北京第三十五中学人教版七年级下册数学期末压轴难题试卷及答案.doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京第三十五中学人教版七年级下册数学期末压轴难题试卷及答案.doc
一、选择题
1.9的平方根是()
A .3
B .3±
C .3
D .3±
2.下列所示的车标图案,其中可以看作由基本图案经过平移得到的是( )
A .
B .
C .
D . 3.已知 A(−1,2)为平面直角坐标系中一点,下列说法正确的是( )
A .点A 在第一象限
B .点A 的横坐标是2
C .点A 到y 轴的距离是1
D .以上都不对 4.下列六个命题
①有理数与数轴上的点一一对应
②两条直线被第三条直线所截,内错角相等
③平行于同一条直线的两条直线互相平行;
④同一平面内,垂直于同一条直线的两条直线互相平行;
⑤直线外一点到这条直线的垂线段叫做点到直线的距离
⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是( )
A .2个
B .3个
C .4个
D .5个
5.为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知AB ∥CD ,∠EAB =80°,110ECD ∠=︒,则∠E 的度数是( )
A .30°
B .40°
C .60°
D .70°
6.下列算式,正确的是( )
A .42=±
B .42=
C .382---
D ()288-=- 7.如图,直线a ∥b ,∠1=74°,∠2=34°,则∠3的度数是( )
A .75°
B .55°
C .40°
D .35°
8.如图,在平面直角坐标系中有点()2,0A ,点A 第一次向左跳动至()11,1A -,第二次向右跳动至()22,1A ,第三次向左跳动至()32,2A -,第四次向右跳动至()43,2A ,…依照此规律跳动下去,点A 第2020次跳动至2020A 的坐标为( )
A .()1011,1010
B .()1012,1010
C .()1010,1009-
D .()2020,2021
二、填空题
9.已知非零实数a.b 满足|2a-4|+|b+2|+()23a b -+4=2a ,则2a+b=_______. 10.已知点()36,415A x y -+,点()5,B y x 关于x 轴对称,则x y +的值是____. 11.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________.
12.如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.
13.将一张长方形纸条ABCD 沿EF 折叠后,EC ′交AD 于点G ,若∠FGE =62°,则∠GFE 的度数是___.
14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这
三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.
15.若点P(2-m ,m+1)在x 轴上,则P 点坐标为_____.
16.如图,点A (0,1),点1A (2,0),点2A (3,2),点3A (5,1)…,按照这样的规律下去,点1000A 的坐标为 _____.
三、解答题
17.(1)33181254
++ (2)3|12|427-+-
(3)2(22)3(21)+-+
18.求下列各式中的x :
(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=.
19.填空并完成以下过程:
已知:点P 在直线CD 上,∠BAP +∠APD =180°,∠1=∠2.
请你说明:∠E =∠F .
解:∵∠BAP +∠APD =180°,(_______)
∴AB ∥_______,(___________)
∴∠BAP =________,(__________)
又∵∠1=∠2,(已知)
∠3=________-∠1,
∠4=_______-∠2,
∴∠3=________,(等式的性质)
∴AE ∥PF ,(____________)
∴∠E =∠F .(___________)
20.在平面直角坐标系xOy 中,点A 的坐标为(0,4),线段MN 的位置如图所示,其中
点M 的坐标为(﹣3,﹣1),点N 的坐标为(3,﹣2).
(1)将线段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对应点为B .画出平移后的线段AB .
①点M 平移到点A 的过程可以是:先向 平移 个单位长度,再向 平移 个单位长度;
②点B 的坐标为 ;
(2)在(1)的条件下,若点C 的坐标为(4,0),连接AC ,BC ,求△ABC 的面积.
21.已知23|49|7
a b a a -+-+=0,求实数a 、b 的值并求出b 的整数部分和小数部分. 二十二、解答题
22.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.
(1)请求出图中阴影部分(正方形)的面积和边长
(2)若边长的整数部分为a ,小数部分为b ,求213a b +-的值.
二十三、解答题
23.如图,直线//PQ MN ,点C 是PQ 、MN 之间(不在直线PQ ,MN 上)的一个动点.
(1)如图1,若1∠与2∠都是锐角,请写出C ∠与1∠,2∠之间的数量关系并说明理由; (2)把直角三角形ABC 如图2摆放,直角顶点C 在两条平行线之间,CB 与PQ 交于点D ,CA 与MN 交于点E ,BA 与PQ 交于点F ,点G 在线段CE 上,连接DG ,有
BDF GDF ∠=∠,求AEN CDG
∠∠的值; (3)如图3,若点D 是MN 下方一点,BC 平分PBD ∠, AM 平分CAD ∠,已知25PBC ∠=︒,求ACB ADB ∠+∠的度数.
24.如图,直线//PQ MN ,一副三角板(90ABC CDE ∠=∠=︒,30ACB ∠=︒,60,45EAC DCE DEC ∠=︒∠=∠=︒)按如图①放置,其中点E 在直线PQ 上,点,B C 均在直线MN 上,且CE 平分ACN ∠.
(1)求DEQ ∠的度数.
(2)如图②,若将三角形ABC 绕B 点以每秒5︒的速度按逆时针方向旋转(,A C 的对应点分别为,F G ).设旋转时间为t 秒(036)t ≤≤.
①在旋转过程中,若边//BG CD ,求t 的值;
②若在三角形ABC 绕B 点旋转的同时,三角形CDE 绕E 点以每秒4︒的速度按顺时针方向旋转(,C D 的对应点分别为,H K ).请直接写出当边//BG HK 时t 的值.
