岩石物理性质

合集下载

岩石力学

岩石力学

岩石力学岩石的物理性质 一、 岩石的分类火成岩:侵入岩和喷出岩。

沉积岩:砂岩(95%的油气储量)、页岩(待开采,如页岩气、煤层气)、石灰岩。

变质岩:不含油气。

二、 岩石的强度主要取决于:组成其矿物的强度、连接结构形式、岩石的结构和整体构造、胶结物的成分和胶结方式 三、岩石的物理性质孔隙度、渗透率、可压缩性、导电性、传热性的总称。

1、 孔隙度:绝对孔隙度:φ = V 孔/V 岩总 孔隙度越高,岩石的力学性质越差。

有效孔隙度: φ有效 =V 连通/V 孔总。

2、 渗透性:在一定压力作用下,孔隙具有让流体(油、气、水)通过的性质。

其大小用渗透率来描述,反映了流体在岩石孔隙中流动的阻力的大小。

达西定律:A LhK Q ∆=φ...K Φ——反应岩石性质系数 含义:以粘度为1厘泊的流体完全饱和于岩石孔隙中,在1个大气压差的作用下,以层流的方式用过截面积为1cm 2,长度为1cm 的岩样时,其流量为1cm 3/s 。

则渗透率为1达西(D )。

3、 岩石中的油、气、水饱和度。

…4、 岩石的粒度组成和比表面积:粒度组成的分析方法:筛分析法和沉降法。

通过粒度得孔隙度。

比表面积:单位体积岩石内颗粒的总表面积。

通过粒度组成估算比面。

孔隙度、粒度、比表三者之二求一岩石的力学性质岩石的类型、组成成分、结构构造、围压、温度、应变率、载荷等对其力学性质都有影响 一、 岩石变形性质的基本概念1、 弹性:… 基本弹性参数E 、υ。

2、 塑性3、 黏性:物体受力后,变形不能在瞬时完成,且应变率随应力的增加而增加的性质。

4、 脆性:受力后变形很小就发生破裂的性质。

(ε>5%就发生破裂的称为塑性材料,小于的称脆性材料)5、 延性:发生较大塑性变形,但不丧失其承载能力的性质。

岩石在常温,常压下,并不是理想的弹性或塑性材料,而是几种的复合体,如塑弹性、塑弹塑、弹塑蠕。

其本构关系略。

6、常温常压下岩石的典型应力-应变曲线:(重点)OA---塑性,应力增加快,但应变增加不多。

第1章岩石的物理性质

第1章岩石的物理性质

1) 岩石的吸水性
岩石在一定的试验条件下吸收水分的能力,称为岩石的吸水性。常 用吸水率,饱和吸水率与饱水系数等指标表示。
(1)吸水率:岩石的吸水率(a)是指岩石试件在大气压力条件下自由 吸入水的质量(mw1)与岩样干质量(ms)之比,用百分数表示,岩石的 颗粒密度属实测指标,常用比重瓶法进行测定。
1.2
岩石的水理性质: 岩石的崩解性
物理性质指标
岩石的崩解性是指岩石与水相互作用时失去粘结性并变成完全丧失强度的松 散物质的性能。这种现象是由于水化过程中削弱了岩石内部的结构联络引起 的。常见于由可溶盐和粘土质胶结的沉积岩地层中。
岩石崩解性一般用岩石的耐崩解性指数表示。这项指标可以在实验室内做干 湿循环试验确定。
1.2
岩石的水理性质: 岩石的膨胀性
物理性质指标
岩石的膨胀性是指岩石浸水后体积增大的性质。 大多数结晶岩和化学岩是不具有膨胀性的,这是因为岩石中的矿物亲水性小 和结构联结力强的缘故。如果岩石中含有绢云母、石墨和绿泥石一类矿物, 由于这些矿物结晶具有片状结构的特点,水可能渗进片状层之间,同样产生 楔劈效应,有时也会引起岩石体积增大。 岩石膨胀大小一般用膨胀力和膨胀率两项指标表示,这些指标可通过室内试 验确定。目前国内大多采用土的固结仪和膨胀仪的方法测定岩石的膨胀性。
1.3

岩体的工程分类
按岩体质量指标分级: 美国伊利诺斯大学用岩体质量指标RQD来表示岩石的完整性。 采用直径为75mm的双层岩心管金刚石钻进,提取直径为54mm的岩心, 将长度小于10cm的破碎岩心及软弱物质剔除,然后测量大于或等于 10cm长柱状岩心的总长度(Lp)。用这一有效的岩心长度与采集岩心段 的钻孔总进尺(L)之比,取其百分数就是RQD。

