【数学】九年级上册全册期末复习试卷练习(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【数学】九年级上册全册期末复习试卷练习(Word 版 含答案)
一、选择题
1.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .
13
B .
512
C .
12
D .1
2.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离
B .相切
C .相交
D .无法判断
3.如图,点I 是△ABC 的内心,∠BIC =130°,则∠BAC =( )
A .60°
B .65°
C .70°
D .80° 4.下列方程有两个相等的实数根是( )
A .x 2﹣x +3=0
B .x 2﹣3x +2=0
C .x 2﹣2x +1=0
D .x 2﹣4=0 5.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( )
A .−2
B .2
C .−4
D .4
6.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )
A .3:4
B .9:16
C .9:1
D .3:1
7.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23
B .1.15
C .11.5
D .12.5
8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是
A .
B .
C .
D .
9.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( ) A .方差
B .众数
C .平均数
D .中位数 10.用配方法解方程2890x x ++=,变形后的结果正确的是( ) A .()2
49x +=- B .()2
47x +=- C .()2
425x += D .()2
47x += 11.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( )
A .40
B .60
C .80
D .100
12.已知一组数据:2,5,2,8,3,2,6,这组数据的中位数和众数分别是( ) A .中位数是3,众数是2 B .中位数是2,众数是3 C .中位数是4,众数是2
D .中位数是3,众数是4
13.如图,△AOB 为等腰三角形,顶点A 的坐标(2,5),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )
A .(
203,103
) B .(
163,45) C .(203,45) D .(16
3,43) 14.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )
A .
4233
π
-B .
8433
π
-C .
8233
π
- D .
843
π
- 15.将抛物线2
3y x =先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为( )
A .23(1)2y x =++
B .23(1)2y x =+-
C .23(1)2y x =-+
D .23(1)2=--y x
二、填空题
16.如图是一个可以自由转动的转盘,转盘分成6个大小相同的扇形,颜色分为红、绿、黄三种颜色.指针的位置固定,转动的转盘停止后,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,当作指向右边的扇形).转动一次转盘后,指针指向_____颜色的可能性大.
17.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.
18.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.
19.二次函数y=x 2−4x+5的图象的顶点坐标为 .
20.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm ,那么这张扇形纸板的弧长是________cm .
21.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.
22.若m 是方程5x 2﹣3x ﹣1=0的一个根,则15m ﹣
3
m
+2010的值为_____. 23.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,
∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.
24.如图,曲线AB 是顶点为B ,与y 轴交于点A 的抛物线y =﹣x 2+4x +2的一部分,曲线
BC 是双曲线k
y x
=
的一部分,由点C 开始不断重复“A ﹣B ﹣C ”的过程,形成一组波浪线,点P (2018,m )与Q (2025,n )均在该波浪线上,则mn =_____.
25.在平面直角坐标系中,抛物线2y
x 的图象如图所示.已知A 点坐标为()1,1,过点
A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作
23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行
下去,则点2019A 的坐标为_____.
26.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.
27.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)
28.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为2125
1233
y x x =-
++,由此可知该生
此次实心球训练的成绩为_______米.
29.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、
AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则1
4
PA PB +的最小
值为__________.
30.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.
三、解答题
31.已知二次函数2
16y ax bx =++的图像经过点(-2,40)和点(6,-8),求一元二次方程2160ax bx ++=的根.
32.某商店销售一种商品,经市场调查发现:该商品的月销售量y (件)是售价x (元/件)的一次函数,其售价x 、月销售量y 、月销售利润w (元)的部分对应值如下表: 售价x (元/件) 40 45 月销售量y (件) 300 250 月销售利润w (元)
3000
3750
注:月销售利润=月销售量×(售价-进价) (1)①求y 关于x 的函数表达式;
②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;
(2)由于某种原因,该商品进价提高了m 元/件(m >0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若
月销售最大利润是2400元,则m的值为.
33.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).
(1)如图1,AC=BC;
(2)如图2,直线l与⊙O相切于点P,且l∥BC.
34.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y 轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.
(1)若该二次函数图象的对称轴为直线x=4时:
①求二次函数的表达式;
②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;
(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n 的值.
