南宁市七年级下学期期末压轴难题数学试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南宁市七年级下学期期末压轴难题数学试题及答案
一、选择题
1.下列各式中,正确的是()
A .4=±2
B .±16=4
C .2(4)-=-4
D .38-=-2 2.下列对象中不属于平移的是( )
A .在平坦雪地上滑行的滑雪运动员
B .上上下下地迎送来客的电梯
C .一棵倒映在湖中的树
D .在笔直的铁轨上飞驰而过的火车 3.在平面直角坐标系中,点(﹣1,a +1)一定在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有( )
A .3个
B .2个
C .1个
D .0个
5.如图,C 为AOB ∠的边OA 上一点,过点C 作//CD OB 交AOB ∠的平分线OE 于点F ,作CH OB ⊥交BO 的延长线于点H ,若EFD α∠=,现有以下结论:①COF α∠=;②1802AOH α∠=︒-;③CH CD ⊥;④290OCH α∠=-︒.结论正确的个数是( )
A .1个
B .2个
C .3个
D .4个
6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①②
B .①③
C .①②③
D .①②④ 7.如图,直线a ∥b ,直角三角板ABC 的直角顶点C 在直线b 上,若∠1=54°,则∠2的
度数为( )
A .36°
B .44°
C .46°
D .54°
8.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到
1A ,第2次移动到2A ,…,第n 次移动到n A ,则22021OA A △的面积是( )
A .2504m
B .21009m 2
C .21011m 2
D .21009m
二、填空题
9.若x =x ,则x 的值为______.
10.点()2,3P -关于x 轴对称的点的坐标为_________.
11.在△ABC 中,若∠A=60°,点O 是∠ABC 和∠ACB 角平分线的交点,则
∠BOC=________.
12.如图,将三角板与两边平行的直尺(//EF HG )贴在一起,使三角板的直角顶点C (90ACB ∠︒=)在直尺的一边上,若255∠︒=,则1∠的度数等于________.
13.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若56EFG ∠=︒,则1∠=____________,2∠=____________.
14.观察下列等式:1﹣12=12,2﹣25=85
,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.
15.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________. 16.如图,在平面直角坐标系中,x AB //EG //轴,BC DE HG AP y ////////轴,点D 、
C 、P 、H 在x 轴上,()1,2A ,()1,2B -,()3,0
D -,()3,2
E --,()3,2G -.把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A 处,并按A B C D E
F
G
H P A -------⋅⋅⋅-⋅⋅⋅的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_______.
三、解答题
17.计算:
(13981-
(223427(3)--
(32(23)
(4353325+18.求下列各式中x 的值
(1)2280x -=
(2)()3
52125x -=-
19.完成下列证明:
已知:如图,△ABC 中,AD 平分∠BAC ,E 为线段BA 延长线上一点,G 为BC 边上一点,连接EG 交AC 于点H ,且∠ADC +∠EGD =180°,过点D 作DF ∥AC 交EG 的延长线于点F .求证:∠E =∠F .
证明:∵AD 平分∠BAC (已知),
∴∠1=∠2( ),
又∵∠ADC +∠EGD =180°(已知),
∴EF ∥ (同旁内角互补,两直线平行).
∴∠1=∠E (两直线平行,同位角相等),∠2=∠3( ).
∴∠E = (等量代换).
又∵AC ∥DF (已知),
∴∠3=∠F ( ).
∴∠E =∠F (等量代换).
20.如图所示正方形网格中,每个小正方形的边长均为1个单位,ABC的三个顶点都在格点上.
(1)分别写出点A、B、C的坐标;
(2)将ABC向右平移6个单位长度,再向下平移4个单位长度,得到A 1B1C1,其中点A的对应点是A 1,点B的对应点是B1,点C的对应点是C1,请画出A1B1C1,并分别写出点A1、B1、C1的坐标;
(3)求ABC的面积.
21.在学习《实数》内容时,我们通过“逐步逼近”的方法可以计算出2的近似值,得出1.4<2<1.5.利用“逐步逼近“法,请回答下列问题:
(1)17介于连续的两个整数a和b之间,且a<b,那么a=,b=.(2)x是17+2的小数部分,y是17﹣1的整数部分,求x=,y=.(3)(17﹣x)y的平方根.
二十二、解答题
22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.
二十三、解答题
23.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.
(1)α=________,β=________;直线AB 与CD 的位置关系是______;
(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.
(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q
∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.
24.问题情境
(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得
BPC ∠=________.
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.
①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;
②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸
(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.
