七年级初一数学第二学期第八章 二元一次方程组单元 易错题测试基础卷

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级初一数学第二学期第八章 二元一次方程组单元 易错题测试基础卷
一、选择题
1.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )
A .50人,40人
B .30人,60人
C .40人,50人
D .60人,30人 2.方程()()218235m n m x n y ---++=是二元一次方程,则( )
A .23m n =⎧⎨=⎩
B .23m n =-⎧⎨=-⎩
C .23m n =⎧⎨=-⎩
D .23m n =-⎧⎨=⎩
3.甲、乙两人练习跑步,如果让甲先跑10m ,那么乙跑5s 就追上了甲;如果让甲先跑2s ,那么乙跑4s 就追上了甲,求甲、乙两人的速度.若设甲、乙两人的速度分别为 /, /x m s y m s ,则下列方程组中正确的是( )
A .()()510422x y x y x ⎧-=⎪⎨-=⎪⎩
B .5105442y x y x x =+⎧⎨-=⎩
C .()551042x y x y y -=⎧⎨-=⎩
D .5510424x y x y =+⎧⎨-=⎩ 4. 三个二元一次方程2x +5y -6=0,3x -2y -9=0,y =kx -9有公共解的条件是k =( ) A .4 B .3 C .2
D .1 5.若45x y =-⎧⎨=-⎩
是方程27x ky +=的解,则k 是( ). A .3 B .5 C .-3 D .以上都不对
6.已知关于x 、y 的方程组22331x y k x y k +=⎧⎨+=-⎩
以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( )
A .①②③
B .①②④
C .①③④
D .②③④
7.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m 张正方形纸板和n 张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n 的值可能是( )
A .200
B .201
C .202
D .203
8.两位同学在解方程组时,甲同学由278ax by x cx y +=⎧⎨-=⎩
正确地解出32x y =⎧⎨=-⎩,乙同学因把C 写错了解得22x y =-⎧⎨=⎩
,那么a 、b 、c 的正确的值应为 A .452a b c ===-,, B .451a b c ===-,,
C .450a b c =-=-=,,
D .452a b c =-=-=,, 9.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )
A .6种
B .7种
C .8种
D .9种 10.对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a+b .例如3⊗4=2×3+4,若x ⊗(﹣y )=2018,且2y ⊗x =﹣2019,则x+y 的值是( )
A .﹣1
B .1
C .13
D .﹣13
二、填空题
11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.
12.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.
13.一片草原上的一片青草,到处长的一样密、一样快.20头牛在96天可以吃完,30头牛在60天可以吃完,则70头牛吃完这片青草需__________天.
14.已知a 、b 、c 分别是一个三位数的百位、十位、个位上的数字,且a 、b 、c 满足(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,则这个三位数的最大值为_____.
15.小纪念册每本5元,大纪念册每本7元.小明买这两种纪念册共花142元,则两种纪念册共买______本.
16.解三元一次方程组时,先消去z ,得二元一次方程组,再消去y ,得一元一次方程2x =3,解得x =,从而得y =_____,z =____. 17.2018年秋,珊瑚中学开启“珊中大阅读”活动,为了充实漂流书吧藏书,号召全校学生捐书,得到各班的大力支持.同时,本部校区的两个年级组也购买藏书充实学校图书室,初二年级组购买了甲、乙两种自然科学书籍若干本,用去8315元;初一年级买了A 、B 两种文学书籍若干本,用去6138元.其中A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则甲种书籍比乙种书籍多买了_____________本.
18.一个二元一次方程和一个二元二次方程组成的二元二次方程组的解是24x y =⎧⎨=⎩

