图们市实验中学2018-2019学年上学期高三数学10月月考试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图们市实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 将函数(其中)的图象向右平移
个单位长度,所得的图象经过点
x x f ωsin )(=0>ω4
π
,则的最小值是( ))0,43(
π
ωA . B . C .
D .
313
52. 在ABC ∆中,222
sin sin sin sin sin A B C B C ≤+-,则A 的取值范围是( )1111]A .(0,
]6
π
B .[
,)6
π
π C. (0,
]3
π
D .[
,)
3
π
π
3. 设i 是虚数单位,是复数z 的共轭复数,若z =2(+i ),则z=(

A .﹣1﹣i
B .1+i
C .﹣1+i
D .1﹣i
4. 在中,角,,的对边分别是,,,为边上的高,,若
ABC ∆A B C BH AC 5BH =,则到边的距离为( )
2015120aBC bCA cAB ++=
H AB A .2 B .3
C.1 D .4
5. 向高为H 的水瓶中注水,注满为止.如果注水量V 与水深h 的函数关系如图,那么水瓶的形状是图中的(

A .
B .
C .
D .
6. (m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切实数x 恒成立,则实数m 的取值范围是( )
A .(1,+∞)
B .(﹣∞,﹣1)
C .
D .
7. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面
积为( )A .4

B .4

C .
D .
+
8. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )
A .p 或q
B .p 且q
C .¬p 或q
D .p 且¬q
9. 直角梯形中,,直线截该梯形所得位于左边图OABC ,1,2AB OC AB OC BC ===A :l x t =形面积为,则函数的图像大致为(

()S f t
=
10.若函数则函数的零点个数为( )21,1,()ln ,1,
x x f x x x ⎧-≤=⎨>
⎩1
()2y f x x =+A .1
B .2
C .3
D .4
二、填空题
11.设集合 ,满足
{}{
}
2
2
|27150,|0A x x x B x x ax b =+-<=++≤,,求实数__________.
A B =∅ {}|52A B x x =-<≤ a =12.,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,
1F 2F 22
221x y a b
-=a 0b >P 120PF PF ⋅= 若
______________.
12PF F ∆【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.
13.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .14.给出下列命题:①存在实数α,使②函数
是偶函数
③是函数的一条对称轴方程
④若α、β是第一象限的角,且α<β,则sinα<sinβ
其中正确命题的序号是 .
15.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .
16.S n=++…+= .
三、解答题
17.已知集合A={x|a≤x≤a+9},B={x|8﹣b<x<b},M={x|x<﹣1,或x>5},
(1)若A∪M=R,求实数a的取值范围;
(2)若B∪(∁R M)=B,求实数b的取值范围.
18.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)若PA=AB,求PB与AC所成角的余弦值;
(Ⅲ)当平面PBC与平面PDC垂直时,求PA的长.
19.(本小题满分10分)选修4­4:坐标系与参数方程.
在直角坐标系中,曲线C 1:(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐
{x =1+3cos α
y =2+3sin α
)
标系,C 2的极坐标方程为ρ=
.2
sin (θ+π
4

(1)求C 1,C 2的普通方程;
(2)若直线C 3的极坐标方程为θ=(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面
3π4
积.
20.(本题10分)解关于的不等式2
(1)10ax a x -++>.
21.(本小题满分12分)已知函数,设,13
1)(23
+-=
ax x x h x a x h x f ln 2)(')(-=,其中,.
222ln )(a x x g +=0>x R a ∈(1)若函数在区间上单调递增,求实数的取值范围; )(x f ),2(+∞(2)记,求证:.)()()(x g x f x F +=2
1)(≥
x F
22.如图,已知边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点(Ⅰ)试在棱AD上找一点N,使得CN∥平面AMP,并证明你的结论.
(Ⅱ)证明:AM⊥PM.
图们市实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】D

点:由的部分图象确定其解析式;函数的图象变换.()ϕω+=x A y sin ()ϕω+=x A y sin 2. 【答案】C 【



考点:三角形中正余弦定理的运用.3. 【答案】B
【解析】解:设z=a+bi (a ,b ∈R ),则=a ﹣bi ,由z
=2(+i ),得(a+bi )(a ﹣bi )=2[a+(b ﹣1)i],
整理得a 2+b 2=2a+2(b ﹣1)i .则
,解得

所以z=1+i .故选B .
【点评】本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当实部等于实部,虚部等于虚部,是基础题. 
4. 【答案】D
【解析】