25.如图,直线//AB CD ,E 、F 是AB 、CD 上的两点,直线l 与AB 、CD 分别交于点G 、H ,点P 是直线l 上的一个动点(不与点G 、H 重合),连接PE 、PF .
(1)当点P 与点E 、F 在一直线上时,GEP EGP ∠=∠,60FHP ∠=︒,则
PFD ∠=_____.
(2)若点P 与点E 、F 不在一直线上,试探索AEP ∠、EPF ∠、CFP ∠之间的关系,并证明你的结论.
26.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,
90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.
(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.
(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=
(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.
(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.
(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.
【参考答案】
一、选择题
1.D
解析:D
【分析】
依据算术平方根、平方根、立方根的性质求解即可.
【详解】
解:A 42=,故选项错误;
B 、164±,故选项错误;
C 2(4)4-=,故选项错误;
D 382-=-,故选项正确;
故选D .
【点睛】
本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键.
2.C
【分析】
根据平移的性质,对选项进行一一分析,利用排除法求解.
【详解】
解:A 、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移; B 、电梯上上下下地迎送来客,符合平移的性质,故属于平移
解析:C
【分析】
根据平移的性质,对选项进行一一分析,利用排除法求解.
【详解】
解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;
B、电梯上上下下地迎送来客,符合平移的性质,故属于平移;
C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移;
D、火车在笔直的铁轨上飞弛而过,符合平移的性质,故属于平移;
故选:C.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称.
3.B
【分析】
根据非负数的性质判断出点的纵坐标是正数,再根据各象限点的特点解答.
【详解】

∴>0,
∴点(-1)一定在第二象限,
故选B.
【点睛】
本题考查了点的坐标,记住各象限内点的坐标的符号并判断出点的纵坐标是负数是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.A
【分析】
根据垂直的性质、平行公理、垂线段的性质及平行线的性质逐一判断即可得答案.
【详解】
平面内,垂直于同一条直线的两直线平行;故①正确,
经过直线外一点,有且只有一条直线与这条直线平行,故②正确
垂线段最短,故③正确,
两直线平行,同旁内角互补,故④错误,
∴正确命题有①②③,共3个,
故选:A.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
5.D
【分析】
根据平行线的性质可得EOB EFDα
∠=∠=,结合角平分线的定义可判断①;再由平角的定
义可判断②;由平行线的性质可判断③;由余角及补角的定义可判断④.
【详解】
解://CD OB ,EFD α∠=,
EOB EFD α∴∠=∠=, OE 平分AOB ∠,
COF EOB α∴∠=∠=,故①正确;
2AOB α∠=,
180AOB AOH ∠+∠=︒,
1802AOH α∴∠=︒-,故②正确;
//CD OB ,CH OB ⊥,
CH CD ∴⊥,故③正确;
90HCO HOC ∴∠+∠=︒,180AOB HOC ∠+∠=︒,
290OCH α∴∠=-︒,故④正确.
正确为①②③④,
故选:D .
【点睛】
本题主要考查平行线的性质,角平分线的定义,垂直的定义,灵活运用平行线的性质是解题的关键.
6.A
【分析】
根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.
【详解】
①两个无理数的和可能是有理数,说法正确
(0=,0是有理数
②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确
③3327mn mn ππ=-+-+是二次二项式,说法错误
④立方根是本身的数有0和±1,说法错误
综上,说法正确的是①②
故选:A .
【点睛】
本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.
7.A
【分析】
根据直角三角形可求出∠3的度数,再根据平行线的性质∠2=∠3即可得出答案.
【详解】
解:如图所示:
∵直角三角形ABC,∠C=90°,∠1=54°,
∴∠3=90°-∠1=36°,
∵a∥b,
∴∠2=∠3=36°.
故选:A.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质,求出∠3的度数是解题的关键.8.C
【分析】
每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.
【详
解析:C
【分析】
每四次一循环,每个循环,点向x轴的正方向前进2cm,由于2021=505×4+1,则可判断点A2021在x轴上,且OA2021=505×2+1=1011,然后根据三角形面积公式.
【详解】
解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),…,每四次一循环,每个循环,点向x轴的正方向前进2cm,
∴OA4n=2n,
∵2021=505×4+1,
∴点A2021在x轴上,且OA2021=505×2+1=1011,
∴△OA2A2021的面积=1
2×1×1011=
1011
2
(cm2).
故选:C.
【点睛】
本题主要考查了点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半.
