厦门九年级数学初中数学 旋转的专项培优易错试卷练习题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
厦门九年级数学初中数学 旋转的专项培优易错试卷练习题
一、旋转
1.在等边△AOB 中,将扇形COD 按图1摆放,使扇形的半径OC 、OD 分别与OA 、OB 重合,OA =OB =2,OC =OD =1,固定等边△AOB 不动,让扇形COD 绕点O 逆时针旋转,线段AC 、BD 也随之变化,设旋转角为α.(0<α≤360°) (1)当OC ∥AB 时,旋转角α
= 度;
发现:(2)线段AC 与BD 有何数量关系,请仅就图2给出证明. 应用:(3)当A 、C 、D 三点共线时,求BD 的长.
拓展:(4)P 是线段AB 上任意一点,在扇形COD 的旋转过程中,请直接写出线段PC 的最大值与最小值.
【答案】(1)60或240;(2) AC=BD ,理由见解析;(313+1131
-4)PC 的最大值=3,PC 的最小值31. 【解析】
分析:(1)如图1中,易知当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°.
(2)结论:AC =BD .只要证明△AOC ≌△BOD 即可. (3)在图3、图4中,分别求解即可.
(4)如图5中,由题意,点C 在以O 为圆心,1为半径的⊙O 上运动,过点O 作OH ⊥AB 于H ,直线OH 交⊙O 于C ′、C ″,线段CB 的长即为PC 的最大值,线段C ″H 的长即为PC 的最小值.易知PC 的最大值=3,PC 的最小值31.
详解:(1)如图1中,∵△ABC 是等边三角形,∴∠AOB =∠COD =60°,∴当点D 在线段AD 和线段AD 的延长线上时,OC ∥AB ,此时旋转角α=60°或240°. 故答案为60或240;
(2)结论:AC =BD ,理由如下:
如图2中,∵∠COD =∠AOB =60°,∴∠COA =∠DOB .在△AOC 和△BOD 中,
OA OB
COA DOB CO OD =⎧⎪
∠=∠⎨⎪=⎩
,∴△AOC ≌△BOD ,∴AC =BD ;
(3)①如图3中,当A、C、D共线时,作OH⊥AC于H.
在Rt△COH中,∵OC=1,∠COH=30°,∴CH=HD=1
2
,OH=
3
2
.在Rt△AOH中,
AH=22
OA OH
-=13
2
,∴BD=AC=CH+AH=
113
2
+
.
如图4中,当A、C、D共线时,作OH⊥AC于H.
易知AC=BD=AH﹣CH=131
-
.
综上所述:当A、C、D三点共线时,BD的长为131
2
+
或
131
2
-
;
(4)如图5中,由题意,点C在以O为圆心,1为半径的⊙O上运动,过点O作
OH⊥AB于H,直线OH交⊙O于C′、C″,线段CB的长即为PC的最大值,线段C″H的长即为PC的最小值.易知PC的最大值=3,PC的最小值=3﹣1.
点睛:本题考查了圆综合题、旋转变换、等边三角形的性质、全等三角形的判定和性质、
勾股定理、圆上的点到直线的距离的最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,利用辅助圆解决最值问题,属于中考压轴题.
2.两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.
(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为______和位置关系为______;
(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;
(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.
【答案】(1)相等,垂直.(2)成立,证明见解析;(3)成立,结论是FH=FG,
FH⊥FG.
【解析】
试题分析:(1)证AD=BE,根据三角形的中位线推出FH=1
2
AD,FH∥AD,FG=
1
2
BE,
FG∥BE,即可推出答案;
(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.试题解析:
(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,
∴BE=AD,
∵F是DE的中点,H是AE的中点,G是BD的中点,
∴FH=1
2AD,FH∥AD,FG=
1
2
BE,FG∥BE,
∴FH=FG,
∵AD⊥BE,
∴FH⊥FG,
故答案为相等,垂直.