25.模型与应用.
(模型)
(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.
(应用)
(2)如图②,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .
如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为.
(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.
在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)
26.如图,△ABC中,∠ABC的角平分线与∠ACB的外角∠ACD的平分线交于A1.
(1)当∠A为70°时,
∵∠ACD-∠ABD=∠______
∴∠ACD-∠ABD=______°
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线
∴∠A1CD-∠A1BD=1
(∠ACD-∠ABD)
2
∴∠A1=______°;
(2)∠A1BC的角平分线与∠A1CD的角平分线交于A2,∠A2BC与A2CD的平分线交于A3,如此继续下去可得A4、…、A n,请写出∠A与∠A n的数量关系______;
(3)如图2,四边形ABCD中,∠F为∠ABC的角平分线及外角∠DCE的平分线所在的直线构成的角,若∠A+∠D=230度,则∠F=______.
(4)如图3,若E为BA延长线上一动点,连EC,∠AEC与∠ACE的角平分线交于Q,当E 滑动时有下面两个结论:①∠Q+∠A1的值为定值;②∠Q-∠A1的值为定值.其中有且只有一个是正确的,请写出正确的结论,并求出其值.
【参考答案】
一、选择题
1.B
解析:B
【分析】
直接根据平方根的定义进行解答即可.
【详解】
解:∵(±3)2=9,
∴9的平方根是±3.
故选:B.
【点睛】
本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.
2.C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B通过平移后可以得到
解析:C
【分析】
根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.
【详解】
解:根据平移的概念,观察图形可知图案B通过平移后可以得到.
故选C.
【点睛】
本题考查生活中的平移现象,仔细观察各选项图形是解题的关键.
3.C
【分析】
根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可.
【详解】
解:A 、−1<0,2>0,点A 在第二象限,原说法错误,该选项不符合题意;
B 、点A 的横坐标是−1,原说法错误,该选项不符合题意;
C 、点A 到y 轴的距离是1,该选项正确,符合题意;
D 、以上都不对,说法错误,该选项不符合题意;
故选:C .
【点睛】
本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键.
4.C
【分析】
利用实数的性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案.
【详解】
解:①实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;
②两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意; ③平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;
④同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意; ⑤直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;
⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,
假命题有4个,
故选:C .
【点睛】
本题主要考查了命题与定理的知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大.
5.A
【分析】
过点E 作//EF AB ,先根据平行线的性质可得100AEF ∠=︒,再根据平行公理推论、平行线的性质可得70CEF ∠=︒,然后根据角的和差即可得.
【详解】
解:如图,过点E 作//EF AB ,
80
∠=︒,
EAB
∠=︒-=
∴∠︒,
F
E A
180100
A E B
AB CD,
//
∴,
//
CD EF
∴∠+∠=︒,
CEF ECD
180
∠=︒,
ECD
110
∴∠=︒-∠=︒,
CEF ECD
18070
AEC AEF CEF
∴∠=∠-∠=︒-︒=︒,
1007030
故选:A.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键.
6.A
【分析】
根据平方根、立方根及算术平方根的概念逐一计算即可得答案.
【详解】
A.42±,计算正确,故该选项符合题意,
B.42
±=±,故该选项计算错误,不符合题意,
C.38(2)2
---=,故该选项计算错误,不符合题意,
()288
-=,故该选项计算错误,不符合题意,
故选:A.
【点睛】
本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键.
7.C
【分析】
根据平行线的性质得出∠4=∠1=74°,然后根据三角形外角的性质即可求得∠3的度数.【详解】
解:∵直线a∥b,∠1=74°,
∴∠4=∠1=74°,
∵∠2+∠3=∠4,
∴∠3=∠4-∠2=74°-34°=40°.
故选:C.
【点睛】
本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键. 8.A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.
【详解】
解:如图,
解析:A
【分析】
根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,然后写出即可.
【详解】
解:如图,观察发现,第2次跳动至点2A 的坐标是(2,1),
第4次跳动至点4A 的坐标是(3,2),
第6次跳动至点6A 的坐标是(4,3),
第8次跳动至点8A 的坐标是(5,4),