35.(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=
时,△APB∽△ABC;
(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)
四、压轴题
36.已知P 是⊙O 上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别有动点A 、B(不与P ,Q 重合),连接AP 、BP . 若∠APQ=∠BPQ. (1)如图1,当∠APQ=45°,AP=1,BP=22时,求⊙O 的半径;
(2)如图2,选接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若∠NOP+2∠OPN=90°,探究直线AB 与ON 的位置关系,并证明.
37.研究发现:当四边形的对角线互相垂直时,该四边形的面积等于对角线乘积的一半,如图1,已知四边形ABCD 内接于
O ,对角线AC BD =,且AC BD ⊥.
(1)求证:AB CD =; (2)若
O 的半径为8,弧BD 的度数为120︒,求四边形ABCD 的面积;
(3)如图2,作OM BC ⊥于M ,请猜测OM 与AD 的数量关系,并证明你的结论. 38.如图,Rt ABC ∆中,90C ∠=︒,4AC =,3BC =.点P 从点A 出发,沿着
A C
B →→运动,速度为1个单位/s ,在点P 运动的过程中,以P 为圆心的圆始终与斜边AB 相切,设⊙P 的面积为S ,点P 的运动时间为t (s )(07t <<). (1)当47t <<时,BP = ;(用含t 的式子表示) (2)求S 与t 的函数表达式;
(3)在⊙P 运动过程中,当⊙P 与三角形ABC 的另一边也相切时,直接写出t 的值.
39.如图,已知抛物线2
34
y x bx c =
++与坐标轴交于A 、B 、C 三点,A 点的坐标为
(1,0)-,过点C 的直线3
34y x t
=
-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH OB ⊥于点H .若5PB t =,且01t <<.
(1)点C 的坐标是________,b =________; (2)求线段QH 的长(用含t 的式子表示);
(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与COQ 相似?若存在,直接写出所有t 的值;若不存在,说明理由.
40.一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.
(1)如图,正方形ABCD 的边长为4,E 为AD 的中点,点F ,H 分别在边AB 和CD 上,且1AF DH ==,线段CE 与FH 交于点G ,求证:EF 为四边形AFGE 的相似对角线;
(2)在四边形ABCD 中,BD 是四边形ABCD 的相似对角线,120A CBD ∠=∠=,
2AB =,6BD =CD 的长;
(3)如图,已知四边形ABCD 是圆O 的内接四边形,90A ∠=,8AB =,6AD =,点E 是AB 的中点,点F 是射线AD 上的动点,若EF 是四边形AECF 的相似对角线,请直接写出线段AF 的长度(写出3个即可).
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】
【分析】
根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案.
【详解】
解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,
∴红灯的概率是:
301 302552
=
++
.
故答案为:C.
【点睛】
本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.
2.A
解析:A
【解析】
【分析】
根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.
【详解】
解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,
∴d>R,
∴直线和圆相离.
故选:A.
【点睛】
本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..
3.D
解析:D
【解析】
【分析】
根据三角形的内接圆得到∠ABC=2∠IBC,∠ACB=2∠ICB,根据三角形的内角和定理求出∠IBC+∠ICB,求出∠ACB+∠ABC的度数即可;
【详解】
解:∵点I是△ABC的内心,
∴∠ABC=2∠IBC,∠ACB=2∠ICB,
∵∠BIC=130°,
∴∠IBC+∠ICB=180°﹣∠CIB=50°,
∴∠ABC+∠ACB=2×50°=100°,
∴∠BAC=180°﹣(∠ACB+∠ABC)=80°.
故选D.
【点睛】
本题主要考查了三角形的内心,掌握三角形的内心的性质是解题的关键.
4.C
解析:C
【解析】
【分析】
先根据方程求出△的值,再根据根的判别式的意义判断即可.
【详解】
A、x2﹣x+3=0,
△=(﹣1)2﹣4×1×3=﹣11<0,
所以方程没有实数根,故本选项不符合题意;
B、x2﹣3x+2=0,
△=(﹣3)2﹣4×1×2=1>0,
所以方程有两个不相等的实数根,故本选项不符合题意;
C、x2﹣2x+1=0,
△=(﹣2)2﹣4×1×1=0,
所以方程有两个相等的实数根,故本选项符合题意;
D、x2﹣4=0,
△=02﹣4×1×(﹣4)=16>0,
所以方程有两个不相等的实数根,故本选项不符合题意;
故选:C.
【点睛】
本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.
5.B
解析:B
【解析】
分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.
