“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。

“老师”的原意并非由“老”而形容“师”。

“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。

“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。

慢慢“老师”之说也不再有年龄的限制,老少皆可适用。

只是司马迁笔下的“老师”因此不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。

今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。

事实上,任何一门学科都离不开死记硬背,关键是经历有技巧,“死记”之后会“活用”。

不记住那些基础知识,如何会向高层次进军?专门是语文学科涉猎的范畴专门广,要真正提高学生的写作水平,单靠分析文章的写作技巧
是远远不够的,必须从基础知识抓起,每天挤一点时刻让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

如此,就会在有限的时刻、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

2021年高考数学一轮复习抛物线专题练习及答案的所有内容就为考生分享到那个地点,查字典数学网请考生认真练习。

观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。

随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。

我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。

看得清才能说得正确。

在观看过程中指导。

我注意关心幼儿学习正确的观看方法,即按顺序观看和抓住事物的不同特点重点观看,观看与说话相结合,在观看中积存词汇,明白得词汇,如一次我抓住时机,引导幼儿观看雷雨,雷雨前天空急剧变化,乌云密布,我问幼儿乌云是什么模样的,有的小孩说:乌云像大海的波浪。

有的小孩说“乌云跑得飞速。

”我加以确信说“这是乌云滚滚。

”当幼儿看到闪电时,我告诉他“这叫电光闪闪。

”接着幼儿听到雷声惊叫起来,我抓住时机说:“这确实是雷声隆隆。

”一会儿下起了大雨,我问:“雨下得如何样?”幼儿说大极了,我就舀一盆水往下一倒,作比较观看,让幼儿把握“倾盆大雨”那个词。

雨后,我又带幼儿观看晴朗的天空,朗诵自编的一首儿歌:“蓝天高,白云飘,鸟儿飞,树儿摇,太阳公公咪咪笑。

”如此抓住特点见景生情,幼儿不仅印象深刻,对雷雨前后气象变化的词语学得快,记得牢,而且会应用。

我还在观看的基础上,引导幼儿联想,让他们与以往学的词语、生活体会联系起来,在进展想象力中进展语言。

如啄木鸟的嘴是长长的,尖尖的,硬硬的,像大夫用的手术刀―样,给大树开刀治病。

通过联想,幼儿能够生动形象地描述观看对象。

相关文档
最新文档