(2)答:成立,
证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,
∴△ACD ≌△BCE ∴AD=BE ,
由(1)知:FH=
12AD ,FH ∥AD ,FG=1
2
BE ,FG ∥BE , ∴FH=FG ,FH ⊥FG ,
∴(1)中的猜想还成立.
(3)答:成立,结论是FH=FG ,FH ⊥FG . 连接AD ,BE ,两线交于Z ,AD 交BC 于X , 同(1)可证
∴FH=
12AD ,FH ∥AD ,FG=1
2
BE ,FG ∥BE , ∵三角形ECD 、ACB 是等腰直角三角形, ∴CE=CD ,AC=BC ,∠ECD=∠ACB=90°, ∴∠ACD=∠BCE , 在△ACD 和△BCE 中
AC BC ACD BCE CE CD ⎧⎪
∠∠⎨⎪⎩
=== , ∴△ACD ≌△BCE , ∴AD=BE ,∠EBC=∠DAC ,
∵∠DAC+∠CXA=90°,∠CXA=∠DXB , ∴∠DXB+∠EBC=90°, ∴∠EZA=180°﹣90°=90°, 即AD ⊥BE , ∵FH ∥AD ,FG ∥BE , ∴FH ⊥FG , 即FH=FG ,FH ⊥FG , 结论是FH=FG ,FH ⊥FG.
【点睛】运用了等腰直角三角形的性质、全等三角形的性质和判定、三角形的中位线定理,旋转的性质等知识点的理解和掌握,能熟练地运用这些性质进行推理是解此题的关键.
3.如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.
(1)判断BF与AC的数量关系并说明理由;
(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.
【答案】(1)BF=AC,理由见解析;(2)NE=1
2
AC,理由见解析.
【解析】
试题分析:(1)如图1,证明△ADC≌△BDF(AAS),可得BF=AC;
(2)如图2,由折叠得:MD=DC,先根据三角形中位线的推论可得:AE=EC,由线段垂直平分线的性质得:AB=BC,则∠ABE=∠CBE,结合(1)得:△BDF≌△ADM,则
∠DBF=∠MAD,最后证明∠ANE=∠NAE=45°,得AE=EN,所以EN=1
2 AC.
试题解析:
(1)BF=AC,理由是:
如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,
∵∠ABC=45°,
∴△ABD是等腰直角三角形,∴AD=BD,
∵∠AFE=∠BFD,
∴∠DAC=∠EBC,
在△ADC和△BDF中,
∵
DAC DBF
ADC BDF AD BD
∠=∠
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△ADC≌△BDF(AAS),∴BF=AC;
(2)NE=1
2
AC,理由是:
如图2,由折叠得:MD=DC,∵DE∥AM,
∴AE=EC,
∵BE⊥AC,
∴AB=BC,
∴∠ABE=∠CBE,
由(1)得:△ADC≌△BDF,
∵△ADC≌△ADM,
∴△BDF≌△ADM,
∴∠DBF=∠MAD,
∵∠DBA=∠BAD=45°,
∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,
∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,
∴∠ANE=∠NAE=45°,
∴AE=EN,
∴EN=1
2 AC.
4.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.
(1)求证:△ABD≌△ACE;
(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;
(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出
△PMN周长的最小值与最大值.
【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.
【解析】
分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得
PM=1
2
CE,PM∥CE,PN=
1
2
BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所
以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以
∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得
∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,
PM=PN=1
2
BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM
最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.
详解:
(1)因为∠BAC=∠DAE=120°,
所以∠BAD=∠CAE,又AB=AC,AD=AE,
所以△ABD≌△ADE;
(2)△PMN是等边三角形.
理由:∵点P,M分别是CD,DE的中点,
∴PM=1
2
CE,PM∥CE,
∵点N,M分别是BC,DE的中点,
∴PN=1
2
BD,PN∥BD,
同(1)的方法可得BD=CE,
∴PM=PN,
∴△PMN是等腰三角形,
∵PM∥CE,∴∠DPM=∠DCE,
∵PN∥BD,∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC
=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=120°,∴∠ACB+∠ABC=60°,
∴∠MPN=60°,
∴△PMN是等边三角形.
