人教版八年级上册数学 期末试卷综合测试卷(word含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册数学 期末试卷综合测试卷(word 含答案)
一、八年级数学全等三角形解答题压轴题(难)
1.已知,如图A 在x 轴负半轴上,B (0,-4),点E (-6,4)在射线BA 上,
(1) 求证:点A 为BE 的中点
(2) 在y 轴正半轴上有一点F, 使 ∠FEA=45°,求点F 的坐标.
(3) 如图,点M 、N 分别在x 轴正半轴、y 轴正半轴上,MN=NB=MA ,点I 为△MON 的内角平分线的交点,AI 、BI 分别交y 轴正半轴、x 轴正半轴于P 、Q 两点, IH⊥ON 于H, 记△POQ 的周长为C△POQ.求证:C △POQ=2 HI.
【答案】(1)证明见解析;(2)22(0,
)7
F ;(3)证明见解析. 【解析】 试题分析:(1)过E 点作E
G ⊥x 轴于G ,根据B 、E 点的坐标,可证明△AEG ≌△ABO ,从而根据全等三角形的性质得证;
(2)过A 作AD⊥AE 交EF 延长线于D ,过D 作DK ⊥x 轴于K ,然后根据全等三角形的判定得到△AEG ≌△DAK ,进而求出D 点的坐标,然后设F 坐标为(0,y ),根据S 梯形EGKD =S 梯形EGOF +S 梯形FOKD 可求出F 的坐标;
(3)连接MI 、NI ,根据全等三角形的判定SAS 证得△MIN ≌△MIA ,从而得到
∠MIN=∠MIA 和∠MIN=∠NIB ,由角平分线的性质,求得∠AIB=135°×3-360°=45°再连接OI ,作IS⊥OM 于S, 再次证明△HIP ≌△SIC 和△QIP ≌△QIC ,得到C △POQ 周长.
试题解析:(1)过E 点作EG⊥x 轴于G ,
∵B (0,-4),E (-6,4),∴OB=EG=4,
在△AEG 和△ABO 中,
∵90EGA BOA EAG BAO EG BO ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩
∴△AEG ≌△ABO (AAS ),∴AE=AB
∴A 为BE 中点
(2)过A 作AD⊥AE 交EF 延长线于D ,
过D 作DK⊥x 轴于K ,
∵∠FEA=45°,∴AE=AD ,
∴可证△AEG≌△DAK,∴D(1,3),
设F (0,y ),
∵S 梯形EGKD =S 梯形EGOF +S 梯形FOKD ,

()()()111347463222
y y +⨯=+⨯++ ∴227y = ∴220,7F ⎛
⎫ ⎪⎝⎭
(3)连接MI 、NI
∵I为△MON内角平分线交点,∴NI平分∠MNO,MI平分∠OMN,在△MIN和△MIA中,

MN MA
NMI AMI
MI MI
=


∠=∠

⎪=

∴△MIN≌△MIA(SAS),
∴∠MIN=∠MIA,
同理可得∠MIN=∠NIB,
∵NI平分∠MNO,MI平分∠OMN,∠MON=90°,
∴∠MIN=135°∴∠MIN=∠MIA =∠NIB=135°,
∴∠AIB=135°×3-360°=45°,
连接OI,作IS⊥OM于S, ∵IH⊥ON,OI平分∠MON,
∴IH=IS=OH=OS,∠HIS=90°,∠HIP+∠QIS=45°,
在SM上截取SC=HP,可证△HIP≌△SIC,∴IP=IC,
∠HIP=∠SIC,∴∠QIC=45°,
可证△QIP≌△QIC,
∴PQ=QC=QS+HP,
∴C△POQ=OP+PQ+OQ=OP+PH+OQ+OS=OH+OS=2HI.
2.(1)已知△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A等于60°(如图①).求证:EB=AD;
(2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变(如图②),(1
)的结论是否成立,并说明理由.
【答案】(1)证明见解析(2)证明见解析
【解析】
试题分析:(1)作DF∥BC 交AC 于F ,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC 是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF 是等边三角形,∠DFC=120°,得出AD=DF ,由已知条件得出∠FDC=∠DEC,ED=CD ,由AAS 证明△DBE≌△CFD,得出EB=DF ,即可得出结论;
(2)作DF∥BC 交AC 的延长线于F ,同(1)证出△DBE≌△CFD,得出EB=DF ,即可得出结论.
试题解析:(1)证明:如图,作DF ∥BC 交AC 于F ,
则△ADF 为等边三角形
∴AD=DF ,又∵ ∠DEC=∠DCB ,
∠DEC+∠EDB=60°,
∠DCB+∠DCF=60° ,
∴ ∠EDB=∠DCA ,DE=CD ,
在△DEB
和△CDF 中,
120EBD DFC EDB DCF DE CD ,,
∠=∠=︒⎧⎪∠=∠⎨⎪=⎩
∴△DEB ≌△CDF ,
∴BD=DF ,
∴BE=AD .
(2). EB=AD 成立;
理由如下:作DF ∥BC 交AC 的延长线于F ,如图所示:
同(1)得:AD=DF ,∠FDC=∠ECD ,∠FDC=∠DEC ,ED=CD ,
又∵∠DBE=∠DFC=60°,
∴△DBE ≌△CFD (AAS ),
∴EB=DF ,
∴EB=AD.
点睛:此题主要考查了三角形的综合,考查等边三角形的判定与性质,全等三角形的判定与性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,平行线的性质等知识,综合性强,有一定的难度,证明三角形全等是解决问题的关键.
3.如图,AB=12cm,AC⊥AB,BD⊥AB ,AC=BD=9cm,点P在线段AB上以3 cm/s的速度,由A向B运动,同时点Q在线段BD上由B向D运动.
(1)若点Q的运动速度与点P的运动速度相等,当运动时间t=1(s),△ACP与△BPQ 是否全等?说明理由,并直接判断此时线段PC和线段PQ的位置关系;
(2)将“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,其他条件不变.若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能使△ACP与△BPQ全等.(3)在图2的基础上延长AC,BD交于点E,使C,D分别是AE,BE中点,若点Q以(2)中的运动速度从点B出发,点P以原来速度从点A同时出发,都逆时针沿△ABE三边运动,求出经过多长时间点P与点Q第一次相遇.
【答案】(1)△ACP≌△BPQ,理由见解析;线段PC与线段PQ垂直(2)1或3
2
(3)9s
【解析】
【分析】
(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出
∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;
(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.
(3)因为V Q<V P,只能是点P追上点Q,即点P比点Q多走PB+BQ的路程,据此列出方程,解这个方程即可求得.
【详解】
(1)当t=1时,AP=BQ=3,BP=AC=9,
又∵∠A=∠B=90°,
在△ACP 与△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩

∴△ACP ≌△BPQ (SAS ),
∴∠ACP=∠BPQ ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°,
∠CPQ=90°,
则线段PC 与线段PQ 垂直.
(2)设点Q 的运动速度x,
①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,
912t t xt =-⎧⎨=⎩
, 解得31t x =⎧⎨=⎩
, ②若△ACP ≌△BPQ ,则AC=BQ ,AP=BP ,
912xt t t =⎧⎨=-⎩
解得632t x =⎧⎪⎨=⎪⎩
, 综上所述,存在31t x =⎧⎨=⎩或632t x =⎧⎪⎨=⎪⎩
使得△ACP 与△BPQ 全等. (3)因为V Q <V P ,只能是点P 追上点Q ,即点P 比点Q 多走PB+BQ 的路程,
设经过x 秒后P 与Q 第一次相遇,
∵AC=BD=9cm ,C ,D 分别是AE ,BD 的中点;
∴EB=EA=18cm.
当V Q =1时,
依题意得3x=x+2×9,
解得x=9;
当V Q =32
时, 依题意得3x=
32x+2×9, 解得x=12.
故经过9秒或12秒时P 与Q 第一次相遇.
【点睛】
本题考查了一元一次方程的应用,解题的关键是熟练的掌握一元一次方程的性质与运算.
4.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .
(1)求出AFC ∠的度数;
(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)
(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.
【答案】(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.
【解析】
【分析】
(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;
(2)根据在图2的 AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF= GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;
(3)根据(2) 的证明方法,在图3的AC 上截取AG=AE ,证得△EAF ≌△GAF (SAS)得出∠EFA=∠GFA ;再根据ASA 证明△FDC ≌△FGC ,得CD=CG 即可解决问题.
【详解】
(1)解:∵∠ACB =90°,∠B =60°,
∴∠BAC =90°﹣60°=30°,
∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,
∴∠FAC =15°,∠FCA =45°,
∴∠AFC =180°﹣(∠FAC+∠ACF )=120°
(2)解:FE 与FD 之间的数量关系为:DF =EF .
理由:如图2,在AC 上截取CG =CD ,
∵CE 是∠BCA 的平分线,
∴∠DCF=∠GCF,
在△CFG和△CFD中,
CG CD
DCF GCF
CF CF
=


∠=∠

⎪=


∴△CFG≌△CFD(SAS),
∴DF=GF.∠CFD=∠CFG
由(1)∠AFC=120°得,
∴∠CFD=∠CFG=∠AFE=60°,
∴∠AFG=60°,
又∵∠AFE=∠CFD=60°,
∴∠AFE=∠AFG,
在△AFG和△AFE中,
AFE AFG
AF AF
EAF GAF
∠=∠


