图形的轴对称、缩放与坐标变化

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时图形的轴对称、缩放与坐标变化
1.探索图形坐标变化的过程;(重点)
2.了解掌握图形坐标变化与图形轴对称之间的关系.(难点)
一、情境导入
在我们的生活中,对称是一种很常见的现象.把如图所示成轴对称的黄鹤楼图形放在平面直角坐标系
中,其对称轴为某条坐标轴.那么,图形上对称的坐标会有什么关系呢?试一试.
二、合作探究
探究点一:关于x 轴、y 轴对称的点的坐标
点A(2a -3,b)与点A′(4,a +2)关于x 轴对称,求a ,
b.
解析:此题应根据关于x 轴对称的两个点的坐标的特点:横坐标相同,纵坐标互为相反数,得2a -3与4相等,b 与a +2互为相反数.
解:由点A(2a -3,b)与点A′(4,a +2)关于x 轴对称知2a -3=4,a +2=-b.所以a =72,b =-112
. 方法总结:在平面直角坐标系中,关于坐标轴对称的点的坐标关系:若A(x ,y)与B(m ,n)关于x 轴对称,则有x =m ,y =-n ;若A(x ,y)与B(m ,n)关于y 轴对称,则有x =-m ,y =n.
探究点二:作图——轴对称变换
如下图所示,△ABC 三个顶点的坐标分别为A(-1,4),
B(-3,1),C(0,0),作出△ABC 关于x 轴、y 轴的对称图形.并写出对称点的坐标.
解析:分别作点A,B,C关于x轴、y轴的对称点即可.
解:如图所示.
A1(1,4),B1(3,1),A2(-1,-4),B2(-3,-1),C点关于x轴、y轴的对称点的坐标不变.
方法总结:作对称图形应先确定关键点的对称点,再顺次连接各点即可作图.
探究点三:平面直角坐标系中的规律探究
如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2015的坐标为________.
解析:从各点的位置可以发现A 1(1,0),A 2(1,1),A 3(-1,1),A 4(-1,-1),A 5(2,-1),A 6(2,2),A 7(-2,2),A 8(-2,-2),A 9(3,-2),A 10(3,3),A 11(-3,3),A 12(-3,-3),….仔细观察每四个点的横、纵坐标,发现存在着一定规律性.因为2015=503×4+3,所以点A 2015在第二象限,纵坐标和横坐标互为相反数,所以A 2015的坐标为(-504,504).故填(-504,504).
方法总结:解决此类题常用的方法是通过对几种特殊情况的研究,归纳总结出一般规律,再根据一般规律探究特殊情况.
三、板书设计
轴对称与坐标变化⎩
⎪⎨⎪⎧关于坐标轴对称作图——轴对称变换
通过本课时的学习,学生经历图形坐标变化与图形的轴对称之间的关系的探索过程,掌握空间与图形的基础知识和基本作图技能,丰富对现实空间及图形的认识,建立初步的空间观念,发展形象思维,激发数学学习的好奇心与求知欲.教学过程中学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣.。

相关文档
最新文档