24x y =-⎧⎨=-⎩
,试写出符合要求的方程组________(只要填写一个即可). 19.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.
20.某“欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元
三、解答题
21.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .
例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2}
(1)若点A 表示-3,a =3,直接写出点A 的3关联数.
(2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值.
②若G (A ,a )={-2,7},求a 的值和点A 表示的数.
(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数.
22.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.
(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?
(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.
①请帮柑橘园设计租车方案;
②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.
23.阅读材料并回答下列问题:
当m ,n 都是实数,且满足2m =8+n ,就称点P (m ﹣1,22
n +)为“爱心点”. (1)判断点A (5,3),B (4,8)哪个点为“爱心点”,并说明理由;
(2)若点A (a ,﹣4)是“爱心点”,请求出a 的值;
(3)已知p ,q 为有理数,且关于x ,y 的方程组3
33x y p q x y p q
⎧+=+⎪⎨-=-⎪⎩解为坐标的点B (x ,
y )是“爱心点”,求p ,q 的值.
24.已知关于x
、y 的二元一次方程组23221x y k x y k
-=-⎧⎨+=-⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);
(2)若方程组的解x 、y 满足+x y >5,求k 的取值范围;
(3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值.
25. 学校“百变魔方”社团准备购买A ,B 两种魔方,已知购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同.
(1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买A ,B 两种魔方共100个.某商店有两种优惠活动,如图所示.请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?
26.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:
假设营业员的月基本工资为x 元,销售每件服装奖励y 元:
(1)求x y 、的值;
(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?
(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件、乙2件、丙1件,共需315元;如果购买甲1件,乙2件,丙3件,共需285元,某顾客想购买甲、乙、丙各一件共需多少元?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【分析】
等量关系为:生产的螺栓的工人数+生产螺帽的人数等于90;螺栓总数乘以2等于螺帽总数,把相关数值代入求解即可.
【详解】
解:设生产螺栓和生产螺帽的人数分别为x ,y 人,
根据题意得9015224x y x y +=⎧⎨⨯=⎩
, 解得4050x y =⎧⎨=⎩
, ∴生产螺栓和生产螺帽的人数分别为40人,50人.
故选C .
【点睛】
本题考查了二元一次方程组的应用,读懂题意,找到等量关系式是解题的关键.
2.D
解析:D
【分析】
二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.
【详解】 由题意得211
81m n ⎧-=⎨-=⎩且2030
m n -≠⎧⎨+≠⎩, 解得2m =-,3n =,
故选D .
【点睛】
主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.
3.B
解析:B
【分析】
本题有两个相等关系:如果让甲先跑10m ,那么乙跑5s 就追上了甲;如果让甲先跑2s ,那么乙跑4s 就追上了甲,然后根据追及问题的特点“两者路程相等”即可列出方程组.
【详解】
解:设甲、乙两人的速度分别为 /, /x m s y m s ,根据题意得:5105442y x y x x
=+⎧⎨-=⎩.
故选:B .
【点睛】
本题考查了二元一次方程组的应用之行程问题,属于常考题型,正确理解题意、找准相等关系是解题的关键.
4.B
解析:B
【分析】
把2x 5y 60+-=,3x 2y 90--=,y kx 9=-组成方程组,求解即可.
【详解】
解:由题意可得:
256032909x y x y y kx +-⎧⎪--⎨⎪-⎩
===, ①×3-②×2得y=0,
代入①得x=3,
把x ,y 代入③,
得:3k-9=0,
解得k=3.
故选B.
【点睛】
本题考查了解三元一次方程组,解题的关键是运用三元一次方程组的知识,把三个方程组成方程组求解.
5.C
解析:C
【分析】
根据题意,将45
x y =-⎧⎨=-⎩代入方程27x ky +=,通过计算即可得到答案. 【详解】
∵45x y =-⎧⎨=-⎩
是方程27x ky +=的解 ∴把45x y =-⎧⎨
=-⎩代入方程27x ky +=,得: ()()2457k ⨯-+-=
∴3k =-
故选:C .
【点睛】
本题考查了二元一次方程和一元一次方程的知识;求解的关键是熟练掌握二元一次方程和
一元一次方程的性质,从而完成求解.
6.B
解析:B
【分析】
①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可.
【详解】
解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩
, 解得:21x y =-⎧⎨=⎩
, 代入方程得:左边=-2-2=-4,右边=-4,
左边=右边,此选项正确;
②由x+y=0,得到y=-x ,
代入方程组得:31x k x k -=⎧⎨-=-⎩
,即k=3k-1, 解得:12
k =, 则存在实数12
k =,使x+y=0,本选项正确; ③22331x y k x y k +=⎧⎨+=-⎩
, 解不等式组得:321x k y k =-⎧⎨=-⎩
, ∵1y x ->-,
∴1(32)1k k --->-,
解得:1k <,此选项错误;
④x+3y=3k-2+3-3k=1,本选项正确;
∴正确的选项是①②④;
故选:B.
【点睛】
此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.
7.A
解析:A
【分析】
分别设做了竖式无盖纸盒x 个,横式无盖纸盒y 个,列二元一次方程组43{2x y n x y m
+=+=,把两个方程的两边分别相加得5()m n x y +=+,易知m n +的值一定是5的倍数,本题即解答.
【详解】
解:设做成竖式无盖纸盒x 个,横式无盖纸盒y 个,根据题意列方程组得:
43{2x y n x y m
+=+=, 则两式相加得
5()m n x y +=+,
∵x 、y 都是正整数
∴m n +一定是5的倍数;
∵200、201、202、203四个数中,只有200是5的倍数,
∴m n +的值可能是200.
故选A.
【点睛】
本题主要考查二元一次方程组的实际应用;巧妙处理所列方程组,使两方程相加得出5()m n x y +=+,是解答本题的关键.
8.A
解析:A
【分析】
把32x y =⎧⎨=-⎩代入278
ax by x cx y +=⎧⎨-=⎩得,3223148a b c -=⎧⎨+=⎩由方程组中第二个式子可得:c=-2.用排除法,可以直接解答.
【详解】
解:把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩
得: 3223148a b c -=⎧⎨+=⎩
①②, 由②得:c 2=-,
四个选项中行只有A 符合条件.
故选择:A.
【点睛】
此题主要考查了二元一次方程组的解,做这类题目时要用代入法或排除法,这样可以提高做题效率.
9.A
解析:A
试题解析:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,
整理得:x+2y=10,
方程的整数解为:
2
4
x
y
=