二、填空题
9.0或1
【分析】
根据算术平方根的定义(一般地说,若一个非负数x 的平方等于a ,即x²=a ,则这个数x 叫做a 的算术平方根)求解.
【详解】
∵02=0,12=1,
∴0的算术平方根为0,1的算术平方根
解析:0或1
【分析】
根据算术平方根的定义(一般地说,若一个非负数x 的平方等于a ,即x²=a ,则这个数x 叫做a 的算术平方根)求解.
【详解】
∵02=0,12=1,
∴0=0,1
=
1.
故答案是:0或1.
【点睛】
考查了算术平方根的定义,解题关键是利用算术平方根的定义(一般地说,若一个非负数x 的平方等于a ,即x²=a ,则这个数x 叫做a 的算术平方根)求解.
10.【分析】
关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
【详解】
解:由点关于轴对称点的坐标为:,
故答案为.
【点睛】
本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析:()2,3--
【分析】
关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解.
【详解】
解:由点()2,3P -关于x 轴对称点的坐标为:()2,3--,
故答案为()2,3--.
【点睛】
本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.
11.120°
【分析】
由题意可知求出∠ABC+∠ACB=120°,由BO 平分∠ABC ,CO 平分∠ACB ,可知∠OBC+∠OCB=∠ABC+∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=
解析:120°
【分析】
由题意可知求出∠ABC+∠ACB=120°,由BO 平分∠ABC ,CO 平分∠ACB ,可知
∠OBC+∠OCB=12∠ABC+1
2∠ACB=60°,所以∠BOC=180°-∠OBC-∠OCB=120°.
【详解】
∵∠A=60°,
∴∠ABC+∠ACB=120°,
∵BO 平分∠ABC ,CO 平分∠ACB ,
∴∠OBC=12∠ABC ,∠OCB=12∠ACB ,
∴∠OBC+∠OCB=12∠ABC+12∠ACB=60°,
∴∠BOC=180°-∠OBC-∠OCB=120°
故答案为120°
【点睛】
本题考查三角形内角和定理,解题的关键是熟练运用三角形内角和定理 12.35
【分析】
根据平行线的性质和直角三角形两锐角互余即可求得
【详解】
故答案为:35°.
【点睛】
本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.
解析:35
【分析】
根据平行线的性质和直角三角形两锐角互余即可求得
【详解】
//EF HG ,255∠︒=
255FCD ∴∠=∠=︒
190FCD ACB ∠+∠=∠=︒
1905535∴∠=︒-︒=︒
故答案为:35°.
【点睛】
本题考查了平行线的性质和直角三角形两锐角互余,熟练以上知识是解题的关键.
13.68°; 112°.
【分析】
首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.
【详解】
解:∵延折叠得到,
解析:68°; 112°.
【分析】
首先根据折叠的性质和平行线的性质求∠FED 的度数,然后根据平角的定义求出∠1的度数,最后根据平行线的性质求出∠2的度数.
【详解】
解:∵EDCF 延EF 折叠得到EMNF ,
∴DEF MEF ∠=∠,
∵//AD BC ,56EFG ∠=︒,
∴56DEF EFG ∠=∠=︒(两直线平行,内错角相等),
∴56MEF DEF ∠=∠=︒,
∴1180180565668DEF MEF ∠=︒-∠-∠=︒-︒-︒=︒,
又∵//AD BC ,
∴12180∠+∠=︒,
∴2180118068112∠=︒-∠=︒-︒=︒.
综上168∠=︒,2112∠=︒.
故答案为:68°;112°.
【点睛】
本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键. 14.20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的
解析:20﹣
208000=401401
. 【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为
1,2,3,,分母为222112,215,3110,+=+=+=
等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,
+=+=+= 归纳类推得:第n 个等式为3
2211
n n n n n -=++(n 为正整数) 当20n =时,这个等式为3
22202020201201
-=++,即20800020401401-= 故答案为:20800020401401
-
=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 15.(,)或(7,-7).
【分析】
根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案.
【详解】
解:∵P(2-a ,2a+3)到两坐标轴的距离相等,
∴.
∴或,
解得或,
当时,P 点
解析:(73,73
)或(7,-7). 【分析】
根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案.
【详解】
解:∵P (2-a ,2a +3)到两坐标轴的距离相等, ∴223a a -=+.
∴223a a -=+或2(23)a a -=-+, 解得13
a =-或5a =-, 当13
a =-时,P 点坐标为(73,73); 当5a =-时,P 点坐标为(7,-7). 故答案为(73,73
)或(7,-7). 【点睛】
本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.