(3)由(2)知,△PMN是等边三角形,PM=PN=1
2 BD,
∴PM最大时,△PMN周长最大,
∴点D在AB上时,BD最小,PM最小,
∴BD=AB-AD=2,△PMN周长的最小值为3;
点D在BA延长线上时,BD最大,PM最大,
∴BD=AB+AD=10,△PMN周长的最大值为15.
故答案为△PMN周长的最小值为3,最大值为15
点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.
5.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.
(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;
(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;
(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.
【答案】(1)见解析(2)AD=BE+DE (3)8
【解析】
试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;
(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;
(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,
∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,
∵
CE CF
ACF BCE
AC BC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即
AD+BE=DE;
(2)解:如图②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,
∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,
∵
CE CF
ACF BCE
AC BC
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即
AD=BE+DE;
故答案为:AD=BE+DE.
(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,
∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD=1
12
×6=2,∴AE=AD+DE=2+6=8.
点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.
6.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.
(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;
(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.
(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1
【解析】
分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.
由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;
(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.
(3)分两种情况讨论即可.
详解:(1)D’A=1.理由如下:
过D′作D′N⊥CD于N.
∵∠NCD′=30°,CD′=CD=2,∴ND′= 1
2
CD′=1.
由已知,D’A∥CE,且D’A=CE=1,
∴四边形ACED’为平行四边形.
又∵∠DCE=90°,
∴四边形ACED’为矩形;
(2)如图,取BC中点即为点G,连接GD’.
∵∠DCE=∠D’CE’=90°,
∴∠DCE’=∠D’CG.
又∵D’C= DC,CG=CE’,
∴△DCE’≌△D’CG,
∴GD’=E’D.
(3)分两种情况讨论:①如图1.
∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角
=∠ECE′=180°+30°=210°.
②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.
点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.
7.在Rt△ACB和△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.
特殊发现:
如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:
把图1中的△AEF 绕点A 顺时针旋转.
(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)记AC BC
=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)
【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3CPE V 总是等边三角形
【解析】
【分析】 (1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB
=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证
△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.
(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据
AC k BC =,AC BC =tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.
【详解】
解:(1)PC=PE 成立,理由如下:
如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,
∴EM FP MC PB
=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;
(2)PC=PE 成立,理由如下:
如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中
,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF ,
∴△DAF ≌△EAF (AAS ),
∴AD=AE ,在△DAP 和△EAP 中,
∵AD=AE ,∠DAP=∠EAP ,AP=AP ,
∴△DAP ≌△EAP (SAS ),
∴PD=PE ,
∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,
∴FD ∥BC ∥PM , ∴DM FP MC PB
=, ∵点P 是BF 的中点,
∴DM=MC ,又∵PM ⊥AC ,
∴PC=PD ,又∵PD=PE ,
∴PC=PE ;
(3)如图4,∵△CPE 总是等边三角形,
∴∠CEP=60°,
∴∠CAB=60°,
∵∠ACB=90°,
∴∠CBA=90°﹣∠ACB=90°﹣60°=30°,
∵AC k BC =,AC BC
=tan30°,
∴k=tan30°=3
3
,
∴当k为3时,△CPE总是等边三角形.
【点睛】
考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.
8.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y
轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.
(Ⅰ)当t=2时,求点M的坐标;
(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;
(Ⅲ)当t为何值时,BC+CA取得最小值.
【答案】(1)(1,2);(2)S=3
2
t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值
【解析】
试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;
(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=1
2
t,
AF =MG =2,分别表示EC 和BE 的长,代入面积公式可求得S 与t 的关系式;并求其t 的取值范围;
(III )证明△ABO ∽△CAF ,根据勾股定理表示AC 和BC 的长,计算其和,根据二次根式的意义得出当t =0时,值最小.