点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.
【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差
,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底
OA OB BA -= 2OA OB OD +=
D AB 向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几
,AB AC
何意义等.5. 【答案】B
【解析】解:如果水瓶形状是圆柱,V=πr 2h ,r 不变,V 是h 的正比例函数,其图象应该是过原点的直线,与已知图象不符.故D 错;
由已知函数图可以看出,随着高度h 的增加V 也增加,但随h 变大,每单位高度的增加,体积V 的增加量变小,图象上升趋势变缓,其原因只能是瓶子平行底的截面的半径由底到顶逐渐变小.故A 、C 错.故选:B . 
6. 【答案】C
【解析】解:不等式(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立,即(m+1)x 2﹣(m ﹣1)x+3(m ﹣1)<0对一切x ∈R 恒成立若m+1=0,显然不成立
若m+1≠0,则 解得a .
故选C .
【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.
7. 【答案】 A
【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,
若存在θ∈R,使得xcosθ+ysinθ+1=0成立,
则(cosθ+sinθ)=﹣1,
令sinα=,则cosθ=,
则方程等价为sin(α+θ)=﹣1,
即sin(α+θ)=﹣,
∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,
∴|﹣|≤1,即x2+y2≥1,
则对应的区域为单位圆的外部,
由,解得,即B(2,2),
A(4,0),则三角形OAB的面积S=×=4,
直线y=x的倾斜角为,
则∠AOB=,即扇形的面积为,
则P(x,y)构成的区域面积为S=4﹣,
故选:A
【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.
8.【答案】C
【解析】解:在长方体ABCD﹣A1B1C1D1中
命题p :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,显然满足α∥β,l ⊂α,m ⊂β,而m 与l 异面,故命题p 不正确;﹣p 正确;命题q :平面AC 为平面α,平面A 1C 1为平面β,直线A 1D 1,和直线AB 分别是直线m ,l ,
显然满足l ∥α,m ⊥l ,m ⊂β,而α∥β,故命题q 不正确;﹣q 正确;故选C .
【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力. 
9. 【答案】C 【解析】
试题分析:由题意得,当时,,当时,01t <≤()21
22
f t t t t =
⋅⋅=12t <≤,所以,结合不同段上函数的性质,可知选项C 符
()1
12(1)2212f t t t =⨯⨯+-⋅=-()2,0121,12
t t f t t t ⎧<≤=⎨-<≤⎩合,故选C.
考点:分段函数的解析式与图象.10.【答案】D 【



考点:函数的零点.
【易错点睛】函数零点个数的判断方法:(1)直接求零点:令,如果能求出解,则有几个解就有几0)(=x f 个零点.(2)零点存在性定理法:要求函数在上是连续的曲线,且.还必须结合函数的图],[b a 0)()(<b f a f 象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.
二、填空题
11.【答案】7
,32
a b =-=【解析】

点:一元二次不等式的解法;集合的运算.
【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.
12.1+【



13.【答案】10
【解析】
【分析】先配方为圆的标准方程再画出图形,设z=x﹣2y,再利用z的几何意义求最值,只需求出直线z=x﹣2y 过图形上的点A的坐标,即可求解.
【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,
即圆心为(1,﹣2),半径为的圆,(如图)
设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,
经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,
最大值为:10.
故答案为:10.
14.【答案】 ②③ .
【解析】解:①∵sinαcosα=sin2α∈[,],∵>,∴存在实数α,使错误,故①错误,
②函数=cosx是偶函数,故②正确,
③当时,=cos(2×+)=cosπ=﹣1是函数的最小值,则是函数
的一条对称轴方程,故③正确,
④当α=,β=,满足α、β是第一象限的角,且α<β,但sinα=sinβ,即sinα<sinβ不成立,故④错误,
故答案为:②③.
【点评】本题主要考查命题的真假判断,涉及三角函数的图象和性质,考查学生的运算和推理能力.
15.【答案】 x﹣y﹣2=0 .
【解析】解:直线AB的斜率k AB=﹣1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),
所以线段AB的中垂线得方程为y﹣1=x﹣3即x﹣y﹣2=0,
故答案为x﹣y﹣2=0.
【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.
16.【答案】
【解析】解:∵==(﹣),
∴S n=++…+
=[(1﹣)+(﹣)+(﹣)+…+(﹣)=(1﹣)
=,
故答案为:.
【点评】本题主要考查利用裂项法进行数列求和,属于中档题.
三、解答题
17.【答案】
【解析】解:A={x|a≤x≤a+9},B={x|8﹣b<x<b},M={x|x<﹣1,或x>5},
(1)当A∪M=R时,应满足,
解得﹣4≤a≤﹣1,
所以实数a的取值范围是[﹣4,﹣1];
(2)∁R M={x|﹣1≤x≤5},
B={x|8﹣b<x<b},
B∪(∁R M)=B,
∴∁R M⊆B,
∴,
解得b>9;
∴实数b的取值范围是b>9.
18.【答案】
【解析】解:(I)证明:因为四边形ABCD是菱形,所以AC⊥BD,
又因为PA⊥平面ABCD,所以PA⊥BD,PA∩AC=A
所以BD⊥平面PAC
(II)设AC∩BD=O,因为∠BAD=60°,PA=AB=2,
所以BO=1,AO=OC=,
以O为坐标原点,分别以OB,OC为x轴、y轴,以过O且垂直于平面ABCD的直线为z轴,建立空间直角坐标系O﹣xyz,则
P(0,﹣,2),A(0,﹣,0),B(1,0,0),C(0,,0)
所以=(1,,﹣2),
设PB与AC所成的角为θ,则cosθ=|
(III)由(II)知,设,