详解:把x=1代入方程得1+k-3=0,
解得k=2.
故选B.
点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
6.B
解析:B
【解析】
【分析】
可证明△DFE∽△BFA,根据相似三角形的面积之比等于相似比的平方即可得出答案.
【详解】
∵四边形ABCD为平行四边形,
∴DC∥AB,
∴△DFE∽△BFA,
∵DE:EC=3:1,
∴DE:DC=3:4,
∴DE:AB=3:4,
∴S△DFE:S△BFA=9:16.
故选B.
7.C
解析:C
【解析】
【分析】
由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.
【详解】
解:由题意得:(10×14+15×6)÷20=11.5,
故选:C.
【点睛】
此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可.
.
8.C
解析:C
【解析】
【分析】
x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.
【详解】
x=0时,两个函数的函数值y=b,
所以,两个函数图象与y轴相交于同一点,故B、D选项错误;
由A、C选项可知,抛物线开口方向向上,
所以,a>0,
所以,一次函数y=ax+b经过第一三象限,
所以,A选项错误,C选项正确.
故选C.
9.D
解析:D
【解析】
【分析】
由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.
【详解】
共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.
我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.
故选D.
【点睛】
本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
10.D
解析:D
【解析】
【分析】
先将常数项移到右侧,然后两边同时加上一次项系数一半的平方,配方后进行判断即可.【详解】
2890
++=,
x x
289
+=-,
x x
222
++=-+,
x x
8494
x+=,
所以()247
故选D.
【点睛】
本题考查了配方法解一元二次方程,熟练掌握配方法的一般步骤以及注意事项是解题的关键.
11.C
解析:C
【解析】
【分析】
根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C,然后利用三角形内角和定理计算出∠C的度数,进而可得答案.
【详解】
解:∵△ABC≌△DEF,
∴∠B=∠E=40°,∠F=∠C,
∵∠A=60°,
∴∠C=180°-60°-40°=80°,
∴∠F=80°,
故选:C.
【点睛】
此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.
12.A
解析:A
【解析】
【分析】
先将这组数据从小到大排列,找出最中间的数,就是中位数,出现次数最多的数就是众数.
【详解】
解:将这组数据从小到大排列为:
2,2,2,3,5,6,8,
最中间的数是3,
则这组数据的中位数是3;
2出现了三次,出现的次数最多,
则这组数据的众数是2;
故选:A.
【点睛】
此题考查了众数、中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数.
13.C
解析:C
【解析】
【分析】
利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.
【详解】
解:过O′作O′F ⊥x 轴于点F ,过A 作AE ⊥x 轴于点E ,
∵A 的坐标为(2∴
OE=2.
由等腰三角形底边上的三线合一得OB=2OE=4,
在Rt △ABE 中,由勾股定理可求AB=3,则A′B=3,
由旋转前后三角形面积相等得
OB AE A'B O'F 22⋅⋅=,即43O'F 22⋅=,
∴.
在Rt △O′FB 中,由勾股定理可求83=,∴OF=820433+=.
∴O′的坐标为(
20,33
). 故选C .
【点睛】 本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式. 14.C
解析:C
【解析】
【分析】
连接OD ,根据勾股定理求出CD ,根据直角三角形的性质求出∠AOD ,根据扇形面积公式、三角形面积公式计算,得到答案.
【详解】
解:连接OD ,
在Rt △OCD 中,OC =12
OD =2, ∴∠ODC =30°,CD =2223OD OC +=
∴∠COD =60°,
∴阴影部分的面积=260418223=2336023
π⨯-⨯⨯π- , 故选:C .
【点睛】
本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.
15.A
解析:A
【解析】
【分析】
按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可.
【详解】
抛物线23y x =先向左平移1个单位得到解析式:()2
31y x =+,再向上平移2个单位得到抛物线的解析式为:()2
312y x =++.
【点睛】
此题考查了抛物线的平移变换以及抛物线解析式的变化规律:左加右减,上加下减.二、填空题
16.红
【解析】
【分析】
哪一种颜色多,指针指向那种颜色的可能性就大.
【详解】
∵转盘分成6个大小相同的扇形,红色的有3块,
∴转动一次转盘后,指针指向红颜色的可能性大.
故答案为:红.
【点睛】
解析:红
【解析】
【分析】
哪一种颜色多,指针指向那种颜色的可能性就大.