第二章 岩石的物理性质

第二章 岩石的物理性质
qx---q沿x x方k 向ddhx水A 的流量;ddhhx—水----头-水高头变度化;率A—垂直x方向的截面
面积;k—渗透系数。 K现场或室内试验确定。野外用钻孔压水试验,测定单位吸 水量。岩石室内渗透(仪)试验,与土类似,但试验时的压 力差要大得多。 灰岩K=1-10-4cm/s,砂岩10-4-10-6 ,泥岩10-7-10-11 cm/s
坚硬结构面
节理、层面、次生裂 隙、小断层、片理、 劈理、卸荷裂隙、风 化裂隙等
W1,W2分别为冻融试验前后岩石试样的重量 岩石的冻融试验在实验室进行。冻融各4小时为1个循环, 一般要进行25次后计算Rd 和Km。 Rd≤25%。
Km ≤5%,岩石抗冻性较好。
4.透水性(permeability) 在一定的水力梯度或压力差作用下,岩石能被水透过的性质。
反映了岩石中裂隙向相互连通的程度,大多渗透性可用达西 (Darcy)定律描述:
干密度ρd:ρd=ms/v
饱和ρsat:ρsat=msat/v
量积法和蜡封法测定块体密度ρ。
重度(γ): γ =w/v=ρ.g KN/m3
岩石的重度γ=26.5-28.0KN/m3,土18-20,砼24,钢砼25
岩石的重度在一定程度上反映出岩石的力学性质情况,通常
岩石的重度越大,则它的性质就越好,反之越差。
软弱和硬性结构面:结构面内夹有软弱物质者属于软弱结构面, 无充填或充填物较上下岩层强度大者则属坚硬结构面。
2.结构面的规模及分级
(1)绝对分级:按结构面延伸长度,并考虑其宽度,可将结 构面分为I-V级。
级 序
分级依据
力学属性
地质构造特征
结构面延展长,贯通岩体,延伸数 1.软弱结构面 大断层
I 至数十公里以上,破碎带宽约数米 2.构造独立的力 区域性断层

岩石的物理性质

岩石的物理性质
0.53~0.69 0.67~0.96 0.75~0.79 0.39~0.52 0.94~0.96
2020/6/14
岩石力学
2020/6/14
岩石力学
常见岩石的物理性质指标值
2020/6/14
岩石力学
(三)、岩石的抗冻性
岩石抵抗冻融破坏的能力,称为抗冻性。
抗冻系数(Rd):岩石试件经反复冻融后的干
2.2 岩石的物理性质
岩石和土一样,也是由固体、液体和气体三相 组成的。
物理性质是指岩石由于三相组成的相对比例关 系不同所表现的物理状态。
1、岩石的密度
2、岩石的孔隙性
2020/6/14
岩石力学
(一)、岩石的密度
1、颗粒密度(ρs):岩石固体部分的质量与 其体积的比值。它不包含孔隙在内,因此 其大小仅取决于组成岩石的矿物密度及其 含量:
2020/6/14
岩石力学
岩石的水理性质
可溶性:是指岩石被水溶解的性能。它与岩石的矿 物成分、水中CO2含量及水的温度等因素有关。
岩石的饱和密度为2.65g/cm3,干密度为 2.49g/cm3,请计算岩石的孔隙比和颗粒 密度
2020/6/14
岩石力学
2020/6/14
岩石力学
五、岩石的水理性质
岩石在水溶液作用下表现出来的性质,称为 水理性质。主要有:
1.吸水性 2.软化性 3.抗冻性 4.透水性
2020/6/14
岩石力学
2020/6/14
岩石力学
岩石的物理性质
孔隙度:岩石中孔隙体积与岩石总体积之比 (多用 百分数表示)。
裂隙率:岩石中各种节理、裂隙的体积与岩石总体 积之比称裂隙率。
孔隙度与裂隙率含义相同,孔隙度多用于松散土、 石,裂隙率多用于结晶连接的坚硬岩石。