=


4
3
x
y
=


=


6
2
x
y
=


=


8
1
x
y
=


=


10
{
x
y
=
=

5
x
y
=


=


因此兑换方案有6种,
故选A.
考点:二元一次方程的应用.
10.D
解析:D
【分析】
已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求.【详解】
解:根据题中的新定义得:
22018 42019
x y
y x
-=


+=-




①+②得:3x+3y=﹣1,
则x+y=﹣1
3

故选:D.
【点睛】
本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.
二、填空题
11.6
【分析】
设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程
0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案.
【详解】
解:设8
解析:6
【分析】
设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y
的代数式表示x得
3
20
2
x y
=-,根据x、y都是整数取出x与y的对应值,得到购买方案.
解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,
解得
3
20
2
x y =-,
∵x、y都是正整数,
∴当y=2、4、6、8、10、12时,
x=17、14、11、8、5、2,
∴共有6种购买方案,
故答案为:6.
【点睛】
此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 12.7件.
【分析】
设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y
解析:7件.
【分析】
设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.
【详解】
解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.
则有x2-y2=48,即(x十y)(x-y)=48.
∵x、y都是正整数,且x+y与x-y有相同的奇偶性,
又∵x+y>x-y,48=24×2=12×4=8×6,

24
2
x y
x y
+


-




12
4
x y
x y
+


-




8
6
x y
x y
+


-




解得x=13,y=11或x=8,y=4或x=7,y=1.
符合x-y=9的只有一种,可见A买了13件商品,b买了4件.
同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.
∴C买了7件,c买了11件.
故答案为:7件.
【点睛】
此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.
13.24
【分析】
设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃
解析:24
【分析】
设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据“20头牛在96天可以吃完,30头牛在60天可以吃完”可得到两个关于a 、b 、x 的方程,解可得a 、b 与x 的关系.再设70头牛吃可以吃y 天,列出方程,把关于a 、b 的代数式代入即可得解.
【详解】
解:设草地原有青草为a ,草一天长b ,一只羊一天吃x ,根据题意得:
969620606030a b x a b x +⎧⎨+⎩
== 解得:b=103
x ,a=1600x , 当有70头牛吃时,设可以吃y 天,则
a+yb=70xy ,把b=
103
x ,a=1600x 代入得:y=24(天). 故答案为:24.
【点睛】
本题考查了二元一次方程组的应用,解题的关键是读懂题意,把握牛吃青草的同时草也在生长是解答此题的关键. 14.536
【分析】
由绝对值的性质可得|a ﹣2|+|a ﹣4|≥2,|b|+|b ﹣3|≥3,|c ﹣1|+|c ﹣6|≥5,因为a 、b 、c 是整数,且(|a ﹣2|+|a ﹣4|)(|b|+|b ﹣3|)(|c ﹣1
解析:536
【分析】