=

⎪∠=∠


∴△AFG≌△AFE(ASA),
∴EF=GF,
∴DF=EF;
(3)结论:AC=AE+CD.
理由:如图3,在AC上截取AG=AE,
同(2)可得,△EAF≌△GAF(SAS),
∴∠EFA=∠GFA,AG=AE
∵∠BAC+∠BCA=180°-∠B=180°-60°=120°
∴∠AFC=180°﹣(∠FAC+∠FCA)=180°-
1
2
(∠BAC+∠BCA)=180°-
1
2
×120°=120°,∴∠EFA=∠GFA=180°﹣120°=60°=∠DFC,
∴∠CFG=∠CFD=60°,
同(2)可得,△FDC≌△FGC(ASA),
∴CD=CG,
∴AC=AG+CG=AE+CD.
【点睛】
本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.
5.已知:平面直角坐标系中,点A(a,b)的坐标满足|a﹣b|+b2﹣8b+16=0.
(1)如图1,求证:OA是第一象限的角平分线;
(2)如图2,过A作OA的垂线,交x轴正半轴于点B,点M、N分别从O、A两点同时出发,在线段OA上以相同的速度相向运动(不包括点O和点A),过A作AE⊥BM交x轴于点E,连BM、NE,猜想∠ONE与∠NEA之间有何确定的数量关系,并证明你的猜想;
(3)如图3,F是y轴正半轴上一个动点,连接FA,过点A作AE⊥AF交x轴正半轴于点E,连接EF,过点F点作∠OFE的角平分线交OA于点H,过点H作HK⊥x轴于点K,求
2HK+EF的值.
【答案】(1)证明见解析(2)答案见解析(3)8
【解析】
【分析】
(1)过点A分别作x轴,y轴的垂线,垂足分别为M、N,则AN=AM,
根据非负数的性质求出a、b的值即可得结论;
(2)如图2,过A作AH平分∠OAB,交BM于点H,则△AOE≌△BAH,可得AH=OE,由已知条件可知ON=AM,∠MOE=∠MAH,可得△ONE≌△AMH,∠ABH=∠OAE,设BM 与NE交于K,则∠MKN=180°﹣2∠ONE=90°﹣∠NEA,即2∠ONE﹣∠NEA=90°;(3)如图3,过H作HM⊥OF,HN⊥EF于M、N,可证△FMH≌△FNH,则FM=FN,同理:NE=EK,先得出OE+OF﹣EF=2HK,再由△APF≌△AQE得PF=EQ,即可得
OE+OF=2OP=8,等量代换即可得2HK+EF的值.
【详解】
解:(1)∵|a﹣b|+b2﹣8b+16=0
∴|a﹣b|+(b﹣4)2=0
∵|a﹣b|≥0,(b﹣4)2≥0
∴|a﹣b|=0,(b﹣4)2=0
∴a=b=4
过点A 分别作x 轴,y 轴的垂线,垂足分别为M 、N ,则AN =AM ∴OA 平分∠MON
即OA 是第一象限的角平分线
(2)过A 作AH 平分∠OAB ,交BM 于点H
∴∠OAH =∠HAB =45°
∵BM ⊥AE
∴∠ABH =∠OAE 在△AOE 与△BAH 中
OAE ABH OA AB
AOE BAH ==∠∠⎧⎪=⎨⎪∠∠⎩
, ∴△AOE ≌△BAH (ASA )
∴AH =OE
在△ONE 和△AMH 中
OE AH NOE MAH ON AM =⎧⎪∠∠⎨⎪=⎩
=, ∴△ONE ≌△AMH (SAS )
∴∠AMH =∠ONE
设BM 与NE 交于K
∴∠MKN =180°﹣2∠ONE =90°﹣∠NEA
∴2∠ONE ﹣∠NEA =90°
(3)过H 作HM ⊥OF ,HN ⊥EF 于
M 、N 可证:△FMH ≌△FNH (SAS )
∴FM =FN
同理:NE =EK
∴OE+OF ﹣EF =2HK
过A 作AP ⊥y 轴于P ,AQ ⊥x 轴于Q
可证:△APF ≌△AQE (SAS )
∴PF =EQ
∴OE+OF =2OP =8
∴2HK+EF=OE+OF=8
【点睛】
本题考查非负数的性质,平面直角坐标系中点的坐标,等腰直角三角形,全等三角形的判定和性质.
6.如图①,在ABC中,90
BAC
∠=︒,AB AC
=,AE是过A点的一条直线,且B、C在AE的异侧,BD AE
⊥于D,CE AE
⊥于E.
(1)求证:BD DE CE
=+.
(2)若将直线AE绕点A旋转到图②的位置时(BD CE
<),其余条件不变,问BD与DE、CE的关系如何?请予以证明.
【答案】(1)见解析;(2)BD=DE-CE,理由见解析.
【解析】
【分析】
(1)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为AE=AD+DE,所以BD=DE+CE;
(2)根据已知利用AAS判定△ABD≌△CAE从而得到BD=AE,AD=CE,因为
AD+AE=BD+CE,所以BD=DE-CE.
【详解】
解:(1)∵∠BAC=90°,BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∵∠ABD+∠BAE=90°,∠CAE+∠BAE=90°
∴∠ABD=∠CAE,
∵AB=AC,
在△ABD和△CAE中,
BDA AEC
ABD CAE
AB AC
∠=∠