岩石的物理性质

岩石的物理性质

作业
岩石的物理性质
密度:是指岩(矿)石的致密程度,通常以单位体积物质的质量来表示,单位是:g/cm3或kg/m3。

决定岩石密度的主要因素有:岩石中各种矿物成分及其含量,岩石的孔隙度及孔隙中的充填物,岩石所受的压力。

通常情况下,只有其中某一种或二种因素起主导作用。

磁性:由于岩石由矿物组成,所以岩石的磁性强弱与矿物的磁性有直接关系。

而矿物磁性特征为抗磁性矿物的磁化率都很小,在磁力勘探中通常视为无磁性的;顺磁性矿物的磁化率要比抗磁性矿物大得多,约两个数量级。

电阻率:电流通过每边长度为1m的立方体均匀物质时所遇到的电阻值。

岩石的电阻率越小,它的导电性越好,岩石的电阻率越大,其导电性越差。

岩(矿)石的电阻率变化除了与其矿物成分、含量、矿物颗粒结构、构造有关外,很大程度上取决于它们的孔隙度或裂隙度及其中所含水分的多少。

速度:地震波速度既与岩石的弹性性质相关,又是反映岩石物理性质的重要参数。

影响因素为孔隙度及孔隙填充物性质,密度,埋藏深度,构造历史和地质年代,温度。

岩石的物理性质与性质分析

岩石的物理性质与性质分析

岩石的物理性质与性质分析岩石是地球表面最常见的地质材料之一,其物理性质和性质分析对于地质学研究以及工程建设都起到至关重要的作用。

本文将对岩石的物理性质进行介绍,并探讨如何对岩石的性质进行分析。

一、岩石的物理性质1. 密度密度是岩石的重要物理性质之一,通常用质量与体积的比值表示。

岩石的密度不仅与岩石的成分有关,还与其孔隙度和结构形态等因素密切相关。

不同类型的岩石其密度差异较大,例如火山岩的密度一般较低,而花岗岩和玄武岩的密度相对较高。

2. 弹性模量弹性模量是衡量岩石抗弹性变形能力的重要指标,通常用应力与应变的比值表示。

弹性模量可分为体积弹性模量、剪切模量和弯曲模量等。

不同类型的岩石其弹性模量也不同,例如砂岩的弹性模量相对较低,而页岩和石灰岩的弹性模量相对较高。

3. 磁性岩石的磁性是指岩石在外磁场作用下表现出的磁特性。

大部分岩石都具有不同程度的磁性,但具体的磁性表现与岩石的成分、结构以及成岩过程等因素有关。

通过对岩石的磁性分析,可以了解地质历史和构造变形。

4. 热性质岩石的热性质包括导热性、热膨胀系数和热导率等。

岩石的导热性取决于其成分、密度和孔隙度等因素,而热膨胀系数则决定了岩石在温度变化下的体积变化。

热导率是指岩石传导热量的能力,与岩石的矿物含量和孔隙度等因素有关。

二、岩石性质分析方法1. 物理试验常用的岩石性质分析方法之一是物理试验,包括密度测定、弹性模量测定和磁性测定等。

密度测定可通过称重和容器体积测量来完成,而弹性模量的测定通常使用弹性波速度的测量方法。

磁性测定则需要使用磁化强度计等仪器完成。

2. 岩心实验岩心是由地下取得的连续岩石样本,在岩石性质分析中起到非常重要的作用。

通过对岩心的观察和实验室分析,可以了解岩石的颜色、质地、孔隙度、矿物组成等特征,从而推测岩石的物理性质。

3. 地球物理勘探地球物理勘探是一种通过地球物理方法研究地壳结构和性质的方法。

它包括地震勘探、电磁测深、重力测量和磁力测量等。

岩石物理性质

岩石物理性质

岩石物理性质地球物理勘探中所涉及的各类岩石和矿物的物理性质。

岩石的密度、弹性波传播速度、磁化率、电阻率、热导率、放射性等,是形成各种地球物理场的基础(表1)。

磁性常用的岩石磁性参数是磁化率、磁化强度、剩余磁化强度矢量,以及剩余磁化强度同感应磁化强度的比值Q。

矿物按其磁性的不同可分为 3 类:①反磁性矿物, 如石英、磷灰石、闪锌矿、方铅矿等。

磁化率为恒量,负值,且较小。

②顺磁性矿物,大多数纯净矿物都属于此类。

磁化率为恒量,正值,也比较小。

③铁磁性矿物, 如磁铁矿等含铁、钴、镍元素的矿物。

磁化率不是恒量,为正值,且相当大。

也可认为这是顺磁性矿物中的一种特殊类型。

岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。

一般说,橄榄石、辉长石、玄武岩等基性、超基性岩浆岩的磁性最强;变质岩次之;沉积岩最弱。

①岩浆岩的磁性取决于岩石中铁磁性矿物的含量。

结构构造相同的岩石,铁磁性矿物含量愈高,磁化率值愈大。

铁磁性侵入岩的天然剩余磁化强度,按酸性、中性、基性、超基性的顺序逐渐变大。

铁磁性侵入岩的特点是Q 值一般小于1。

由接触交代作用而形成的岩石,Q值可达1~ 3,甚至更大。

②沉积岩的磁性主要也是由铁磁性矿物的含量决定的。

分布最广的沉积岩造岩矿物,如石英、方解石、长石、石膏等,为反磁性或弱1 顺磁性矿物。

菱铁矿、钛铁矿、黑云母等矿物之纯净者是顺磁性矿物;含铁磁性矿物杂质者具有强顺磁性。

沉积岩的磁化率和天然剩余磁化强度值都比较小。

③变质岩的磁性是由其原始成分和变质过程决定的。

原岩为沉积岩的变质岩,磁性一般比较弱;原岩为岩浆岩的变质岩在变质作用相同时,其磁性一般比原岩为沉积岩的变质岩强。

大理岩和结晶灰岩为反磁性变质岩。

岩石变质后,磁性也发生变化。

蛇纹石化的岩石磁性比原岩强;云英岩化、粘土化、绢云母化和绿泥石化的岩石,磁性比原岩减弱。

岩石磁性的各向异性是岩石的层状结构造成的。

磁化率高,变质程度深的岩石,磁各向异性很明显。

岩石的物理力学性质讲解

岩石的物理力学性质讲解

4、岩石的崩解性
式中:
Id2

mr md
W2 W0 100% W1 W0
Id2 ——两次循环试验求得的耐崩解指数,在0~100% 之间变化;
md——试验前试块的烘干质量; mr——残留在圆筒内试块的烘干质量; W1 ——试验前试件和圆筒的烘干重量; W2——第二次循环后试件和圆筒的烘干重量; W0——试验结束冲洗干净后圆筒的烘干重量。
2、干密度(ρ d)和干重度(γ d )
干密度是指岩石孔隙中的液体全部被蒸发后单位体积 岩石的质量,相应的重度即为干重度。
d
Ws V
d d g
(g/cm3) (kN /m3)
式中:Ws——岩石试件烘干后的质量(g); V——岩石试件的体积(cm3);
g——重力加速度。
3、饱和密度(ρ )和饱和重度(γw)
E切=
a a
2 2
a1 a1
割线模量:
是曲线上某一点与坐 标原点连线的斜率。
E割
工程上常用E50 :
E50

50 50
初始模量反映了岩石中微裂隙的多少。 切线模量反映了岩石的弹性变形特征 割线模量反映了岩石的总体变形特征。
c 具有粘性的弹性岩石
由于应变恢复 有滞后现象,即加 载和卸载曲线不重 合,加载曲线弹模 和卸载弹模也不一 样。P点加载弹模 取过P点的加载曲 线的切线斜率,P 点卸载弹模取过P 点的卸载曲线的切 线斜率。
nb
Vnb V
Ws V
Vnb Ws
Ws Vnb1 d1
V W1
w
式中:W s为干燥岩石的重量;γ d,γ w分别为干燥岩石和水的重度。
(2)岩石的饱水率(ω2)