由绝对值的性质可得|a ﹣2|+|a ﹣4|≥2,|b |+|b ﹣3|≥3,|c ﹣1|+|c ﹣6|≥5,因为a 、b 、c 是整数,且(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,分三种情况讨论:①|a ﹣2|+|a ﹣4|=4,|b |+|b ﹣3|=3,|c ﹣1|+|c ﹣6|=5;②|a ﹣2|+|a ﹣4|=2,|b |+|b ﹣3|=6,|c ﹣1|+|c ﹣6|=5;③|a ﹣2|+|a ﹣4|=2,|b |+|b ﹣3|=3,|c ﹣1|+|c ﹣6|=10,求出a 、b 、c 的值,即可得出最大三位数.
【详解】
∵|a ﹣2|+|a ﹣4|≥2,|b |+|b ﹣3|≥3,|c ﹣1|+|c ﹣6|≥5,
∴(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)≥30.
∵a 、b 、c 是整数,(|a ﹣2|+|a ﹣4|)(|b |+|b ﹣3|)(|c ﹣1|+|c ﹣6|)=60,
∴有三种情况:①|a﹣2|+|a﹣4|=4,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5;
②|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=6,|c﹣1|+|c﹣6|=5;
③|a﹣2|+|a﹣4|=2,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=10.
∴要使三位数最大,首先要保证a尽可能大.
当|a﹣2|+|a﹣4|=4时,解得:a=1或a=5;
当|a﹣2|+|a﹣4|=2时,解得:2≤a≤4;
∴a=5.
当a=5时,|b|+|b﹣3|=3,|c﹣1|+|c﹣6|=5.
解得:0≤b≤3,1≤c≤6,
∴由a、b、c组成的最大三位数为536.
故答案为:536.
【点睛】
本题考查了三元一次方程、绝对值的意义以及绝对值方程;熟练掌握绝对值的几何意义,利用不等式和数轴解题是关键.
15.26、24或22
【解析】
【分析】
通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数×7=142,可以根据此等量关系,列出方程求解作答.
【详解】
解:假设购买小纪念册
解析:26、24或22
【解析】
【分析】
通过理解题意可以知道,本题有一组等量关系,即:小纪念册本数×5+大纪念册本数
×7=142,可以根据此等量关系,列出方程求解作答.
【详解】
解:假设购买小纪念册x本,购买大纪念册y本,则x,y为整数.
则有题目可得二元一次方程:5x+7y=142,
解得:x,y有4组整数解即:
27
1
x
y
=


=

,
20
6
x
y
=


=

,
13
11
x
y
=


=

,
6
16
x
y
=


=

即有四种情况即:两种纪念册共买28、26、24或22本.
故答案为28、26、24或22本.
【点睛】
本题考查了一次方程的实际应用,中等难度,解决此类问题的关键在于,找出题目中所给的等量关系,列出方程,求解方程.
16.76, 56.
【解析】
【分析】
逐项代入求值即可解题.
【详解】
解:将x=32代入x+3y=5得,y=76,
将x=32,y=76代入x+2y-z=3得z=56,
∴y=76,
解析:,.
【解析】
【分析】
逐项代入求值即可解题.
【详解】
解:将x=代入x+3y=5得,y=,
将x=,y=代入得z=,
∴y=, z=.
【点睛】
本题考查了三元一次方程组的求解,中等难度,熟悉代入求值的方法是解题关键.
17.311
【分析】
根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.
【详解】
解:设乙的单价为x元/本,则甲为(7+x)元/本
解析:311
【分析】
根据已知条件设出甲乙的单价和数量,根据甲乙一共用去8315元, A、B一共用去6138元组成方程组,整理方程组即可解题.
【详解】
解:设乙的单价为x元/本,则甲为(7+x)元/本,甲购买了a本,乙买了b本,
∴A的单价为x元/本,B为(7+x)元/本, A购买了a本,B买了b本,
依题意得:
①-②得:7a-7b=2177,
∴a-b=311,
即甲种书籍比乙种书籍多买了311本.
【点睛】
本题考查了一元二次方程的实际应用,难度较大,设三个未知数并整理方程是解题关键. 18.【分析】
从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.
【详解】
解:根据方程组的解可看出:xy=8,y=2x,
∴符合要求的方程组为.
解析:
2
8 y x xy
=


=⎩
【分析】
从方程组的两组解入手,找到两组解之间的乘积关系为二元二次方程,倍数关系为二元一次方程,联立方程组即可.
【详解】
解:根据方程组的解可看出:xy=8,y=2x,
∴符合要求的方程组为
2
8 y x xy
=