∠=∠

⎪=

∴△ABD≌△CAE(AAS),
∴BD=AE,AD=CE,
∵AE=AD+DE,
∴BD=DE+CE;
(2)BD与DE、CE的数量关系是BD=DE-CE,理由如下:
∵∠BAC=90°,BD⊥AE,CE⊥AE,
∴∠BDA=∠AEC=90°,
∴∠ABD+∠DAB=∠DAB+∠CAE ,
∴∠ABD=∠CAE ,
∵AB=AC ,
在△ABD 和△CAE 中,
BDA AEC ABD CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△ABD ≌△CAE (AAS ),
∴BD=AE ,AD=CE ,
∴AD+AE=BD+CE ,
∵DE=BD+CE ,
∴BD=DE-CE .
【点睛】
此题主要考查全等三角形的判定和性质,常用的判定方法有SSS ,SAS ,AAS ,HL 等.这种类型的题目经常考到,要注意掌握.
7.如图1,Rt △ABC 中,∠A =90°,AB =AC ,点D 是BC 边的中点连接AD ,则易证AD =BD =CD ,即AD =12
BC ;如图2,若将题中AB =AC 这个条件删去,此时AD 仍然等于12
BC . 理由如下:延长AD 到H ,使得AH =2AD ,连接CH ,先证得△ABD ≌△CHD ,此时若能证得△ABC ≌△CHA ,
即可证得AH =BC ,此时AD =
12
BC ,由此可见倍长过中点的线段是我们三角形证明中常用的方法.
(1)请你先证明△ABC ≌△CHA ,并用一句话总结题中的结论;
(2)现将图1中△ABC 折叠(如图3),点A 与点D 重合,折痕为EF ,此时不难看出△BDE 和△CDF 都是等腰直角三角形.BE =DE ,CF =DF .由勾股定理可知DE 2+DF 2=EF 2,因此BE 2+CF 2=EF 2,若图2中△ABC 也进行这样的折叠(如图4),此时线段BE 、CF 、EF 还有这样的关系式吗?若有,请证明;若没有,请举反例.
(3)在(2)的条件下,将图3中的△DEF 绕着点D 旋转(如图5),射线DE 、DF 分别交AB 、AC 于点E 、F ,此时(2)中结论还成立吗?请说明理由.图4中的△DEF 也这样旋转(如图6),直接写出上面的关系式是否成立.
【答案】(1)详见解析;(2)有这样分关系式;(3)EF2=BE2+CF2.
【解析】
【分析】
(1)想办法证明AB∥CH,推出∠BAC=∠ACH,再利用SAS证明△ABC≌△CHA即可.(2)有这样分关系式.如图4中,延长ED到H山顶DH=DE.证明△EDB≌△HD (SAS),推出∠B=∠HCD,BE=CH,∠FCH=90°,利用勾股定理,线段的垂直平分线的性质即可解决问题.
(3)图5,图6中,上面的关系式仍然成立.
【详解】
(1)证明:如图2中,
∵BD=DC,∠ADB=∠HDC,AD=HD,
∴△ADB≌△HDC(SAS),
∴∠B=∠HCD,AB=CH,
∴AB∥CH,
∴∠BAC+∠ACH=180°,
∵∠BAC=90°,
∴∠ACH=∠BAC=90°,
∵AC=CA,
∴△BAC≌△HCA(SAS),
∴AH=BC,
∴AD=DH=BD=DC,
∴AD=1
2 BC.
结论:直角三角形斜边上的中线等于斜边的一半.
(2)解:有这样分关系式.
理由:如图4中,延长ED到H山顶DH=DE.
∵ED=DH,∠EDB=∠HDC,DB=DC,
∴△EDB≌△HDC(SAS),
∴∠B=∠HCD,BE=CH,
∵∠B+∠ACB=90°,
∴∠ACB+∠HCD=90°,
∴∠FCH=90°,
∴FH2=CF2+CH2,
∵DF⊥EH,ED=DH,
∴EF=FH,
∴EF2=BE2+CF2.
(3)图5,图6中,上面的关系式仍然成立.结论:EF2=BE2+CF2.
证明方法类似(2).
【点睛】
本题属于几何变换综合题,考查了旋转变换,翻折变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
8.操作发现:如图,已知△ABC和△ADE均为等腰三角形,AB=AC,AD=AE,将这两个三角形放置在一起,使点B,D,E在同一直线上,连接CE.
(1)如图1,若∠ABC=∠ACB=∠ADE=∠AED=55°,求证:△BAD≌△CAE;
(2)在(1)的条件下,求∠BEC的度数;
拓广探索:(3)如图2,若∠CAB=∠EAD=120°,BD=4,CF为△BCE中BE边上的高,请直接写出EF的长度.
【答案】(1)见解析;(2)70°;(3)2
【解析】
【分析】
(1)根据SAS证明△BAD≌△CAE即可.
(2)利用全等三角形的性质解决问题即可.
(3)同法可证△BAD≌△CAE,推出EC=BD=4,由∠BEC=∠BAC=120°,推出∠FCE=30°即可解决问题.
【详解】
(1)证明:如图1中,
∵∠ABC=∠ACB=∠ADE=∠AED,
∴∠EAD=∠CAB,
∴∠EAC=∠DAB,
∵AE=AD,AC=AB,
∴△BAD≌△CAE(SAS).
(2)解:如图1中,设AC交BE于O.
∵∠ABC=∠ACB=55°,
∴∠BAC=180°﹣110°=70°,
∵△BAD≌△CAE,
∴∠ABO=∠ECO,
∵∠EOC=∠AOB,
∴∠CEO=∠BAO=70°,
即∠BEC=70°.
(3)解:如图2中,
∵∠CAB=∠EAD=120°,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS),
∴∠BAD=∠ACE,BD=EC=4,
同理可证∠BEC=∠BAC=120°,