岩石的物理性质

岩石的物理性质
2018/5/27 岩石力学
(一)、岩石的吸水性
岩石在一定的试验条件下吸收水分的能力,称为岩 石的吸水性。 1.吸水率(Wa):岩石试件在大气压力和室温条件下 自由吸入水的质量(mw1)与岩样干质量(ms)之比,用 百分数表示
m w1 Wa 100% mw2
VVb dWa nb 100% dWa V w
式中:Cd 和Cw 分别为干燥岩石和水的比热容,x1 和x2分别为岩石干重和水重。
2018/5/27 岩石力学
第三节 岩石的热学性质
二、岩石的导热系数
岩石传导热量的能力,称为热传导性,常用导热系
数来表示。
dT Q kA dt dx
研究表明,岩石的比热容(C)与导热系数(k) 间存在如下关系:
岩 岩
大 理 岩 板 岩
2018/5/27
岩石力学
岩石的物理性质
孔隙度:岩石中孔隙体积与岩石总体积之比 (多用
百分数表示)。 裂隙率:岩石中各种节理、裂隙的体积与岩石总体 积之比称裂隙率。 孔隙度与裂隙率含义相同,孔隙度多用于松散土、 石,裂隙率多用于结晶连接的坚硬岩石。 一般岩石的孔隙度在0.1-0.35之间
2018/5/27 岩石力学
例题:
岩石的饱和密度为2.65g/cm3,干密度为
2.49g/cm3,请计算岩石的孔隙比和颗粒
密度
2018/5/27
岩石力学
2018/5/27
岩石力学
五、岩石的水理性质
岩石在水溶液作用下表现出来的性质,称为 水理性质。主要有: 1.吸水性 2.软化性 3.抗冻性 4.透水性
过程中的能量转换与守恒服从热力学原理。在以上
几种热交换方式中,以热传导传热最为普遍控制着 几乎整个地壳岩石的传热状态,对流传热主要在地 下水渗流带内进行。辐射传热仅发生在地表面。

第2章 岩石的物理力学性质

第2章 岩石的物理力学性质
第二章 岩石的物理力学性质
目 录
1、岩石的物理性质 2、岩石的强度特性 3、岩石的变形特性 4、岩体结构面的力学性质 5、岩体的力学性质 6、工程岩体的分类 7、岩石力学性质的时间效应
2.1 岩石的物理性质
岩石由固体、液体和气体三相介质组成, 其物理性质是指因岩石三相组成部分的相 对比例关系不同所表现出来的物理状态。
(2)变角板剪切试验(图) P (cos f sin ) A P (sin f cos ) A
此法的主要缺点是a角不能太大,也不能太小。
4 岩石的三轴压缩强度(Triaxial compressive strength)
岩石试件在三向压应力作用下能抵抗的最大轴向压力。
体积变形模量:平均正应力与单位体积变形之比
e V e 1 2 3 V K

切变模量:弹性或准弹性的切变模量
E G 2(1 )
岩块的变形模量和泊松比受岩石矿物组 成、结构构造、风化程度、空隙性、含水率、 微结构面及其与荷载方向的关系等多种因素 的影响,变化很大(图)。
f c tan
大量研究表明:当压力不大时(小于 10MPa),直线形强度包络线能够满足工程 要求,是目前应用最为广泛的强度理论。
(2)二次抛物线形莫尔强度准则(图) 软弱至中等硬度完整岩石,如泥灰岩、 砂岩、泥岩等岩石的强度包络线近似于二次 抛物线。
n( t )
VD D / D 100%
(2)岩石的侧向约束膨胀率
VHP H1 / H 100%
(3)膨胀压力
6 岩石的透水性 达西定律
Vx kix
岩石的渗透系数一般都很小,新鲜致 密岩石的渗透系数一般均小于10-7cm/s。裂 隙发育时,渗透系数一般比新鲜岩石大4~ 6个数量级。