设平面PBC的法向量=(x,y,z)
则=0,
所以令,
平面PBC的法向量所以,
同理平面PDC 的法向量
,因为平面PBC ⊥平面PDC ,所以
=0,即﹣6+=0,解得t=,
所以PA=.【点评】本小题主要考查空间线面关系的垂直关系的判断、异面直线所成的角、用空间向量的方法求解直线的夹角、距离等问题,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
19.【答案】
【解析】解:(1)由C 1:(α为参数){x =1+3cos αy =2+3sin α)得(x -1)2+(y -2)2=9(cos 2α+sin 2α)=9.
即C 1的普通方程为(x -1)2+(y -2)2=9,
由C 2:ρ=得2sin (θ+π4)ρ(sin θ+cos θ)=2,
即x +y -2=0,
即C 2的普通方程为x +y -2=0.
(2)由C 1:(x -1)2+(y -2)2=9得
x 2+y 2-2x -4y -4=0,
其极坐标方程为ρ2-2ρcos θ-4ρsin θ-4=0,
将θ=代入上式得3π4ρ2-ρ-4=0,
2ρ1+ρ2=,ρ1ρ2=-4,
2∴|MN |=|ρ1-ρ2|==3.
(ρ1+ρ2)2-4ρ1ρ22C 3:θ=π(ρ∈R )的直角坐标方程为x +y =0,34
∴C 2与C 3是两平行直线,其距离d ==.22
2∴△PMN 的面积为S =|MN |×d =×3×=3.121222即△PMN 的面积为3.
20.【答案】当1a >时,),1(1
,(+∞-∞∈ a
x ,当1a =时,),1()1,(+∞-∞∈ x ,当1a 0<<时,),1()1,(+∞-∞∈a x ,当0a =时,)1,(-∞∈x ,当0a <时,)1,1(a
x ∈.

点:二次不等式的解法,分类讨论思想.
21.【答案】(1).(2)证明见解析.
]3
4,(-∞【解析】试
题解析:解:(1)函数,,1111]13
1)(23+-=
ax x x h ax x x h 2)('2-=所以函数,∵函数在区间上单调递增,x a ax x x a x h x f ln 22ln 2)(')(2--=-=)(x f ),2(+∞∴在区间上恒成立,所以在上恒成0222ln 2)(')('2≥--=-=x a ax x x a x h x f ),2(+∞1
2
+≤x x a ),2(+∞∈x 立.
令,则,当时,,1
)(2
+=x x x M 2222)1(2)1()1(2)('++=+-+=x x x x x x x x M ),2(+∞∈x 0)('>x M
∴,∴实数的取值范围为.34)2(1)(2=>+=M x x x M ]3
4,(-∞(2),]2
ln )ln ([22ln ln 22)(222
222x x a x x a a x x a ax x x F +++-=++--=令,则111]2
ln )ln ()(222x x a x x a a P +++-=.4
)ln (4)ln (2ln (2ln )2ln ()2ln ()(2
222222x x x x x x a x x x x x x a a P +≥+-+-=+++-+-=令,则,显然在区间上单调递减,在区间上单调递增,x x x Q ln )(-=x
x x x Q 111)('-=-=)(x Q )1,0(),1[+∞则,则,故.1)1()(min ==Q x Q 41)(≥a P 21412)(=⨯≥x F 考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.
【方法点晴】本题主要考查导数在解决函数问题中的应用.考查利用导数证明不等式成立.(1)利用导数的工具性求解实数的取值范围;(2)先写出具体函数,通过观察的解析式的形式,能够想到解析式里可能存()x F ()x F 在完全平方式,所以试着构造完全平方式并放缩,所以只需证明放缩后的式子大于等于
即可,从而对新函数求4
1导判单调性求出最值证得成立.
22.【答案】
【解析】(Ⅰ)解:在棱AD 上找中点N ,连接CN ,则CN ∥平面AMP ;
证明:因为M 为BC 的中点,四边形ABCD 是矩形,
所以CM 平行且相等于DN ,
所以四边形MCNA 为矩形,
所以CN ∥AM ,又CN ⊄平面AMP ,AM ⊂平面AMP ,
所以CN ∥平面AMP .
(Ⅱ)证明:过P 作PE ⊥CD ,连接AE ,ME ,
因为边长为2的等边△PCD 所在的平面垂直于矩形ABCD 所在的平面,BC=2
,M 为BC 的中点所以PE ⊥平面ABCD ,CM=
,所以PE ⊥AM ,
在△AME 中,AE=
=3,ME==,AM==,所以AE 2=AM 2+ME 2,
所以AM ⊥ME ,
所以AM ⊥平面PME
所以AM ⊥PM .
【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想.。

相关文档
最新文档