∴∠FEC=60°,∵CF⊥EF,
∴∠F=90°,∴∠FCE=30°,
∴EF=1
2
EC=2.
【点睛】
本题属于三角形综合题,考查了全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
9.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,
△BPN,并连接BM,AN.
(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;
(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.
(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.
【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.
【解析】
【分析】
(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交AN于点C,得出MCN90
∠=︒,因此有BM⊥AN;
(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;
(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.
【详解】
解:(Ⅰ)结论:BM=AN,BM⊥AN.
理由:如图1中,
∵MP=AP,∠APM=∠BPN=90°,PB=PN,
∴△MBP≌△ANP(SAS),
∴MB=AN.
延长MB交AN于点C.
∵△MBP≌△ANP,
∴∠PAN=∠PMB,
∵∠PAN+∠PNA=90°,
∴∠PMB+∠PNA=90°,
∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,
∴BM⊥AN.
(Ⅱ)结论成立
理由:如图2中,
∵△APM,△BPN,都是等边三角形
∴∠APM=∠BPN=60°
∴∠MPB=∠APN=120°,
又∵PM=PA,PB=PN,
∴△MPB≌△APN(SAS)
∴MB=AN.
(Ⅲ)如图3中,取PB的中点C,连接AC,AB.
∵△APM ,△PBN 都是等边三角形
∴∠APM =∠BPN =60°,PB =PN
∵点C 是PB 的中点,且PN =2PM ,
∴2PC =2PA =2PM =PB =PN ,
∵∠APC =60°,
∴△APC 为等边三角形,
∴∠PAC =∠PCA =60°,
又∵CA =CB ,
∴∠CAB =∠ABC =30°,
∴∠PAB =∠PAC +∠CAB =90°.
【点睛】
本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.
10.综合与实践:
我们知道“两边及其中一边的对角分别对应相等的两个三角形不一定全等”.但是,乐乐发现:当这两个三角形都是锐角三角形时,它们会全等.
(1)请你用所学知识判断乐乐说法的正确性.
如图,已知ABC ∆、111A B C ∆均为锐角三角形,且11AB A B =,11BC B C =,1C C ∠=∠. 求证:111ABC A B C ∆∆≌.
(2)除乐乐的发现之外,当这两个三角形都是______时,它们也会全等.
【答案】(1)见解析;(2)钝角三角形或直角三角形.
【解析】
【分析】
(1)过B 作BD ⊥AC 于D ,过B 1作B 1D 1⊥B 1C 1于D 1,得出
∠BDA=∠B 1D 1A 1=∠BDC=∠B 1D 1C 1=90°,根据SAS 证△BDC ≌△B 1D 1C 1,推出
BD=B 1D 1,根据HL 证Rt △BDA ≌Rt △B 1D 1A 1,推出∠A=∠A 1,根据AAS 推出
△ABC ≌△A 1B 1C 1即可.
(2)当这两个三角形都是直角三角形时,直接利用HL 即可证明;当这两个三角形都是钝角三角形时,与(1)同理可证.
【详解】
(1)证明:过点B 作BD AC ⊥于D ,过1B 作1111B D A C ⊥于1D ,
则11111190BDA B D A BDC B D C ∠=∠=∠=∠=︒.
在BDC ∆和111B D C ∆中,
1C C ∠=∠,111BDC B D C ∠=∠,11BC B C =,
∴111BDC B D C ∆∆≌,
∴11BD B D =.
在Rt BDA ∆和111Rt B D A ∆中,
11AB A B =,11BD B D =,
∴111Rt Rt (HL)BDA B D A ∆∆≌,
∴1A A ∠=∠.
在ABC ∆和111A B C ∆中,
1C C ∠=∠,1A A ∠=∠,11AB A B =,
∴111(AAS)ABC A B C ∆∆≌.
(2)如图,当这两个三角形都是直角三角形时,
∵11AB A B =,11BC B C =,190C C ∠==∠︒.
∴Rt ABC ∆≌111Rt A B C ∆(HL );
∴当这两个三角形都是直角三角形时,它们也会全等;
如图,当这两个三角形都是钝角三角形时,作BD ⊥AC ,1111B D A C ⊥,
与(1)同理,利用AAS 先证明111BDC B D C ∆∆≌,得到11BD B D =,
再利用HL 证明111Rt Rt BDA B D A ∆∆≌,得到1A A ∠=∠,
再利用AAS 证明111ABC A B C ∆∆≌;
∴当这两个三角形都是钝角三角形时,它们也会全等;