岩石物理力学性质

岩石物理力学性质

1 岩石的物理力学性质岩石是由固体相、液体相和气体相组成的多相体系。

理论认为,岩石中固体相的组分和三相之间的比例关系及其相互作用决定了岩石的性质。

在研究和分析岩石受力后的力学表现时,必然要联系到岩石的某些物理性质指标。

岩石物理性质:岩石由于其固体相的组分和三相之间的比例关系及其相互作用所表现出来的性质。

主要包括基本物理性质和水理性质。

岩石在受到外力作用下所表现出来的性质称为岩石的力学性质。

岩石的力学性质主要有变形性质和强度性质,在静荷载和动荷载作用时,岩石的力学性质是有所不同的,表现在性质指标的差异上。

岩石的物理力学性质通常通过岩石物理力学性质测试才能确定。

1.1 岩石的基本物理性质指标反映岩石组分及结构特征的物理量称为岩石的物理性质指标,这里主要是指一些基本属性:密度、比重、孔隙性、水理性等。

反映了岩石的组分和三相之间的比例关系。

为了测定这些指标,一股都采用岩样在室内作试验,,必要时也可以在天然露头上或探洞(井)中进行现场试骀。

在选用岩样时应考虑到它们对所研究地质单元的代表性并尽可能地保持其天然结构。

最好采用同一岩样逐次地测定岩石的各种物理性质指标。

下面分述各种物理性质指标。

1.1.1 岩石的密度和重度(容重)1、定义密度:单位体积岩石(包括岩石内空隙体积在内)所具有的质量。

重度(容重):单位体积岩石所受的重力。

2、计算式 密度:VM =ρ(g/cm 3,t/m 3) 容重度:VMg V W ==ρ(kN/m 3) 密度与重度的关系:γ=ρg 。

上述各式中,M —岩石质量;W —岩石重量;V —岩石体积(包括空隙在内);g 为重力加速度,g=9.8m/s 2,工程上一般取10m/s 2。

密度与容重的种类:天然密度ρ、干密度ρd 、饱和密度ρsat 。

天然密度与干密度的关系:ρ=ρd (1+0.01ω)(ω为含水率,以百分数计)。

3、影响因素影响岩石密度大小的因素:矿物成分、孔隙及微裂隙发育程度、含水量。

第2章岩石的物理性质ppt课件

第2章岩石的物理性质ppt课件
构造节理、断层、劈理以 及层间错动面等。
岩体受卸荷作用,风化作用和 地下水活动所产生的结构面。
卸荷裂隙、风化裂隙以及 各种泥化夹层、次生夹泥 等。
2.3 岩体结构
➢结构面的类型和自然特性
❖ 结构面的自然特性
是指结构面的规模、结构面上的物质组成、结构面的结合状态和 空间分布以及密集程度等等。
结构面的等级:按结构面的规模分为四个等级,每个等级都关系到岩体 的稳定性。
当岩石中含有较多的亲水性和可溶性矿物,且含开口孔隙较多时, 岩石的软化性较强,软化系数较小。
2.2 岩石的物理性质指标
➢岩石的水理性质
❖ 岩石的渗透性
水在岩土体孔隙中的流动过程称为渗透。岩土体具有渗透的性质称为岩 土体的渗透性。
是岩石水理性质的重要指标,也是岩体稳定性分析的基本计算参数。由 水的渗透引起岩土体边坡失稳、边坡变形、地基变形、岩溶渗透塌陷等 均属于岩土体的渗透稳定问题。水在孔隙介质中的渗透问题,目前的研 究在试验及理论上都有一定的水平,在解决实际问题方面也能够较好地 反映水在孔隙介质中的渗流的运动规律。 对于裂隙介质中的渗流研究, 则很不成熟。
wa
Ww1 Ws
100 %
2.2 岩石的物理性质指标
➢ 岩石的水理性质
❖ 岩石的吸水性
▪ 吸水率
实验测定:烘干箱烘干12小时(1050C)求得干重Ws,水中浸润12— 24小时,称得湿重,算出吸入的水重Ww1,从而求得a 。
影响因素:孔隙的多少和细微裂隙的连通情况。
应用:工程上常用吸水率作为判断岩石的抗冻性及风化程度的指标。
▪ 抗冻性衡量指标 抗冻系数大于75%,重力损失率小于5%的岩石为抗冻性能好的岩石。
2.2 岩石的物理性质指标