16.(1,0)
先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.
【详解】
解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G
解析:(1,0)
【分析】
先求出凸形ABCDEFGHP的周长为20,得到2018÷20的余数为18,由此即可解决问题.【详解】
解:∵A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),
∴“凸”形ABCDEFGHP的周长为20,
2018÷20的余数为18,
∴细线另一端所在位置的点在P处,坐标为(1,0).
故答案为:(1,0).
【点睛】
本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型.
三、解答题
17.(1)6;(2)-4;(3);(4).
【分析】
(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;
(2)利用算术平方根和立方根化简,再进一步计算即可;
(3)类比单项式乘多项式展开计算
解析:(1)6;(2)-4;(3)232
+;(4)3523
【分析】
(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;
(2)利用算术平方根和立方根化简,再进一步计算即可;
(3)类比单项式乘多项式展开计算;
(4)利用绝对值的性质化简,再进一步合并同类二次根式.
【详解】
981-
解:(13
=3+2+1
=6;
(2
=2-3-3
=-4;
(33)
=2+;
(4+
=
故答案为(1)6;(2)-4;(3)2+4)
【点睛】
本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.
18.(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x 的方程,解之可得.
【详解】
解:(1)


(2)
解得,
解析:(1)122,2x x ==-;(2)35
x =- 【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x 的方程,解之可得.
【详解】
解:(1)2280x -=
22=8x
2=4x
∴2x =±
即122,2x x ==-
(2)()3
52125x -=- 525x -=-
解得,
3
5 x=-
【点睛】
本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质.
19.角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等
【分析】
先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3,
解析:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等【分析】
先根据角平分线的定义求得∠1=∠2,再根据平行线的判定证得EF∥AD,运用平行线的性质和等量代换得到∠E=∠3,继而由AC∥DF证出∠3=∠F,从而得到最后结论.
【详解】
证明:∵AD平分∠BAC(已知),
∴∠1=∠2(角平分线的定义),
又∵∠ADC+∠EGD=180°(已知),
∴EF∥AD(同旁内角互补,两直线平行).
∴∠1=∠E(两直线平行,同位角相等),∠2=∠3(两直线平行,同位角相等).
∴∠E=∠3(等量代换).
又∵AC∥DF(已知),
∴∠3=∠F(两直线平行,内错角相等).
∴∠E=∠F(等量代换).
故答案为:角平分线的定义;AD;两直线平行,同位角相等;∠3;两直线平行,内错角相等.
【点睛】
本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键.20.(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),C1(4,﹣4);(3)5
【分析】
(1)根据点的坐标的表示方法求解;
(2)根据点平移的坐标
解析:(1)A(﹣3,4),B(﹣5,2),C(﹣2,0);(2)见解析,A1(3,0),B1(1,﹣2),
C1(4,﹣4);(3)5
【分析】
(1)根据点的坐标的表示方法求解;
(2)根据点平移的坐标变换规律写出点A1、B1、C1的坐标,然后描点即可;
(3)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积.
【详解】
解:(1)由题意得:A(﹣3,4),B(﹣5,2),C(﹣2,0);
(2)如图,△A1B1C1为所作,
∵A1是经过点A(-3,4)右平移6个单位长度,再向下平移4个单位长度得到的,∴A1(-3+6,4-4)即(3,0)
同理得到B1(1,﹣2),C1(4,﹣4);
(3)△ABC的面积=3×4﹣1
2×2×3﹣1
2
×4×1﹣1
2
×2×2=5.
【点睛】
本题主要考查了平移作图,坐标与图形,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解.
21.(1)4;5;(2);3;(3)±8.
【分析】
(1)首先估算出的取值范围,即可得出结论;
(2)根据 (1)的结论,得到,即可求得答案;
(3)根据(2)的结论代入计算即可求得答案.
【详解】
解析:(1)4;5;(2174;3;(3)±8.
【分析】
(117的取值范围,即可得出结论;
(2)根据 (1)的结论4175
<<,得到61727
<<,即可求得答案;
(3)根据(2)的结论代入计算即可求得答案.
【详解】
解:(1)∵16<17<25,
∴4175
<,
∴a=4,b=5.
故答案为:4;5
(2)∵4175
<<,
∴61727
<<,
2的整数部分为64, ∴4x =,3y =

4;3
(3)当4x ,3y =时,代入,
)3
3)4464y x ⎤===⎦. ∴64的平方根为:8±.
【点睛】
本题考查了平方和平方根估算无理数大小应用,正确计算是解题的关键,注意平方根是一对互为相反数的两个数.