第2n 次跳动至点2n A 的坐标是(1,)n n +,
则第2020次跳动至点2020A 的坐标是(1011,1010),
故选:A .
【点睛】
本题考查了规律型:点的坐标,坐标与图形的性,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.
二、填空题
9.4
【分析】
首先根据算术平方根的被开方数≥0,求出a 的范围,进而得出|2a-4|等于原值,代入原式得出|b 十2|+=0.根据非负数的性质可分别求出a 和b 的值,即可求出2a+b 的值.
【详解】
解:
解析:4
【分析】
首先根据算术平方根的被开方数≥0,求出a 的范围,进而得出|2a-4|等于原值,代入原式
得出|b 十=0.根据非负数的性质可分别求出a 和b 的值,即可求出2a+b 的值.
【详解】
解:由题意可得a≥3,
∴2a-4>0,
已知等式整理得:,
∴a=3,b=-2,
∴2a+b=2×3-2=4.
故答案为4.
【点睛】
本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键. 10.-6
【分析】
让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.
【详解】
解:∵点,点关于x 轴对称,
∴;
解得:,
∴,
故答案为-6.
【点睛】
本题考查平面直
解析:-6
【分析】
让两点的横坐标相等,纵坐标相加得0,即可得关于x ,y 的二元一次方程组,解值即可.
【详解】
解:∵点()36,415A x y -+,点()5,B y x 关于x 轴对称,
∴3654150x y y x -=⎧⎨++=⎩