【详解】
∵转盘分成6个大小相同的扇形,红色的有3块,
∴转动一次转盘后,指针指向红颜色的可能性大.
故答案为:红.
【点睛】
本题考查了可能性大小的知识,解题的关键是看清那种颜色的最多,难度不大.
17.9
【解析】
【分析】
根据方程解的定义,将a代入方程得到含a的等式,将其变形,整体代入所求的代数式.
【详解】
解:∵a是方程的一个根,
∴2a2=a+3,
∴2a2-a=3,
∴.
故答案为:9
解析:9
【分析】 根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.
【详解】 解:∵a 是方程223x x =+的一个根,
∴2a 2=a+3,
∴2a 2-a=3,
∴()
2263=32339a a a a --=⨯=.
故答案为:9.
【点睛】
本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键. 18.1, ,
【解析】
【分析】
分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.
【详解】
BC =6,CD=2,
∴BD=4,
①如图
解析:1,83 ,32
【解析】
【分析】
分别利用当DP ∥AB 时,当DP ∥AC 时,当∠CDP=∠A 时,当∠BPD=∠BAC 时求出相似三角形,进而得出结果.
【详解】
BC =6,CD=2,
∴BD=4,
①如图,当DP ∥AB 时,△PDC ∽△ABC ,
∴
PD CD AB BC =,∴236DP =,∴DP=1; ②如图,当DP ∥AC 时,△PBD ∽△ABC .
∴PD BD AC BC =,∴446
DP =,∴DP=83; ③如图,当∠CDP=∠A 时,∠DPC ∽△ABC ,
∴DP DC AB AC =,∴234DP =,∴DP=32
; ④如图,当∠BPD=∠BAC 时,过点D 的直线l 与另一边的交点在其延长线上,,不合题意。
综上所述,满足条件的DP 的值为1,83 ,
32
. 【点睛】 本题考查了相似变换,利用分类讨论得出相似三角形是解题的关键,注意不要漏解.
19.(2,1)
【解析】
【分析】
将二次函数解析式化为顶点式,即可得到顶点坐标.
【详解】
将二次函数配方得
则顶点坐标为(2,1)
考点:二次函数的图象和性质.
解析:(2,1)
【解析】
【分析】
将二次函数解析式化为顶点式,即可得到顶点坐标.
【详解】
将二次函数245y x x =-+配方得2
2()1y x =-+
则顶点坐标为(2,1)
考点:二次函数的图象和性质.
20.【解析】
【分析】
首先求出圆锥的底面半径,然后可得底面周长,问题得解.
【详解】
解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,
∴圆锥的底面半径为cm,
∴底面周长为2π×6=12
解析:12π
【解析】
【分析】
首先求出圆锥的底面半径,然后可得底面周长,问题得解.
【详解】
解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,
6
=cm,
∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,
故答案为:12π.
【点睛】
本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.21.【解析】
【分析】
根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】
解:如图,连接D
解析:4 5
【解析】
【分析】
根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.
【详解】
解:如图,连接DE,DF,
∵△ABC是等边三角形,
∴AB=BC=AC, ∠A=∠B=∠ACB=60°,
由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF
∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,
∴∠BDF=∠AED,
∵∠A=∠B,
∴△AED∽△BDF,
∴AD AE DE BF BD DF
,
设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,
∵AD AE DE BF BD DF
,
∴AD AE DE DE BF BD DF DF
∴
3
23
x x DE x x DF
∴
4
5 DE
DF
,
∴
4
5 CE
CF
.
故答案为:4 5 .
【点睛】
本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.
22.2019
【解析】
【分析】
根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5 m2﹣1=3m,两边同时除以m得:5m﹣=3,然后整体代入即可求得答案.【详解】
解
解析:2019
【解析】
【分析】
根据m是方程5x2﹣3x﹣1=0的一个根代入得到5m2﹣3m﹣1=0,进一步得到5m2﹣1=
3m,两边同时除以m得:5m﹣1
m
=3,然后整体代入即可求得答案.
【详解】
解:∵m是方程5x2﹣3x﹣1=0的一个根,∴5m2﹣3m﹣1=0,
∴5m2﹣1=3m,
两边同时除以m得:5m﹣1
m
=3,
∴15m﹣3
m
+2010=3(5m﹣
1
m
)+2010=9+2010=2019,
故答案为:2019.