试题解析:解:(I )如图1,过M 作MG ⊥OF 于G ,∴MG ∥OB ,当t =2时,OA =2.∵M 是AB 的中点,∴G 是AO 的中点,∴OG =12OA =1,MG 是△AOB 的中位线,∴MG =12OB =12×4=2,∴M (1,2); (II )如图1,同理得:OG =AG =12
t .∵∠BAC =90°,∴∠BAO +∠CAF =90°.∵∠CAF +∠ACF =90°,∴∠BAO =∠ACF .∵∠MGA =∠AFC =90°,MA =AC ,∴△AMG ≌△CAF ,∴AG =CF =
12t ,AF =MG =2,∴EC =4﹣12t ,BE =OF =t +2,∴S △BCE =
12EC •BE =12(4﹣12t )(t +2)=﹣14t 2+32t +4; S △ABC =12•AB •AC =12•216t +•21162t +=14t 2+4,∴S =S △BEC +S △ABC =32
t +8. 当A 与O 重合,C 与F 重合,如图2,此时t =0,当C 与E 重合时,如图3,AG =EF ,即 12t =4,t =8,∴S 与t 之间的函数关系式为:S =32
t +8(0≤t ≤8); (III )如图1,易得△ABO ∽△CAF ,∴
AB AC =OB AF =OA FC =2,∴AF =2,CF =12t ,由勾股定理得:AC =22AF CF +=22122t +()=2144
t +,BC =22BE EC +=221242t t ++-
()()=21544t +(),∴BC +AC =( 5+1)2144
t +,∴当t =0时,BC +AC 有最小值.
点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.
9.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.
(1)如图1,当AD=2OF时,求出x的值;
(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.
【答案】(1)x=﹣1;
(2)S=﹣(x﹣)2+(0<x<1),
当x=时,S的值最大,最大值为,.
【解析】
试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到
CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,
求得OF=OM=解方程,即可得到结果;
(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据
全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.
试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,
∴CM=ME,
∴AE=2OM=2OF,
∴OM=OF,
∴,
∴BF=BE=x,
∴OF=OM=,
∵AB=1,
∴OB=,
∴,
∴x=﹣1;
(2)过P作PG⊥AB交AB的延长线于G,如图2,
∵∠CEP=∠EBC=90°,
∴∠ECB=∠PEG,
∵PE=EC,∠EGP=∠CBE=90°,
在△EPG与△CEB中,
,
∴△EPG≌△CEB,
∴EB=PG=x,
∴AE=1﹣x,
∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,
∴当x=时,S的值最大,最大值为,.
考点:四边形综合题
10.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.
(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.
(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,
AC=kAF,上一问的结论还成立吗?并证明你的结论.
(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且
∠IHJ=∠AGB=θ=60°,k=2;
求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).
【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.
【解析】
试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,
FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明
△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,
△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.
试题解析:(1)特例发现,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,
∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,
∴FQ=AG,∴PE=FQ;
(2)延伸拓展,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,
∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,
△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(3)深入探究,如图2,
在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,
∴,∵AB=kAE ,∴PE=AG ,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB ,同理可得,
△AQF ∽△CGA ,∴
,∵AC=kAF ,∴FQ=AG ,∴EP=FQ ,∵EP ∥FQ ,∴∠EPH=∠FQH ,∵∠PHE=∠QHF ,∴△EPH ≌△FQH ,∴HE=HF ;
(4)应用推广,如图3,
在前面条件及结论,得到,点H 是EF 中点,∴AE=AF ,∵∠EAB=∠AGB ,
∠FAC=∠AGC ∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC )﹣∠BAC=60°,∴△AEF 为正三角形.又H 为EF 中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,
∴∠EHM=∠FHN .∵∠AEF=∠AFE ,∴△HEM ∽△HFN ,∴
,∵EH=FH ,∴,且∠MHN=∠HFN=60°,∴△MHN ∽△HFN ,∴△MHN ∽△HFN ∽△MEH ,在△HMN 中,∠MHN=60°,根据三角形中大边对大角,∴要MN 最小,只有△HMN 是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN ∴MN ∥EF ,∵△AEF 为等边三角形,∴MN 为△AEF 的中位线,∴MN min =EF=×2=1.