解得:
3
3
x
y
=-


=-


∴=-6
+x y,
故答案为-6.
【点睛】
本题考查平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系:关于横轴的对称点,横坐标不变,纵坐标变成相反数.
11.10°或40°;
【分析】
首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即
解析:10°或40°;
【分析】
首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解.
【详解】
解:当高AD在△ABC的内部时.
∵∠B=40°,∠C=60°,
∴∠BAC=180°-40°-60°=80°,
∵AE平分∠BAC,
∴∠BAE=1
2
∠BAC=40°,
∵AD⊥BC,
∴∠BDA=90°,
∴∠BAD=90°-∠B=50°,
∴∠EAD=∠BAD-∠BAE=50°-40°=10°.
当高AD在△ABC的外部时.
同法可得∠EAD=10°+30°=40°
故答案为10°或40°.
【点睛】
此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE 的度数
12.40
【分析】
过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.
【详解】
解:如图:过作平行于,



,即,

故答案为:40.

解析:40
【分析】
过F 作FG 平行于AB ,由AB 与CD 平行,得到FG 与CD 平行,利用两直线平行同位角相等,同旁内角互补,得到1100EFG ∠=∠=︒,2180GFC ∠+∠=︒,即可确定出3∠的度数.
【详解】
解:如图:过F 作FG 平行于AB ,
//AB CD ,
//FG CD ∴,
1100EFG ∴∠=∠=︒,
2180GFC ∠+∠=︒,即60GFC ∠=︒,
31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.
故答案为:40.
【点睛】
此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.
13.59°
【分析】
由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.
【详解】
解:如图,∵长方形ABCD沿
解析:59°
【分析】
由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.
【详解】
解:如图,∵长方形ABCD沿EF折叠,
∴∠1=∠2,AD∥BC,
∴∠FGE+∠GEC=180°,
∵∠FGE=62°,
∴∠GEC=180°-62°=118°,
∴∠1=∠2=1
2
∠GEC=59°,
∵AD∥BC,
∴∠GFE=∠2,
∴∠GFE=59°.
故答案为59°.
【点睛】
本题主要考查翻折问题,平行线的性质,求解∠GEC的度数是解题的关键.
14.或
【详解】
【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.
【详解】M{3,2x+1,4x-1}==2x+1
解析:1
2或
1
3
【详解】
【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.
【详解】M{3,2x+1,4x-1}=32141
3
x x
+++-
=2x+1,
∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:
①2x+1=2,x=1
2,此时min{2,-x+3,5x}= min{2,
5
2