故答案为:钝角三角形或直角三角形.
【点睛】
本题考查了全等三角形的性质和判定的应用,主要考查学生的推理能力.解题的关键是熟练掌握证明三角形全等的方法.
二、八年级数学 轴对称解答题压轴题(难)
11.如图,在平面直角坐标系中,已知点A (2,3),点B (﹣2,1).
(1)请运用所学数学知识构造图形求出AB 的长;
(2)若Rt △ABC 中,点C 在坐标轴上,请在备用图1中画出图形,找出所有的点C 后不用计算写出你能写出的点C 的坐标;
(3)在x 轴上是否存在点P ,使PA =PB 且PA +PB 最小?若存在,就求出点P 的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).
【答案】(1)AB =52)C 2(0,7),C 4(0,-4),C 5(-1,0)、 C 6(1,0);(3)不存在这样的点P .
【解析】
【分析】
(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;
(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;
(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.
【详解】
解:(1)如图,连结AB,作B关于y轴的对称点D,
由已知可得,BD=4,AD=2.∴在Rt△ABD中,AB=25
(2)如图,①以A为直角顶点,过A作l1⊥AB交x轴于C1,交y轴于C2.
②以B为直角顶点,过B作l2⊥AB交x轴于C3,交y轴于C4.
③以C为直角顶点,以AB为直径作圆交坐标轴于C5、C6、C7.(用三角板画找出也可)由图可知,C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0).
(3)不存在这样的点P.
作AB的垂直平分线l3,则l3上的点满足PA=PB,
作B关于x轴的对称点B′,连结AB′,
由图可以看出两线交于第一象限.
∴不存在这样的点P.
【点睛】
本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.
12.在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).
(1)求证:∠BAD =∠EDC ;
(2)若点E 关于直线BC 的对称点为M (如图2),连接DM ,AM .求证:DA =AM .
【答案】(1)见解析;(2)见解析
【解析】
【分析】
(1)根据等边三角形的性质,得出∠BAC =∠ACB =60°,然后根据三角形的内角和和外角性质,进行计算即可.
(2)根据轴对称的性质,可得DM=DA ,然后结合(1)可得∠MDC =∠BAD ,然后根据三角形的内角和,求出∠ADM=60°即可.
【详解】
解:(1)如图1,
∵△ABC 是等边三角形,∴∠BAC =∠ACB =60°,
∴∠BAD =60°﹣∠DAE ,∠EDC =60°﹣∠E ,
又∵DE =DA ,
∴∠E =∠DAE ,
∴∠BAD =∠EDC .
(2)由轴对称可得,DM =DE ,∠EDC =∠MDC ,
∵DE =DA ,
∴DM =DA ,
由(1)可得,∠BAD =∠EDC ,
∴∠MDC =∠BAD ,
∵△ABD 中,∠BAD +∠ADB =180°﹣∠B =120°,
∴∠MDC +∠ADB =120°,
∴∠ADM =60°,
∴△ADM 是等边三角形,
∴AD =AM .
【点睛】
本题主要考察了轴对称和等边三角形的性质,解题的关键是熟练掌握这些性质.
13.如图,在ABC ∆中,CE 为三角形的角平分线,AD CE ⊥于点F 交BC 于点D (1)若9628BAC B ︒︒∠=∠=,,直接写出BAD ∠= 度
(2)若2ACB B ∠=∠,
①求证:2AB CF =
②若 ,CF a EF b ==,直接写出BD CD
= (用含 ,a b 的式子表示)
【答案】(1)34;(2)①见详解;②
2b a b
- 【解析】
【分析】 (1)由三角形内角和定理和角平分线定义即可得出答案;
(2)①证明B BCE ∠=∠,得出BE=CE ,过点A 作//AH BC 交CE 与点H ,则,H BCE ACE EAH B ∠=∠=∠∠=∠,得出AH=AC ,H EAH ∠=∠,得出AE=HE ,由等腰三角形的性质可得出HF=CF ,即可得出结论;
②证明AHF DCF ≅,得出AH=DC ,求出HF=CF=a ,HE=HF-EF=a-b ,CE=a+b ,由 //AH BC 得出
AH AE a b BC BE a b
-==+,进而得出结论. 【详解】 解:(1)∵9628BAC B ︒︒∠=∠=,,
∴180962856ACB ∠=︒-︒-︒=︒,
∵CE 为三角形的角平分线,
∴1282
ACE ACB ∠=∠=︒, ∵AD CE ⊥,
∴902862CAF ∠=︒-︒=︒,
∴966234BAD ∠=︒-︒=︒.
故答案为:34;
(2)①证明:∵22ACB B BCE ∠=∠=∠
∴B BCE ∠=∠
∴BE CE =
过点A 作//AH BC 交CE 与点H ,如图所示:
则,H BCE ACE EAH B ∠=∠=∠∠=∠
∴AH=AC ,H EAH ∠=∠
∴AE=HE
∵AD CE ⊥
∴HF=CF
∴AB=HC=2CF ;
②在AHF △和DCF 中,
H DCF HF CF
AFH DFC ∠=∠⎧⎪=⎨⎪∠=∠⎩
∴AHF DCF ≅
∴AH=DC