考点:1.几何变换综合题;2.三角形全等及相似的判定性质.
11.(1)发现
如图,点A 为线段BC 外一动点,且BC a =,AB b =.
填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)
(2)应用
点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .
①找出图中与BE 相等的线段,并说明理由;
②直接写出线段BE 长的最大值.
(3)拓展
如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.
【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)
【解析】
【分析】
(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;
(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.
【详解】
解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,
∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ;
(2)①CD=BE ,
理由:∵△ABD 与△ACE 是等边三角形,
∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC ,
即∠CAD=∠EAB ,
在△CAD 与△EAB 中,
AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩
=== , ∴△CAD ≌△EAB ,
∴CD=BE ;
②∵线段BE 长的最大值=线段CD 的最大值,
由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,
∴最大值为BD+BC=AB+BC=4;
(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,
则△APN 是等腰直角三角形,
∴PN=PA=2,BN=AM ,
∵A 的坐标为(2,0),点B 的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM 长的最大值=线段BN 长的最大值,
∴当N 在线段BA 的延长线时,线段BN 取得最大值,
最大值=AB+AN ,
∵AN=2
AP=22,
∴最大值为22+3;
如图2,过P 作PE ⊥x 轴于E ,
∵△APN 是等腰直角三角形, ∴2,
∴22,
∴P (22).
【点睛】
考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.
12.如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,求∠BAB′的度数.
【答案】40°.
【解析】
【分析】
先根据平行线的性质,由CC′∥AB得∠AC′C=∠CAB=70°,再根据旋转的性质得AC=AC′,∠BAB′=∠CAC′,于是根据等腰三角形的性质有∠ACC′=∠AC′C=70°,然后利用三角形内角和定理可计算出∠CAC′=40°,从而得到∠BAB′的度数.
【详解】
∵CC′∥AB,
∴∠A CC′=∠CAB=70°,
∵△ABC绕点A旋转到△AB′C′的位置,
∴AC=AC′,∠BAB′=∠CAC′,
在△ACC′中,∵AC=AC′
∴∠ACC′=∠AC′C=70°,
∴∠CAC′=180°-70°-70°=40°,
∴∠BAB′=40°.
【点睛】
本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
13.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.
(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;
(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。
【答案】(1)90 (2)答案见解析(3)4秒或16秒
【解析】
【分析】
(1)根据旋转的性质知,旋转角是∠MON;
(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;
(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°
【详解】
解:(1)由旋转的性质知,旋转角∠MON=90°.
故答案是:90;
(2)如图3,∠AOM﹣∠NOC=30°.
设∠AOC=α,由∠AOC:∠BOC=1:2可得
∠BOC=2α.
∵∠AOC+∠BOC=180°,
∴α+2α=180°.
解得α=60°.
即∠AOC=60°.
∴∠AON+∠NOC=60°.①
∵∠MON=90°,
∴∠AOM+∠AON=90°.②
由②﹣①,得∠AOM﹣∠NOC=30°;
(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,
由OD平分∠AOC,可得∠BON=30°.
因此三角板绕点O逆时针旋转60°.
此时三角板的运动时间为:
t=60°÷15°=4(秒).
(ⅱ)如图5,当直角边ON在∠AOC内部时,
由ON平分∠AOC,可得∠CON=30°.
因此三角板绕点O逆时针旋转240°.
此时三角板的运动时间为:
t=240°÷15°=16(秒).
【点睛】
本题综合考查了旋转的性质,角的计算.解答(3)题时,需要分类讨论,以防漏解.
14.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.
(1)如图1,求证:△CDE是等边三角形.
(2)设OD=t,
①当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.
②求t为何值时,△DEB是直角三角形(直接写出结果即可).
【答案】(1)见解析;(2) ①见解析; ②t=2或14.
【解析】
【分析】
(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;
(2)①当6<t<10时,由旋转的性质得到BE=AD,于是得到
C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;
②存在,当点D与点B重合时,D,B,E不能构成三角形;当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA-DA=6-4=2=t;当6<t<10时,此时不存在;当t>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14.