5
2
}=2,成立;
②2x+1=-x+3,x=2
3
,此时min{2,-x+3,5x}= min{2,
7
3

10
3
}=2,不成立;
③2x+1=5x,x=1
3
,此时min{2,-x+3,5x}= min{2,
8
3

5
3
}=
5
3
,成立,
∴x=1
2或
1
3

故答案为1
2

1
3
.
【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.
15.(3,0)
【分析】
根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.【详解】
∵点P(2-m,m+1)在x轴上,
∴m+1=0,
解得:m=-1,
∴2-m=3,
∴P点坐标
解析:(3,0)
【分析】
根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标.
【详解】
∵点P(2-m,m+1)在x轴上,
∴m+1=0,
解得:m=-1,
∴2-m=3,
∴P点坐标为(3,0),
故答案为:(3,0)
【点睛】
本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.16.(1500,501).
【分析】
仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.
【详解】
观察图形可得,点(2,0),点(5,1),(8,2),…,(3n ﹣1,n ﹣1), 点
解析:(1500,501).
【分析】
仔细寻找横坐标,纵坐标与点的序号之间关系,从而确定变换规律求解即可.
【详解】
观察图形可得,点1A (2,0),点3A (5,1),5A (8,2),…,21n A -(3n ﹣1,n ﹣1),
点2A (3,2),4A (6,3),6A (9,4),…,2n A (3n ,n +1),
∵1000是偶数,且1000=2n ,
∴n =500,
∴1000A (1500,501),
故答案为:(1500,501).
【点睛】
本题考查了图形与坐标,分类思想,通过发现特殊点的坐标与序号的关系,运用特殊与一般的思想探索规律是解题的关键.
三、解答题
17.(1);(2);(3)
【分析】
(1)先化简后计算即可;
(2)先化简后计算即可;
(3)首先去括号,然后再合并即可.
【详解】
解:(1)原式
(2)原式
(3)原式
【点睛】
此题主要考查了实
解析:(1)172
;(22;(3)1-【分析】
(1)先化简后计算即可;
(2)先化简后计算即可;
(3)首先去括号,然后再合并即可.
【详解】
解:(1)原式1112577222
=++=+=
(2)原式1232=+-=
(3)原式231=+=-【点睛】
此题主要考查了实数运算,关键是掌握数的开方,正确化简各数.
18.(1);(2)1;(3)-1.
【分析】
(1)根据立方根的定义解方程即可;
(2)根据立方根的定义解方程即可;
(3)根据立方根的定义解方程即可.
【详解】
解:(1),
∴ ,
∴,
∴;
(2
解析:(1)54
;(2)1;(3)-1. 【分析】
(1)根据立方根的定义解方程即可;
(2)根据立方根的定义解方程即可;
(3)根据立方根的定义解方程即可.
【详解】
解:(1)3641250x -=,
∴ ()3
34=5x , ∴4=5x , ∴5=4
x ; (2)3(1)8x +=
∴33(1)2x +=
∴12x +=
∴1x =;
(3)3(21)270x -+=,
∴()3
3(21)3x -=-, ∴213x -=-,
∴1x =-.
【点睛】
本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.
19.已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.
【分析】
根据平行线的性质和判定即可解决问题;
【详
解析:已知;CD ;同旁内角互补两直线平行;∠APC ;两直线平行内错角相等;已知;∠BAP ;∠APC ;∠4;内错角相等两直线平行;两直线平行内错角相等.
【分析】
根据平行线的性质和判定即可解决问题;
【详解】
解:∵∠BAP +∠APD =180°(已知),
∴AB ∥CD .(同旁内角互补两直线平行),
∴∠BAP =∠APC .(两直线平行内错角相等),
又∵∠1=∠2,(已知),