岩石的物理性质与性质分析

岩石的物理性质与性质分析

岩石的物理性质与性质分析岩石是地壳中主要的固体物质,由矿物粒子和胶结物质组成。

岩石的物理性质是指岩石在外部作用下所表现出的性质,包括密度、硬度、磁性、导电性等。

岩石的性质分析是对岩石物理性质的具体研究,通过对岩石的性质分析,可以更好地了解岩石的组成和结构,为勘探、开采和利用岩石资源提供参考。

1. 密度分析岩石的密度是指单位体积岩石的质量,通常以g/cm³或kg/m³为单位。

密度是岩石的一个重要物理性质,可以通过密度的测定来判断岩石的成分和结构。

常见的岩石密度范围在2.4-3.0g/cm³之间,不同种类的岩石其密度也会有所差异。

例如,花岗岩的密度较高,大理石的密度较低,通过密度分析可以区分不同种类的岩石。

2. 硬度分析岩石的硬度是指岩石抵抗外力破坏的能力,通常以莫氏硬度来表示。

莫氏硬度是一个用来标定矿物硬度的量值,取值范围从1到10,硬度越大表示矿物的抗压能力越强。

常见的岩石硬度在2-7之间,硬度较高的岩石如石英、玄武岩等在建筑和工程领域中有重要的应用。

通过硬度分析可以进行岩石分类和评价。

3. 磁性分析岩石的磁性是指岩石在外磁场作用下表现出的性质,包括磁化强度、剩磁、磁化率等。

岩石的磁性与岩石的矿物成分密切相关,一些含铁矿物的岩石具有较强的磁性。

通过磁性分析可以对岩石中的矿物组成和结构进行识别和研究,为地质勘探和矿产资源调查提供基础数据。

4. 导电性分析岩石的导电性是指岩石导电能力的强弱,不同类型的岩石具有不同的导电性。

一些含水的岩石、矿石等具有较好的导电性,通过导电性分析可以进行矿石探测和地下水勘探。

导电性分析还可以用于岩石的工程评价和建筑设计,对岩石的稳定性和耐久性进行评估。

综上所述,岩石的物理性质与性质分析对于岩石资源的开发利用具有重要的意义。

通过对岩石的密度、硬度、磁性和导电性等方面的分析,可以更加深入地了解岩石的成分和结构,为岩石资源的综合利用提供科学依据。

岩石的基本物理性质

岩石的基本物理性质
2.2岩石的质量/Mass of Rock 1、颗粒密度 / Density of Rock Grain
/Pycnometer method
T
Chapter 2 Basic Physical Properties of Rock
2.2岩石的质量/Mass of Rock 2、岩石的密度/Density of Rock
固相/solid 液相/liquid 气相/gas
T
颗粒, 晶粒, 胶结材料, 孔隙, 裂隙
固体, 气体, 水
Chapter 2 Basic Physical Properties of Rock
2.1 岩石的三相性/Three Phases of Rock
Volume of viods
概化模型
三相示意图/Sketch Map of the Three Phases of Rock
开口孔隙率:试件中与大气相通的孔隙体积占试件总体积 的百分比,按下式计算:
nk
Vk V
100%
式中:Vk——岩石中开口孔隙的体积,m3。 封闭孔隙率:试件中不与大气相通的孔隙体积占试件总 体积的百分比,按下式计算:
nc n nk
T
Chapter 2 Basic Physical Properties of Rock
T
Chapter 2 Basic Physical Properties of Rock
2.4岩石的水理性质/ Hydraulic Properties of Rock
岩石渗透仪 1-注水管路;2-围压室;3-岩样;
4-放水阀
T
径向渗透Physical Properties of Rock
岩石饱和单轴抗压强度和干燥状态下单轴抗压强度之比:

工程岩土与测试:岩石的物理性质

工程岩土与测试:岩石的物理性质
2.岩石的密度
(1)颗粒密度(ρs):岩石固体部分的质量与其体积的比值。它不包含孔隙 在内,因此其大小仅取决于组成岩石的矿物密度及其含量。
表达式:
ρs= ms/Vs ρs—为岩石的颗粒密度
ms—为岩石固体部分的质量 Vs—为岩石固体部分的体积 单位: g/cm3或kg/m3
岩石的颗粒密度属实测指标,常用比重瓶法进行测定。
nb
Vvb 100% V
na
Vva V
100% n0
nb
nc
Vv c V
100% n n0
岩石的物理性质
3.岩石的空隙性
一般提到的岩石空隙率系指总空隙率,其大小受岩石的
成因、时代、后期改造及其埋深的影响,其变化范围很大。常见 岩石的空隙率见表1,由表可知,新鲜结晶岩类的n一般小于3%, 沉积岩的n较高,为1%~10%,而一些胶结不良的砂砾岩,其n可 达10%~20%,甚至更大。
岩石的物理性质
3.岩石的空隙性
Байду номын сангаас
岩石的空隙
(裂隙、孔隙)
开空隙 闭空隙
岩石 空隙 率
总空隙率(n) 总开空隙率(no) 大开空隙率(nb) 小开空隙率(na) 闭空隙率(nc)
隙比
e VV s 1
Vs
d
大开空隙 小开空隙
n Vv V
100% (1
d s
) 100%
n0
Vv 0 V
100%
岩石的空隙性指标一般不能实测,只能通过密度与吸水性等指标 换算求得,其计算方法将在后续课程中讨论。
岩石的物理性质
表1常见岩石的物理性质指标值
岩石的物理性质
岩石的空隙性对岩块及岩体的水理、热学性质影响很大。一般说来,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