【点睛】
本题考查了一元二次方程的根,灵活的进行代数式的变形是解题的关键. 23.40°
【解析】
:在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°
【解析】
:在△QOC中,OC=OQ,
∴∠OQC=∠OCQ,
在△OPQ中,QP=QO,
∴∠QOP=∠QPO,
又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,
∴∠OCP=40°
24.24
【解析】
【详解】
点B是抛物线y=﹣x2+4x+2的顶点,
∴点B的坐标为(2,6),
2018÷6=336…2,故点P 离x 轴的距离与点B 离x 轴的距离相同,
∴点P 的坐标为(2018,6),
解析:24
【解析】
【详解】
点B 是抛物线y =﹣x 2+4x +2的顶点,
∴点B 的坐标为(2,6),
2018÷6=336…2,故点P 离x 轴的距离与点B 离x 轴的距离相同,
∴点P 的坐标为(2018,6),
∴m =6;
点B (2,6)在k y x =
的图象上, ∴k =6; 即12y x
=, 2025÷6=337…3,故点Q 离x 轴的距离与当x =3时,函数12y x =
的函数值相等, 又 x =3时,124
3
y ==, ∴点Q 的坐标为(2025,4),
即n =4,
∴mn =6424.⨯=
故答案为24.
【点睛】
本题主要考查了反比例函数图象上的点的坐标特征以及二次函数的图象与性质.本题是一道找规律问题.找到点P 、Q 在A ﹣B ﹣C 段上的对应点是解题的关键.
25.【解析】
【分析】
根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.
【详解】
解:∵
解析:2(1010,1010)-
【解析】
【分析】
根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐
标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.
【详解】
解:∵A 点坐标为()1,1,
∴直线OA 为y x =,()11,1A -,
∵12A A OA ∕∕,
∴直线12A A 为2y x =+,
解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩
, ∴()22,4A ,
∴()32,4A -,
∵34A A OA ∕∕,
∴直线34A A 为6y x =+,
解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩
, ∴()43,9A ,
∴()53,9A -
…,
∴(
)220191010,1010A -,
故答案为()21010,1010-. 【点睛】
本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.
26.2
【解析】
【分析】
首先连接BE ,由题意易得BF=CF ,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO :CO=1:3,即可得OF :CF=OF :BF=1:2,在Rt△OBF 中,即可求
解析:2
【解析】
【分析】
首先连接BE ,由题意易得BF=CF ,△ACO ∽△BKO ,然后由相似三角形的对应边成比例,易
得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.
【详解】
如图,连接BE,
∵四边形BCEK是正方形,
∴KF=CF=1
2
CK,BF=
1
2
BE,CK=BE,BE⊥CK,
∴BF=CF,
根据题意得:AC∥BK,
∴△ACO∽△BKO,
∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,
∴KO=OF=1
2
CF=
1
2
BF,
在Rt△PBF中,tan∠BOF=BF
OF
=2,
∵∠AOD=∠BOF,
∴tan∠AOD=2.
故答案为2
【点睛】
此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
27.15π
【解析】
【分析】
圆锥的侧面积=底面周长×母线长÷2.
【详解】
解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=
15πcm2.
故答案为:15π.
【点睛】
本题考
解析:15π
【解析】
【分析】
圆锥的侧面积=底面周长×母线长÷2.
【详解】
解:底面圆的半径为3cm ,则底面周长=6πcm ,侧面面积=
12
×6π×5=15πcm 2. 故答案为:15π.
【点睛】
本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键. 28.10
【解析】
【分析】
根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.
【详解】
解:当时,,
解得,(舍去),.
故答案为10.
【点睛】
本题考查了二次函数的实际应用,解析式中自
解析:10
【解析】
【分析】
根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.
【详解】
解:当0y =时,212501233
y x x =-++=, 解得,2x =-(舍去),10x =.
故答案为10.
【点睛】
本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.
29.【解析】
【分析】
先在CB 上取一点F ,使得CF=,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.