∠3=∠BAP -∠1,
∠4=∠APC -∠2,
∴∠3=∠4(等式的性质),
∴AE ∥PF .(内错角相等两直线平行),
∴∠E =∠F .(两直线平行内错角相等).
【点睛】
本题考查平行线的判定与性质,熟记平行线的判定方法和性质是解题的关键.
20.(1)①右,3,上,5(答案不唯一);②(6,3);(2)10
【分析】
(1)由点M 及其对应点的A 的坐标可得平移的方向和距离,据此可得点N 的对应点B 的坐标;
(2)利用割补法,得到即可求解.
【详
解析:(1)①右,3,上,5(答案不唯一);②(6,3);(2)10
【分析】
(1)由点M 及其对应点的A 的坐标可得平移的方向和距离,据此可得点N 的对应点B 的坐标;
(2)利用割补法,得到矩形ABC AOED Rt AOC Rt BCE Rt ABD S
S S S S =---即可求解.
【详解】
解:(1)将段MN 平移得到线段AB ,其中点M 的对应点为A ,点N 的对称点为B ,
①点M 平移到点A 的过程可以是:先向右平移3个单位长度,再向上平移5个单位长度;
∵N (3,-2),
∴将N (3,-2)先向右平移3个单位长度,再向上平移5个单位长度所得的坐标是(6,3)
∴②点B 的坐标为(6,3);
(2)如图,过点B 作BE ⊥x 轴于点E ,过点A 作AD ⊥y 轴交EB 的延长线于点D ,则四边形AOED 是矩形,
∵A (0,4),B (6, 3), C (4,0)
∴E (6,0), D (6,4)
∴ AO = 4, CO = 4, EO =6,
∴CE =EO -CO =6-4=2, BE =3, DE = 4, AD =6, BD =DE -BE =4-3=1,
∴矩形ABC AOED Rt AOC Rt BCE Rt ABD S S S S S =---
1114644231610222
=⨯-⨯⨯-⨯⨯-⨯⨯= 【点睛】
本题主要考查作图-平移变换,熟练掌握平移变换的定义及其性质是解题的关键. 21.4,
【分析】
根据分母不等于0,以及非负数的性质列式求出a 、b 的值,再根据根据被开方数估算无理数的大小即可得解.
【详解】
解:根据题意得,3a-b=0,a2-49=0且a+7>0,
解得a=7,
解析:4214
【分析】
根据分母不等于0,以及非负数的性质列式求出a 、b 的值,再根据根据被开方数估算无理数的大小即可得解.
【详解】
解:根据题意得,3a-b=0,a2-49=0且a+7>0,
解得a=7,b=21,
∵16<21<25,
∴21的整数部分是4,小数部分是214.
【点睛】
本题考查了绝对值非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.
二十二、解答题
22.(1)S=13,边长为;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
解析:(1)S=13,边长为13;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
详解:解:(1)S=25-12=13, 边长为,
(2)a=3,b= -3 原式=9+-3-=6.
点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.
二十三、解答题
23.(1)见解析;(2);(3)75°
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以
;(3)75°
解析:(1)见解析;(2)1
2
【分析】
(1)根据平行线的性质、余角和补角的性质即可求解.
(2)根据平行线的性质、对顶角的性质和平角的定义解答即可.
(3)根据平行线的性质和角平分线的定义以及三角形内角和解答即可.
【详解】
解:(1)∠C=∠1+∠2,
证明:过C作l∥MN,如下图所示,
∵l∥MN,
∴∠4=∠2(两直线平行,内错角相等),∵l∥MN,PQ∥MN,
∴l∥PQ,
∴∠3=∠1(两直线平行,内错角相等),∴∠3+∠4=∠1+∠2,
∴∠C=∠1+∠2;
(2)∵∠BDF=∠GDF,
∵∠BDF=∠PDC,
∴∠GDF=∠PDC,
∵∠PDC+∠CDG+∠GDF=180°,
∴∠CDG+2∠PDC=180°,
∴∠PDC=90°-1
2
∠CDG ,
由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,