,CF a EF b == ∴ HF CF a ==,由①得 AE HE HF EF a b ==-=-, BE CE a b ==+
∵ //AH BC ∴
AH AE a b BC BE a b -==+ ∴
CD a b BC a b -=+ ∴2BD b CD a b
=-. 故答案为:
2b a b -. 【点睛】
本题考查的知识点是全等三角形的判定及其性质、等腰三角形的判定及其性质、三角形的内角和定理、三角形的角平分线定理等,掌握以上知识点是解此题的关键.
14.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.
(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线
BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.
(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;
(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.
【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.
【解析】
【分析】
(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A ,据此进一步利用三角形内角和定理列出方程求解即可;
(2)通过证明△ABE 与△AEC 为等腰三角形求解即可;
(3)根据题意分当BD 为特异线、AD 为特异线以及CD 为特异线三种情况分类讨论即可.
【详解】
(1)∵AB=AC ,
∴∠ABC=∠C ,
∵BD 平分∠ABC ,
∴∠ABD=∠CBD=12
∠ABC , ∵BD 是△ABC 的一条特异线,
∴△ABD 与△BCD 为等腰三角形,
∴AD=BD=BC ,
∴∠A=∠ABD ,∠C=∠BDC ,
∴∠ABC=∠C=∠BDC ,
∵∠BDC=∠A+∠ABD=2∠A ,
设∠A=x ,则∠C=∠ABC=∠BDC=2x ,
在△ABC 中,∠A+∠ABC+∠C=180°,
即:x+2x+2x=180°,
∴x=36°,
∴∠BDC=72°,
故答案为:72;
(2)∵DE 是线段AC 的垂直平分线,
∴EA=EC ,
∴△EAC为等腰三角形,
∴∠EAC=∠C,
∴∠AEB=∠EAC+∠C=2∠C,
∵∠B=2∠C,
∴∠AEB=∠B,
∴△EAB为等腰三角形,
∴AE是△ABC的一条特异线;
(3)
如图3,当BD是特异线时,
如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;
如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;
如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;
如图4,当AD是特异线时,AB=BD,AD=DC,
则:∠ABC=180°−20°−20°=140°;
当CD为特异线时,不符合题意;
综上所述,∠B度数为:135°、112.5°或140°.
【点睛】
本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.
15.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD
为一边在CD的下方作等边△CDE,连结BE.
(1)求∠CAM的度数;
(2)若点D在线段AM上时,求证:△ADC≌△BEC;
(3)当动D在直线
..AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.
【答案】(1)30°;(2)答案见解析;(3)∠AOB是定值,∠AOB=60°.
【解析】
【分析】
(1)根据等边三角形的性质可以直接得出结论;
(2)根据等边三角形的性质就可以得出AC=BC,DC=EC,∠ACB=∠DCE=60°,由等式的性质就可以∠BCE=∠ACD,根据SAS就可以得出△ADC≌△BEC;
(3)分情况讨论:当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,就可以求出结论;当点D在线段AM的延长线上时,如图2,可以得出△ACD≌△BCE而有
∠CBE=∠CAD=30°而得出结论;当点D在线段MA的延长线上时,如图3,通过得出
△ACD≌△BCE同样可以得出结论.
【详解】
(1)∵△ABC是等边三角形,∴∠BAC=60°.
∵线段AM为BC边上的中线,∴∠CAM
1
2
=∠BAC,∴∠CAM=∠BAM=30°.
(2)∵△ABC与△DEC都是等边三角
形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACD+∠DCB=∠DCB+∠BCE,∴∠ACD =∠BCE.
在△ADC和△BEC中,∵
AC BC
ACD BCE
CD CE
=