岩石物理性质地球物理勘探中所涉及的各类岩石和矿物的物理性质。

岩石的密度、弹性波传播速度、磁化率、电阻率、热导率、放射性等,是形成各种地球物理场的基础(表1)。

磁性常用的岩石磁性参数是磁化率、磁化强度、剩余磁化强度矢量,以及剩余磁化强度同感应磁化强度的比值Q。

矿物按其磁性的不同可分为3类:①反磁性矿物,如石英、磷灰石、闪锌矿、方铅矿等。

磁化率为恒量,负值,且较小。

②顺磁性矿物,大多数纯净矿物都属于此类。

磁化率为恒量,正值,也比较小。

③铁磁性矿物,如磁铁矿等含铁、钴、镍元素的矿物。

磁化率不是恒量,为正值,且相当大。

也可认为这是顺磁性矿物中的一种特殊类型。

岩石的磁性主要决定于组成岩石的矿物的磁性,并受成岩后地质作用过程的影响。

一般说,橄榄石、辉长石、玄武岩等基性、超基性岩浆岩的磁性最强;变质岩次之;沉积岩最弱。

①岩浆岩的磁性取决于岩石中铁磁性矿物的含量。

结构构造相同的岩石,铁磁性矿物含量愈高,磁化率值愈大。

铁磁性侵入岩的天然剩余磁化强度,按酸性、中性、基性、超基性的顺序逐渐变大。

铁磁性侵入岩的特点是Q值一般小于1。

由接触交代作用而形成的岩石,Q值可达1~3,甚至更大。

②沉积岩的磁性主要也是由铁磁性矿物的含量决定的。

分布最广的沉积岩造岩矿物,如石英、方解石、长石、石膏等,为反磁性或弱1顺磁性矿物。

菱铁矿、钛铁矿、黑云母等矿物之纯净者是顺磁性矿物;含铁磁性矿物杂质者具有强顺磁性。

沉积岩的磁化率和天然剩余磁化强度值都比较小。

③变质岩的磁性是由其原始成分和变质过程决定的。

原岩为沉积岩的变质岩,磁性一般比较弱;原岩为岩浆岩的变质岩在变质作用相同时,其磁性一般比原岩为沉积岩的变质岩强。

大理岩和结晶灰岩为反磁性变质岩。

岩石变质后,磁性也发生变化。

蛇纹石化的岩石磁性比原岩强;云英岩化、粘土化、绢云母化和绿泥石化的岩石,磁性比原岩减弱。

岩石磁性的各向异性是岩石的层状结构造成的。

磁化率高,变质程度深的岩石,磁各向异性很明显。

褶皱区沉积岩的磁各向异性一般要比地台区的大。

岩石的天然剩余磁化强度矢量是在岩石形成过程中,按当时当地的地磁场方向“冻结”下来的。

这个矢量的指极性与现代地磁场方向一致的称为正极性。

岩石的年代愈古老,它的剩余磁化强度矢量的成分愈复杂。

岩石剩余磁性由各种天然磁化过程形成。

岩石在磁场中从居里点以上温度冷却时获得的剩余磁性称为热剩余磁性;岩石中的铁磁性物质在磁场中由于磁粘滞性而获得的剩余磁性称粘滞剩余磁性;沉积岩中的微小磁性颗粒在沉积过程中受磁场作用采取定向排列因而获得的剩余磁性称为沉积剩余磁性;沉积物中的铁矿物沉积后,在磁场中经化学变化而获得的剩余磁性称化学剩余磁性;还有等温剩余磁性是常温下磁性物质在磁场中获得的剩余磁性(见岩石磁性)。

岩石的剩余磁性是古地磁学赖以建立的基础。

岩石和矿物的磁性与温度、压力有关系。

顺磁性矿物的磁化率与温度的关系遵循居里定律。

铁磁性矿物的居里温度一般为300~2700℃,其磁化率一般随温度升高而增大(可达50%),至居里温度附近则迅速下降。

铁磁性矿物的磁化率与温度的关系有两种类型:一为可逆型,即在矿物加热和冷却过程中温度相同时磁化率值相同,如纯磁铁矿、钛铁矿。

另一种为不可逆型,即矿物加热和冷却过程中温度相同时磁化率值不同,如对升温不稳定的铁磁性矿物。

岩石加热时,磁化率也逐步升高,至200~400℃迅速下降。

岩石的磁化率和磁化强度值都随压力的增大而减小。

密度和孔隙度矿物的密度是由构成该矿物各元素的原子量和矿物的分子结构决定的。

大多数造岩矿物如长石、石英、辉石等具有3离子型或共价型结晶键密度为2.2~3.5克/厘米(极少数达4.5克/厘米3)。

结晶键为离子-金属型或共价-金属型的矿物,如铬铁矿、黄铁矿、磁铁矿等密度较大,为3.5~7.5克/厘米3。

天然金属的密度最大。

石油的密度是由其成分决定的。

年代老的石油一般有较小的密度。

地层水的密度决定于水中溶解的物质。

岩石的密度取决于它的矿物组成、结构构造、孔隙度和它所处的外部条件。

影响岩浆岩的因素对于侵入岩和喷出岩来说是不同的。

侵入岩的孔隙度很小,其密度主要由化学成分决定。

从酸性到超基性,随着二氧化硅含量的减少和铁镁氧化物含量的增加,侵入岩的密度逐渐增大。

在金属矿区,岩石中金属矿物的含量增高,岩石的密度就增大。

矿区花岗岩的密度有的就高达2.7克/厘米3以上。

随着从酸性到超基性的过渡,由于硅铝含量减小,铁镁含量增大,喷出岩的密度也逐渐增大。

但喷出岩的孔隙度比侵入岩大,其密度也就比相应的侵入岩的密度小。

3沉积岩的密度是由组成沉积岩的矿物密度、孔隙度和填充孔隙气体和液体的密度决定的。

沉积岩的孔隙度变化较大,一般为2~35%,也有高达50%以上的。

石灰岩、白云岩、石膏等的孔隙度较小。

沉积岩在压力作用下孔隙度变小,其密度常随埋深和成岩作用的加深而增大。

变质岩的密度主要决定于其矿物组成。

变质岩的孔隙度很小,一般为0.1~3%,很少有达5%的。

岩石变质后密度的变化取决于变质作用的性质。

在区域变质性质中,绿片岩相岩石的密度一般比原岩小,其他深变质相岩石的密度比原岩大。

在动力变质中,如构造应力较小,则变质岩的密度小于原岩;如果应力较大因而引起再结晶时,则变质岩的密度等于或大于原岩。

孔隙度较大的岩石即使矿物成分相同,由于其孔隙中所含物质的成分不同,密度可以相差较大。

潜水面下水饱和的岩石密度就比干燥的岩石密度大。

岩石风化后密度变小。

岩石的密度一般是随压力的增大而增大。

侵入岩在压力作用下密度变化最大的是花岗岩,超基性岩最小。

当压力为20×108帕时,花岗岩的密度变化为2~5%,辉长岩为2~3%,超基性岩小于2%。

弹性波传播速度纵波和横波在岩石和矿物中传播的速度vP和vS是地球物理勘探中常用的两个参数。

天然金属如金的波速最低,vP为2.00公里/秒,vS为1.18公里/秒;硅铝矿物和无铁氧化矿物如黄玉、尖晶石、刚玉的v P约为9~11公里/秒;金刚石中vP达18.3公里/秒。