1
90(90)
901
2
2
CDG
AEN CEM PDC
CDG CDG CDG CDG
︒-︒-∠
∠∠︒-∠
====
∠∠∠∠

(3)设BD交MN于J.
∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,
∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,
∵PQ∥MN,
∴∠BJA=∠PBD=50°,
∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,
由(1)可得,∠ACB=∠PBC+∠CAM,
∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.
【点睛】
本题考查了平行线的性质、余角和补角的性质,解题的关键是根据平行找出角度之间的关
系.
24.(1)60°;(2)①6s;②s或s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当
解析:(1)60°;(2)①6s;②10
3
s或
70
3
s
【分析】
(1)利用平行线的性质角平分线的定义即可解决问题.
(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.
②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据
∠GBN+∠KRM=180°构建方程即可解决问题.
【详解】
解:(1)如图①中,
∵∠ACB=30°,
∴∠ACN=180°-∠ACB=150°,
∵CE平分∠ACN,
∴∠ECN=1
2
∠ACN=75°,
∵PQ∥MN,
∴∠QEC+∠ECN=180°,
∴∠QEC=180°-75°=105°,
∴∠DEQ=∠QEC-∠CED=105°-45°=60°.
(2)①如图②中,
∵BG∥CD,
∴∠GBC=∠DCN,
∵∠DCN=∠ECN-∠ECD=75°-45°=30°,
∴∠GBC=30°,
∴5t=30,
∴t=6s.
∴在旋转过程中,若边BG∥CD,t的值为6s.
②如图③中,当BG∥HK时,延长KH交MN于R.
∵BG∥KR,
∴∠GBN=∠KRN,
∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,
∴∠KRN=90°-(60°+4t)=30°-4t,
∴5t=30°-4t,
∴t=10
s.
3
如图③-1中,当BG∥HK时,延长HK交MN于R.
∵BG∥KR,
∴∠GBN+∠KRM=180°,
∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,∴∠KRM=90°-(180°-60°-4t)=4t-30°,∴5t+4t-30°=180°,
∴t=70
3
s.
综上所述,满足条件的t的值为10
3
s或
70
3
s.
【点睛】
本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.
25.(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF
解析:(1)证明见解析;(2)900°,180°(n-1);(3)(180n-180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF=180°,
同理∠2+∠NEF=180°
∴∠1+∠2+∠MEN=360°
【应用】
(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;
由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),
故答案是:900°, 180°(n-1);
(3)过点O作SR∥AB,
∵AB∥CD,
∴SR∥CD,
∴∠AM1O=∠M1OR
同理∠C M n O=∠M n OR
∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,
∴∠A M1O+∠CM n O=∠M1OM n=m°,
∵M1O平分∠AM1M2,
∴∠AM1M2=2∠A M1O,
同理∠CM n M n-1=2∠CM n O,
∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,
又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),
∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°
点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.
26.(1)∠A;70°;35°;
(2)∠A=2n∠An
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.
【分析】
(1)根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD
解析:(1)∠A;70°;35°;
(2)∠A=2n∠A n
(3)25°
(4)①∠Q+∠A1的值为定值正确,Q+∠A1=180°.【分析】
(1)根据角平分线的定义可得∠A1BC=1
2∠ABC,∠A1CD=1
2
∠ACD,再根据三角形的一个
外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可得解;
(2)由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠BAC=2∠A1,同理可得∠A1=2∠A2,即
∠A=22∠A2,因此找出规律;
(3)先根据四边形内角和等于360°,得出∠ABC+∠DCB=360°-(α+β),根据内角与外角的关系和角平分线的定义得出∠ABC+(180°-∠DCE)=360°-(α+β)=2∠FBC+(180°-
2∠DCF)=180°-2(∠DCF-∠FBC)=180°-2∠F,从而得出结论;
(4)依然要用三角形的外角性质求解,易知2∠A1=∠AEC+∠ACE=2(∠QEC+∠QCE),利用三角形内角和定理表示出∠QEC+∠QCE,即可得到∠A1和∠Q的关系.
【详解】
解:(1)当∠A为70°时,
∵∠ACD-∠ABD=∠A,
∴∠ACD-∠ABD=70°,
∵BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线,
∴∠A1CD-∠A1BD=1
2
(∠ACD-∠ABD)
∴∠A1=35°;
故答案为:A,70,35;
(2)∵A1B、A1C分别平分∠ABC和∠ACD,
∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,
而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠BAC,
∴∠BAC=2∠A1=80°,
∴∠A1=40°,
同理可得∠A1=2∠A2,
即∠BAC=22∠A2=80°,
∴∠A2=20°,
∴∠A=2n∠A n,
故答案为:∠A=2∠A n.
(3)∵∠ABC+∠DCB=360°-(∠A+∠D),
∴∠ABC+(180°-∠DCE)=360°-(∠A+∠D)=2∠FBC+(180°-2∠DCF)=180°-2(∠DCF-
∠FBC)=180°-2∠F,
∴360°-(α+β)=180°-2∠F,
2∠F=∠A+∠D-180°,
∴∠F=1
2
(∠A+∠D)-90°,
∵∠A+∠D=230°,
∴∠F=25°;
故答案为:25°.
(4)①∠Q+∠A1的值为定值正确.
∵∠ACD-∠ABD=∠BAC,BA1、CA1是∠ABC的角平分线与∠ACB的外角∠ACD的平分线∴∠A1=∠A1CD-∠A1BD=
1
2
∠BAC,
∵∠AEC+∠ACE=∠BAC,EQ、CQ是∠AEC、∠ACE的角平分线,
∴∠QEC+∠QCE=1
2(∠AEC+∠ACE)=1
2
∠BAC,
∴∠Q=180°-(∠QEC+∠QCE)=180°-1
2
∠BAC,
∴∠Q+∠A1=180°.
【点睛】
本题主要考查三角形的外角性质和角平分线的定义的运用,根据推导过程对题目的结果进行规律总结对解题比较重要.。

相关文档
最新文档