二十二、解答题
22.正方形纸板的边长是18厘米
【分析】
根据正方形的面积公式进行解答.
【详解】
解:设小长方形的宽为x 厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:

∴,
取正值,可得,
解析:正方形纸板的边长是18厘米
【分析】
根据正方形的面积公式进行解答.
【详解】
解:设小长方形的宽为x 厘米,则小长方形的长为2x 厘米,即得正方形纸板的边长是2x 厘米,根据题意得:
2162x x ⋅=,
∴281x =,
取正值9x =,可得218x =,
∴答:正方形纸板的边长是18厘米.
【点评】
本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.
二十三、解答题
23.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2
【分析】
(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证
AB ∥CD ;
(2
解析:(1)35,35,平行;(2)∠FMN +∠GHF =180°,证明见解析;(3)不变,2
【分析】
(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB ∥CD ; (2)先根据内错角相等证GH ∥PN ,再根据同旁内角互补和等量代换得出
∠FMN +∠GHF =180°;
(3)作∠PEM 1的平分线交M 1Q 的延长线于R ,先根据同位角相等证ER ∥FQ ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q
∠∠=2. 【详解】
解:(1)∵(α-35)2+|β-α|=0,
∴α=β=35,
∴∠PFM =∠MFN =35°,∠EMF =35°,
∴∠EMF =∠MFN ,
∴AB ∥CD ;
(2)∠FMN +∠GHF =180°;
理由:由(1)得AB ∥CD ,
∴∠MNF =∠PME ,
∵∠MGH =∠MNF ,
∴∠PME =∠MGH ,
∴GH ∥PN ,
∴∠GHM =∠FMN ,
∵∠GHF +∠GHM =180°,
∴∠FMN +∠GHF =180°;
(3)1FPN Q
∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,
∵AB ∥CD ,
∴∠PEM 1=∠PFN ,
∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,
∴∠PER =∠PFQ ,
∴ER ∥FQ ,
∴∠FQM 1=∠R ,
设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,
则有:122y x R
y x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,
∴∠EPM 1=2∠FQM 1, ∴11EPM FQM ∠∠=1FPN Q
∠∠=2. 【点睛】
本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.
24.(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系; ②过作,依据平行线的性质可得,,即
解析:(1)80︒;(2)①APE αβ∠=∠+∠,②APE βα∠=∠-∠,理由见解析;(3)
1()2
ANE αβ∠=∠+∠ 【分析】
(1)过点P 作//PG AB ,则//PG CD ,由平行线的性质可得BPC ∠的度数; (2)①过点P 作FD 的平行线,依据平行线的性质可得APE ∠与α∠,β∠之间的数量关系;
②过P 作//PQ DF ,依据平行线的性质可得QPA β∠=∠,QPE α∠=∠,即可得到APE APQ EPQ βα∠=∠-∠=∠-∠;
(3)过P 和N 分别作FD 的平行线,依据平行线的性质以及角平分线的定义,即可得到
ANE ∠与α∠,β∠之间的数量关系为1()2
ANE αβ∠=∠+∠. 【详解】
解:(1)如图1,过点P 作//PG AB ,则//PG CD ,
由平行线的性质可得180B BPG ︒∠+∠=,180C CPG ︒∠+∠=,
又∵125PBA ︒∠=,155PCD ︒∠=,
∴36012515580BPC ︒︒︒︒∠=--=,
故答案为:80︒;
(2)①如图2,APE ∠与α∠,β∠之间的数量关系为APE αβ∠=∠+∠;
过点P 作PM ∥FD ,则PM ∥FD ∥CG ,
∵PM ∥FD ,
∴∠1=∠α,
∵PM ∥CG ,
∴∠2=∠β,
∴∠1+∠2=∠α+∠β,
即:APE αβ∠=∠+∠,
②如图,APE ∠与α∠,β∠之间的数量关系为APE βα∠=∠-∠;理由:
过P 作//PQ DF ,
∵//DF CG ,
∴//PQ CG ,
∴QPA β∠=∠,QPE α∠=∠,
∴APE APQ EPQ βα∠=∠-∠=∠-∠;
(3)如图,
由①可知,∠N=∠3+∠4,
∵EN 平分∠DEP ,AN 平分∠PAC ,
∴∠3=12∠α,∠4=1
2∠β,
∴1()2
ANE αβ∠=∠+∠,
∴ANE ∠与α∠,β∠之间的数量关系为1()2
ANE αβ∠=∠+∠. 【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
25.(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.