=⎩
.
【点睛】
根据未知数的解写方程组的题目通常是利用解之间的数量关系(和差关系或倍数关系等)来表示方程组的解.
19.5
【解析】
根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.
故答案为4和5.
点睛:本题考查了二元一
解析:5
【解析】
根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B
的高度×2,依两个等量关系列出方程组
2323
3222
x y
x y
+=


+=

,再求解
4
5
x
y
=


=


故答案为4和5.
点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.
20.5
【分析】
设A饮料a千克,B饮料b千克,C饮料c千克,D饮料d千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体
思想的应用,进而可得答案.
【详解】
解:设A
解析:5
【分析】
设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.
【详解】
解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克, 根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩
, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩
, 解得:153220a b c d +=⎧⎨+=⎩
, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,
故答案为:192.5.
【点睛】
本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.
三、解答题
21.(1){-6,+3};(2)①y=7,②a=3,点A 表示的数1;(3)-3或-21
【分析】
(1)直接根据关联数的定义解题即可;
(2)①首先根据关联数的定义求出a 的值,然后即可求解;
②通过关联数的定义建立方程组求解即可;
(3)通过关联数的定义建立关于A ,B 的方程组,然后通过A ,B 的速度的关系找到A ,B 之间的关系,最后通过解方程即可得出答案.
【详解】
(1)∵点A 表示-3,a =3,
336,3233x y ∴=--=-=-+⨯=+,
∴点A 的3关联数G (-3,3)={-6,+3};
(2)①点A 表示-1,G (A ,a )={-5,y},
51a ∴-=--
解得4a =,
1247y ∴=-+⨯=;
②∵G (A ,a )={-2,7},
272A a A a -=-⎧∴⎨=+⎩解得13A a =⎧⎨=⎩
; (3)∵G (A ,3)={x ,y},G (B ,2)={m ,n},
323x A y A =-⎧∴⎨=+⨯⎩,222
m B n B =-⎧⎨=+⨯⎩. ∵点A 的速度是点B 速度的3倍,
3A B ∴=,
13
B A ∴=. 6y m -=,
()626A B ∴+--=,
即16263A A ⎛⎫+--= ⎪⎝⎭
, 解得3A =-或21A =-.
【点睛】
本题主要考查定义新运算,掌握关联数的定义是解题的关键.
22.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元
【分析】
(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,根据“用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;
(2)①根据一次运载柑橘21吨,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出各租车方案;
②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.
【详解】
解:(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,
依题意,得:23123417x y x y +=⎧⎨+=⎩
, 解得:32
x y ==⎧⎨⎩.
故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,
∴m=7﹣2
3 n.
又∵m,n均为非负整数,

1
9
m
n
=


=


3
6
m
n
=


=


5
3
m
n
=
=




7
m
n
=


=


答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.
②方案1所需租车费为120×1+100×9=1020(元),
方案2所需租车费为120×3+100×6=960(元),
方案3所需租车费为120×5+100×3=900(元),
方案4所需租车费为120×7=840(元).
∵1020>960>900>840,
故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.
【点睛】
本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.
23.(1)A是爱心点,B不是,理由见解析;(2)-2;(3)
2
0,
3 p q
==-
【分析】
(1)根据“爱心点”的定义,列出方程组计算即可求解;
(2)根据“爱心点”的定义,可得方程组
1
2
4
2
m a
n
-=


⎨+
=-
⎪⎩
,先求得n,再求得m,进一步得到
a的值;
(3)解方程组用q和p表示x和y,代入2m=8+n,得到关于p和q的等式,再根据p,q 为有理数,求出p,q的值.
【详解】
(1)∵
15
2
3
2
m
n
-=


⎨+
=
⎪⎩


6
4
m
n
=


=


∵2×6=8+4,
∴点A是爱心点;
∵14282
m n -=⎧⎪⎨+=⎪⎩, ∴514m n =⎧⎨=⎩
, ∵2×5≠8+14,
∴点B 不是爱心点;
(2)∵1242
m a n -=⎧⎪⎨+=-⎪⎩, ∴n =﹣10,
又∵2m =8+n ,
∴2m =8+(﹣10),
解得m =﹣1,
∴﹣1﹣1=a ,即a =﹣2;
(3
)解方程组3x y q x y q ⎧+=+⎪⎨-=-⎪⎩
得2x q y q ⎧=-⎪⎨=⎪
⎩, 又∵点B 是“爱心点”
满足:1222m q n q ⎧-=-⎪⎨+=⎪⎩