【详解】
解:如图:在CB 上取一点F ,使得CF=,再连接PF 、AF ,
解析:145 2
【解析】【分析】
先在CB上取一点F,使得CF=1
2
,再连接PF、AF,然后利用相似三角形的性质和勾股定理
求出AF,即可解答.【详解】
解:如图:在CB上取一点F,使得CF=1
2
,再连接PF、AF,
∵∠DCE=90°,DE=4,DP=PE,
∴PC=1
2
DE=2,
∵
1
4
CF
CP
=,
1
4
CP
CB
=
∴CF CP CP CB
=
又∵∠PCF=∠BCP,∴△PCF∽△BCP,
∴
1
4 PF CF
PB CP
==
∴PA+1
4
PB=PA+PF,
∵PA+PF≥AF,AF=
2
222
1145
6
22 CF AC
⎛⎫
+=+=
⎪
⎝⎭
∴PA+1
4
PB ≥.
145
2
∴PA+1
4
PB的最小值为
145
,
故答案为145
.
【点睛】
本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.
30.【解析】
分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.
详解:连OA
由已知,M为AF中点,则OM⊥AF
∵六边形ABCDEF为正六边形
∴
解析:3:2
【解析】
分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.
详解:连OA
由已知,M为AF中点,则OM⊥AF
∵六边形ABCDEF为正六边形
∴∠AOM=30°
设AM=a
∴AB=AO=2a,3a
∵正六边形中心角为60°
∴∠MON=120°
∴扇形MON 120323
a
a π⋅⋅
=
则r1=
3 3
a
同理:扇形DEF的弧长为:12024
1803
a
a
π
π
⋅⋅
=
则r2=2 3 a
r 1:r 2
点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.
三、解答题
31.x 1=2,x 2=8.
【解析】
【分析】
把已知两点坐标代入二次函数解析式求出a 与b 的值,代入方程计算即可求出解.
【详解】
解:将点(-2,40)和点(6,-8)代入二次函数得,
404216836616a b a b =-+⎧⎨-=++⎩
解得:110
a b =⎧⎨=-⎩ ∴求得二次函数关系式为21016y x x =-+,
当y=0时,210160x x -+=,
解得x 1=2,x 2=8.
【点睛】
此题考查了抛物线与x 轴的交点,抛物线与x 轴的交点与根的判别式有关:根的判别式大于0,有两个交点;根的判别式大于0,没有交点;根的判别式等于0,有一个交点.
32.(1)①y =-10x +700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.
【解析】
【分析】
(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解; ②设该商品的售价是x 元,则月销售利润w= y (x -30),求解即可;
(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.
【详解】
(1)①解:设y =kx +b (k ,b 为常数,k ≠0)
根据题意得:,4030045250k b k b +=⎧⎨+=⎩解得:10700k b =-⎧⎨=⎩
∴y =-10x +700
②解:当该商品的进价是40-3000÷300=30元
设当该商品的售价是x 元/件时,月销售利润为w 元
根据题意得:w =y (x -30)=(x -30)(-10x +700)
=-10x 2+1000 x -21000=-10(x -50)2+4000
∴当x =50时w 有最大值,最大值为4000
答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元. (2)由题意得:
w=[x-(m+30)](-10x+700)
=-10x 2+(1000+10m )x-21000-700m
对称轴为x=50+
2m ∵m >0
∴50+2
m >50 ∵商家规定该运动服售价不得超过40元/件
∴由二次函数的性质,可知当x=40时,月销售量最大利润是2400元
∴-10×402+(1000+10m )×40-21000-700m=2400
解得:m=2
∴m 的值为2.
【点睛】
本题考查了待定系数法求一次函数的解析式及二次函数在实际问题中的应用,正确列式并明确二次函数的性质,是解题的关键.
33.(1)作图见试题解析;(2)作图见试题解析.
【解析】
试题分析:(1)过点C 作直径CD ,由于AC=BC ,弧AC=弧BC ,根据垂径定理的推理得CD 垂直平分AB ,所以CD 将△ABC 分成面积相等的两部分;
(2)连结PO 并延长交BC 于E ,过点A 、E 作弦AD ,由于直线l 与⊙O 相切于点P ,根据切线的性质得OP ⊥l ,而l ∥BC ,则PE ⊥BC ,根据垂径定理得BE=CE ,所以弦AE 将△ABC 分成面积相等的两部分.
试题解析:(1)如图1,直径CD 为所求;
(2)如图2,弦AD 为所求.
考点:1.作图—复杂作图;2.三角形的外接圆与外心;3.切线的性质;4.作图题.
34.(1)①y =x 2﹣8x +12;②线段MQ 的最大值为9.(2)m +n 的值为定值.m +n =6.。