【分析】
(1)根据题意,当点与点、在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出
解析:(1)120°;(2)∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP ,证明见详解.
【分析】
(1)根据题意,当点P 与点E 、F 在一直线上时,作出图形,由AB ∥CD ,∠FHP=60°,可以推出GEP EGP ∠=∠=60°,计算∠PFD 即可;
(2)根据点P 是动点,分三种情况讨论:①当点P 在AB 与CD 之间时;②当点P 在AB 上方时;③当点P 在CD 下方时,分别求出∠AEP 、∠EPF 、∠CFP 之间的关系即可.
【详解】
(1)当点P 与点E 、F 在一直线上时,作图如下,
∵AB ∥CD ,∠FHP=60°,GEP EGP ∠=∠,
∴GEP EGP ∠=∠=∠FHP=60°,
∴∠EFD=180°-∠GEP=180°-60°=120°,
∴∠PFD=120°,
故答案为:120°;
(2)满足关系式为∠EPF =∠AEP+∠CFP 或∠AEP=∠EPF+∠CFP .
证明:根据点P是动点,分三种情况讨论:
①当点P在AB与CD之间时,
过点P作PQ∥AB,如下图,
∵AB∥CD,
∴PQ∥AB∥CD,
∴∠AEP=∠EPQ,∠CFP=∠FPQ,
∴∠EPF=∠EPQ+∠FPQ=∠AEP+∠CFP,
即∠EPF =∠AEP+∠CFP;
②当点P在AB上方时,如下图所示,
∵∠AEP=∠EPF+∠EQP,
∵AB∥CD,
∴∠CFP=∠EQP,
∴∠AEP=∠EPF+∠CFP;
③当点P在CD下方时,
∵AB∥CD,
∴∠AEP=∠EQF,
∴∠EQF=∠EPF+∠CFP,
∴∠AEP=∠EPF+∠CFP,
综上所述,∠AEP、∠EPF、∠CFP之间满足的关系式为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP,
故答案为:∠EPF =∠AEP+∠CFP或∠AEP=∠EPF+∠CFP.
【点睛】
本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题.
26.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性
解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s
【分析】
(1)运用角平分线定义及平行线性质即可证得结论;
(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;
(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.
【详解】
(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,
∵ED平分∠PEF,
∴∠PEF=2∠PED=2∠DEF=2×60°=120°,
∵PQ∥MN,
∴∠MFE=180°−∠PEF=180°−120°=60°,
∴∠MFD=∠MFE−∠DFE=60°−30°=30°,
∴∠MFD=∠DFE,
∴FD平分∠EFM;
(2)如图2,过点E作EK∥MN,
∵∠BAC=45°,
∴∠KEA=∠BAC=45°,
∵PQ∥MN,EK∥MN,
∴PQ∥EK,
∴∠PDE=∠DEK=∠DEF−∠KEA,
又∵∠DEF=60°.
∴∠PDE=60°−45°=15°,
故答案为:15°;
(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,
∴∠LFA=∠BAC=45°,∠RHG=∠QGH,
∵FL∥MN,HR∥PQ,PQ∥MN,
∴FL∥PQ∥HR,
∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,
∴∠QGH=1
2∠FGQ,∠HFA=1
2
∠GFA,
∵∠DFE=30°,
∴∠GFA=180°−∠DFE=150°,
∴∠HFA=1
2
∠GFA=75°,
∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,
∴∠RHG=∠QGH=1
2∠FGQ=1
2
(180°−105°)=37.5°,
∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;
(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,
∴D′A=DF,DD′=EE′=AF=5cm,
∵DE+EF+DF=35cm,
∴DE+EF+D′A+AF+DD′=35+10=45(cm),
即四边形DEAD′的周长为45cm;
(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,
分三种情况:
BC∥DE时,如图5,此时AC∥DF,
∴∠CAE=∠DFE=30°,
∴3t=30,
解得:t=10;
BC∥EF时,如图6,
∵BC∥EF,
∴∠BAE=∠B=45°,
∴∠BAM=∠BAE+∠EAM=45°+45°=90°,
∴3t=90,
解得:t=30;
BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,
∵∠DRM=∠EAM+∠DFE=45°+30°=75°,
∴∠BKA=∠DRM=75°,
∵∠ACK=180°−∠ACB=90°,
∴∠CAK=90°−∠BKA=15°,
∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,
∴3t=120,
解得:t=40,
综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.
【点睛】
本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.。

相关文档
最新文档