∴142m q n q ⎧=-+⎪⎨=-⎪⎩
, ∵2m =8+n ,
∴22842q q -+=+-,
整理得:64q -=,
∵p ,q 是有理数,p =0,﹣6q =4,
∴ p =0, q =23
-
. 【点睛】
本题主要考查了解二元一次方程组的应用、点的坐标,同时考查了阅读理解能力及迁移运用能力. 24.(1)214342k x k
y -⎧=⎪⎪⎨-⎪=⎪⎩
;(2)k <﹣52;(3)m 的值为1或2. 【分析】
(1)把k 当成一个已知得常数,解出二元一次方程组即可;
(2)将(1)中得,x y 的值代入+x y >5 ,即可求出k 的取值范围;
(3)将(1)中得,x y 的值代入23m x y =-得m=7k ﹣5.由于m >0,得出7k ﹣5>0,及
1k ≤得出解集517
<k ≤ 进而得出m 的值为1或2 【详解】
(1)2x 322x+y=1-k?
y k -=-⎧⎨⎩①② ②+①,得4x =2k ﹣1, 即214
k x -= ; ②﹣①,得2y =﹣4k +3 即342k y -=
所以原方程组的解为214342k x k y -⎧=⎪⎪⎨-⎪=⎪⎩
(2)方程组的解x 、y 满足x +y >5, 所以
2134542
k k --+> , 整理得﹣6k >15, 所以52
k <﹣ ; (3)m =2x ﹣3y =21342342k k --⨯
-⨯ =7k ﹣5
由于m 为正整数,所以m >0
即7k ﹣5>0,k >
57 所以57
<k ≤1 当k =
67
时,m =7k ﹣5=1; 当k =1时,m =7k ﹣5=2.
答:m 的值为1或2.
【点睛】 本题主要考查了二元一次方程组的解法,熟练掌握解二元一次方程组的方法是解题的关键.
25.(1)A 种魔方的单价为20元/个,B 种魔方的单价为15元/个;(2)购进A 种魔方
45个时,两种活动费用相同.
【解析】
【分析】
(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,根据“购买2个A 种魔方和6个B 种魔方共需130元,购买3个A 种魔方和4个B 种魔方所需款数相同”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;
(2)设购进A 种魔方m 个(0<m ≤50),则购进B 种魔方(100-m )个,根据图片描述列出两种活动方案需花费的总价格,使得两种价格相等求得m .
【详解】
解:(1)设A 种魔方的单价为x 元/个,B 种魔方的单价为y 元/个,
根据题意,得
2613034x y x y +=⎧⎨=⎩
解此方程组,得
2015x y =⎧⎨=⎩
答:A 种魔方的单价为20元/个,B 种魔方的单价为15元/个.
(2)设购进A 种魔方m 个,则购进B 种魔方(100-m)个,
根据题意,得
0.8×20m +0.4×15(100-m)=20m +15(100-m -m),
解此方程,得m =45.
答:购进A 种魔方45个时,两种活动费用相同.
【点睛】
本题考查了二元一次方程组的应用、解题的关键是找准等量关系,列出关于x 、y 的二元一次方程组.
26.(1)x=800,y=3;(2)334;(3)150元.
【解析】
【分析】
(1)通过理解题意可知此题存在两个等量关系,即小丽的基本工资+提成=1400元,小华的基本工资+提成=1250元,列方程组求解即可;
(2)根据小丽基本工资+每件提成×件数=1800元,求得件数即可;
(3)理解题意可知,计算出甲、乙、丙各购买4件共多少钱即可.
【详解】
解:(1)设营业员的基本工资为x 元,买一件的奖励为y 元.
由题意得20014001501250x y x y +⎧⎨+⎩
== 解得8003x y ⎧⎨⎩==
即x的值为800,y的值为3.
(2)设小丽当月要卖服装z件,由题意得:
800+3z=1800
解得,z=333.3
由题意得,z为正整数,在z>333中最小正整数是334.答:小丽当月至少要卖334件.
(3)设一件甲为x元,一件乙为y元,一件丙为z元.
则可列
32315
23285 x y z
x y z
++


++



将两等式相加得4x+4y+4z=600,则x+y+z=150
答:购买一件甲、一件乙、一件丙共需150元.
【点睛】
解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解;第三问的难点就在于思考的方向对不对,实际上,方向对了,做起来就方便多了.。

相关文档
最新文档