大多数造岩矿物的vP为5.50~7.50公里/秒。

矿物中波的传播速度与矿物的密度有关,对于主要造岩矿物,如长石、石英等,波速一般随密度的增加而升高;对于金属矿物和天然4金属,波速一般随密度的增加而下降。

云母、石墨等矿物弹性波速度的各向异性非常显著。

酸性岩石的造岩矿物如正长石、石英等,vP一般为5.70~6.25公里/秒;其暗色矿物如黑云母中的波速较低。

基性岩石的造岩矿物如角闪石、辉石,vP大于7.0公里/秒。

超基性岩中的造岩矿物例如橄榄石,vP达8.0公里/秒以上。

石油的超声波速度随密度和压力的增大而增大,随温度的升高而减小。

地层水的vP随压力和矿化度的升高而增大;它也随温度的升高而增大,但当温度超过80~100℃以后又随温度升高而减小。

岩石中的波速取决于其矿物成分和孔隙充填物的弹性。

岩浆岩和变质岩的弹性波速度与岩石密度的关系接近于线性关系,密度越大,速度越高。

岩浆岩和变质岩的含水饱和度增大时,vP变大,vS也变大,但不如vP的变化那样显著。

气饱和岩石的vP比相应的水饱和岩石的vP小。

片麻岩等片理发育的岩石,沿片理面测量的波速大于垂直片理面测量的波速,有时相差一倍以上。

沉积岩中的弹性波速度受孔隙度的影响很大,变化范围很宽。

地面疏松土壤和黄土的vP最小,砂岩、页岩次之,碳酸盐类岩石的vP最大。

孔隙为油、水所饱和的岩石的波速比干燥岩石的波速大。

同一类沉积岩,年龄较老或埋深较大的,其波速也较大。

压力增大时,岩石中的波速增大。

电性地球物理勘探中常用的岩石电性参数有电导率σ或电阻率ρ,电容率ε和极化率η。

在外电场恒定时,岩石和矿物的电导率σ一般为常数,其倒数即为电阻率ρ。

外电场为交变场时,电导率为频率的函数。

在高频时,由于位移电流比较明显,在低频和超低频时,由于某些岩石和矿石的5激发极化电流比较明显,使场与电流之间出现相位差,此时的电导率用复数表示,而电阻率不再为电导率的倒数。

大多数岩石和矿石的电导率在欧姆定律关系式中是一常系数。

这类岩石和矿石称为欧姆导体。

在一些各向异性的晶体和等离子体中,外电场和电流的方向不一致,此时物体的导电特性不能用欧姆定律来描述。

这类物体称为非欧姆导体,它们的电导率为一张量。

电法勘探中所用的电导率,一般是指定场或低频时不包含激发极化作用而测定的标量值,习惯上常使用其倒数电阻率这个量。

按导电特性不同,矿物可分为导体、半导体和介电体。

一些金属(如自然金、自然铜等)和石墨等属于导体(ρ≈10-6~10-5欧姆·米)。

多数金属硫化物和金属氧化物属于半导体(ρ≈10-6~106欧姆·米)。

绝大多数造岩矿物(石英、长石、云母等)属于介电体(ρ>106欧姆·米)。

不同岩石和矿石的矿物组成、结构构造、孔隙液含量和液体的性质都不相同,因此它们的电阻率值常相差很大,有时可以相差20个数量级。

同类岩石的电阻率值也常因孔隙液含量和液体含盐浓度的增加或减小而明显降低或升高。

这种变动能达2~4个数量级。

岩石和矿石的电阻率值随温度和压力的变化规律与矿物组分和结构构造有关。

电阻率一般随温度升高而下降;随压力的变化趋势常因岩石种类而异。

拉长形矿物呈定向排列的岩石、矿石和层状岩层,其电阻率值常显现各向异性。

电流平行于矿物的拉长方向或岩层的层面时所测定的电阻率值ρt,常小于电流垂直于矿物的拉长方向或岩层层面时所测定的电阻率值ρn。

定义电阻率各向异性系数λ=。

几种岩石的λ值见表2。

岩石和矿物的电容率ε即为介电常数。

在实用中为了方便,常采用无量纲参数相对电容率k(=ε/ε0),ε0为真空中电容率。

电容率6或相对电容率都是频率的函数。

在交变电场中,介质的电容率是复数。

在各向异性的介质中,电容率是张量。

面极化系数和极化率是激发极化法(见电法勘探)所用的两个电性参数。

当电流流过岩石或矿体中的两相(孔隙溶液和导体)界面或通过岩石中含有溶液的宽度不同的孔隙时,将产生电极极化或薄膜极化等电化学作用,使两相界面附近,随着充电时间增长逐渐积累新的电荷,产生超电压并渐趋饱和。

这样形成的电场分布,称为激发极化场。

该场在外电源断掉后,逐渐衰减为零。

这个现象称为岩石或矿体的激发极化效应。

反映致密块状矿体与液体的界面上激发极化效应的参数为面极化系数,它由下式定义:式中ΔV为超电压,V2和V1分别为界面矿体一侧和含液体的围岩一侧的电位,n为矿体的外法线方向,比例系数Ψ称为面极化系数,单位为米或厘米。

附图所示为石墨样品在不同电流密度j0的外电流激发下,在通电时和断电后阳极和阴极的超电压随时间变化的特征曲线。

实线和虚线分别代表石墨的阳极和阴极。

当j0的数值不大时,ΔV随j0作线性变化,此时的面极化系数Ψ为常数。

当j0较大时,ΔV与j0之间将出现非线性关系,面极化系数不再为常数,而且某些物体的阴极极化和阳极极化的面极化系数可能出现明显的差异。

相关文档
最新文档