【详解】
(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,
∴∠DCE=60°,DC=EC,
∴△CDE是等边三角形;
(2)①存在,当6<t<10时,
由旋转的性质得,BE=AD,
∴C△DBE=BE+DB+DE=AB+DE=4+DE,
由(1)知,△CDE是等边三角形,
∴DE=CD,
∴C△DBE=CD+4,
由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,
此时,CD=,
∴△BDE的最小周长=CD+4=
;
②存在,∵当点D与点B重合时,D,B,E不能构成三角形,
∴当点D与点B重合时,不符合题意;
当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,
∴∠BED=90°,
由(1)可知,△CDE是等边三角形,
∴∠DEB=60°,
∴∠CEB=30°,
∵∠CEB=∠CDA,
∴∠CDA=30°,
∵∠CAB=60°,
∴∠ACD=∠ADC=30°,
∴DA=CA=4,
∴OD=OA﹣DA=6﹣4=2,
∴t=2;
当6<t<10时,由∠DBE=120°>90°,
∴此时不存在;
当t>10时,由旋转的性质可知,∠DBE=60°,
又由(1)知∠CDE=60°,
∴∠BDE=∠CDE+∠BDC=60°+∠BDC,
而∠BDC>0°,
∴∠BDE>60°,
∴只能∠BDE=90°,
从而∠BCD=30°,
∴BD=BC=4,
∴OD=14,
∴t=14,
综上所述:当t=2或14时,以D、E、B为顶点的三角形是直角三角形.
【点睛】
本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.
15.如图1,O 为直线AB 上一点,过点O 作射线OC ,AOC 30∠=o ,将一直角三角板()M 30∠=o
的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.
()1将图1中的三角板绕点O 以每秒5o 的速度沿逆时针方向旋转一周.如图2,经过t 秒后,ON 落在OC 边上,则t =______秒(直接写结果).
()2如图2,三角板继续绕点O 以每秒5o 的速度沿逆时针方向旋转到起点OA 上.同时射线OC 也绕O 点以每秒10o 的速度沿逆时针方向旋转一周,
①当OC 转动9秒时,求MOC ∠的度数.
②运动多少秒时,MOC 35∠=o ?请说明理由.
【答案】(1)6;(2)①45o ;
②11秒或25秒,理由见解析. 【解析】
【分析】
(1)因为∠AOC=30°,所以ON 落在OC 边上时,三角板旋转了30°,即可求出旋转时间;
(2)在整个旋转过程中,可以看做这样一个追及问题更容易理解,即:ON 绕点O 以每秒5°的速度沿逆时针方向旋转,同时射线OC 也绕O 点以每秒10°的速度沿逆时针方向旋转; ①9秒时,∠NOC=45°,而OC 旋转了90°,所以∠MOC 的度数就是45°;
②∠MOC=35°时,应分OC 与OM 重合前35°与重合后35°两种情况考虑,分别进行求解即可.
【详解】
()1AOC 30∠=o Q ,
而三角板每秒旋转5o ,
∴当ON 落在OC 边上时,有5t 30o =,
得t 6=,
故答案为6;
()2①当OC 转动9秒时,COA 30109120∠=+⨯=o o o ,
而MOA 309059165∠=++⨯=o o o o ,
又MOC MOA COA Q ∠∠∠=-,
即:MOC 16512045∠=-=o o o ,
答:当OC 转动9秒时,MOC ∠的度数为45o ;
②设OC 运动起始位置为射线OP(如图1),运动t 秒时,MOC 35∠=o ,
则MOP 905t o ∠=+,COP 10t ∠=,
当MOC 35∠=o 时,有()905t 10t 35+-=o o 或()10t 905t 35o o
-+=,
得t 11=或t 25=,
因为三角板与射线OC 都只旋转一周,所以不考虑再次追及的情况,
故当运动11秒或25秒时,MOC 35∠=o .
【点睛】
本题考查的是用方程的思想解决角的旋转的问题,找准等量关系,正确列出一元一次方程是解题的关键.。