∠=∠

⎪=

,∴△ACD≌△BCE(SAS);
(3)∠AOB是定值,∠AOB=60°.理由如下:
①当点D在线段AM上时,如图1,由(2)可知△ACD≌△BCE,则∠CBE=∠CAD=30°,又∠ABC=60°,∴∠CBE+∠ABC=60°+30°=90°.
∵△ABC是等边三角形,线段AM为BC边上的中线,∴AM平分∠BAC,即
11603022
BAM BAC ∠∠==⨯︒=︒,∴∠BOA =90°﹣30°=60°.
②当点D 在线段AM 的延长线上时,如图2.
∵△ABC 与△DEC 都是等边三角
形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACB +∠DCB =∠DCB +∠DCE ,∴∠ACD =∠BCE . 在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩

∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD =30°.
由(1)得:∠BAM =30°,∴∠BOA =90°﹣30°=60°.
③当点D 在线段MA 的延长线上时.
∵△ABC 与△DEC 都是等边三角
形,∴AC =BC ,CD =CE ,∠ACB =∠DCE =60°,∴∠ACD +∠ACE =∠BCE +∠ACE =60°,∴∠ACD =∠BCE .
在△ACD 和△BCE 中,∵AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩

∴△ACD ≌△BCE (SAS ),∴∠CBE =∠CAD .
由(1)
得:∠CAM =30°,∴∠CBE =∠CAD =150°,∴∠CBO =30°,∠BAM =30°,∴∠BOA =90°﹣30°=60°.
综上所述:当动点D 在直线AM 上时,∠AOB 是定值,∠AOB =60°.
【点睛】
本题考查了等边三角形的性质的运用,直角三角形的性质的运用,等式的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.
16.如图1,在△ABC中,∠ACB=90°,AC=1
2
BC,点D为BC的中点,AB =DE,BE∥AC.
(1)求证:△ABC≌△DEB;
(2)连结AD、AE、CE,如图2.
①求证:CE是∠ACB的角平分线;
②请判断△ABE是什么特殊形状的三角形,并说明理由.
【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.【解析】
【分析】
(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=1
2
BC,D是BC中点可得AC=BD,利用
HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.
【详解】
(1)∵∠ACB=90°,BE∥AC
∴∠CBE=90°
∴△ABC和△DEB都是直角三角形
∵AC=1
2
BC,点D为BC的中点
∴AC=BD
又∵AB=DE
∴△ABC≌△DEB(H.L.)
(2)①由(1)得:△ABC≌△DEB ∴BC=EB
又∵∠CBE=90°
∴∠BCE=45°
∴∠ACE=90°-45°=45°
∴∠BCE=∠ACE
∴CE是∠ACB的角平分线
②△ABE是等腰三角形,理由如下:
在△ACE和△DCE中
AC DC
ACE BCE
CE CE
=


∠=∠

⎪=

∴△ACE≌△DCE(SAS).
∴AE=DE
又∵AB=DE
∴AE=AB
∴△ABE是等腰三角形
【点睛】
本题考查全等三角形的判定与性质及等腰三角形的判断与性质,熟练掌握判定定理是解题关键.
17.如图,已知ABC
∆()
AB AC BC
<<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):
(1)在边BC上找一点M,使得:将ABC
∆沿着过点M的某一条直线折叠,点B与点C能重合,请在图①中作出点M;
(2)在边BC上找一点N,使得:将ABC
∆沿着过点N的某一条直线折叠,点B能落在边AC上的点D处,且ND AC
⊥,请在图②中作出点N.
【答案】(1)见详解;(2)见详解.
【解析】
【分析】
(1)作线段BC的垂直平分线,交BC于点M,即可;
(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即可.
【详解】
(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:
(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:
【点睛】
本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.
18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段
....叫做这个三角形的三分线.
(1)图①是顶角为36︒的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数(若两种方法分得的三角形成3对全等三角形,则视为同一种);
(2)图③是顶角为45︒的等腰三角形,请你在图③中画出顶角为45︒的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.
(3)ABC 中,30B ∠=︒,AD 和DE 是ABC 的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,设c x ∠=︒,则x 所有可能的值为_________.
【答案】(1)见详解;(2)见详解;(3)20或40.
【解析】
【分析】
(1)作底角的平分线,再作底边的平行线,即可得到三分线;
(2)过底角定点作对边的高,形成一个等腰直角三角形和一个直角三角形,然后再构造一个等腰直角三角形,即可.
(3)根据题意,先确定30°角然后确定一边为BA ,一边为BC ,再固定BA 的长,进而确定D 点,分别考虑AD 为等腰三角形的腰和底边,画出示意图,列出关于x 的方程,即可得到答案.
【详解】
(1)如图所示:
(2)如图所示:
(3)①当AD=AE 时,如图4,
∵DE CE =,c x ∠=︒,
∴∠EDB=x °,
∴∠ADE=∠AED=2x °,
∵AD BD =,
∴∠BAD=∠B=30°,
∴30+30=2x+x ,
解得:x=20;
②当AD=DE 时,如图5,
∵DE CE =,c x ∠=︒,
∴∠EDB=x °,
∴∠DAE=∠AED=2x °,
∵AD BD =,
∴∠BAD=∠B=30°,
∴30+30+2x+x=180,
解得:x=40.
③当AE=DE 时,则∠EAD=∠EDA=
1802(90)2
x x -=-, ∴∠ADC=∠EDA+∠EDC=(90-x)+x=90°
又∵∠ADC=30+30=60°,
∴这种情况不存在.
∴x 所有可能的值为20或40.
故答案是:20或40
图4 图5
【点睛】
本题主要考查等腰三角形的判定和性质定理的综合应用,分类讨论,画出图形,是解题的关键.
19.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.。

相关文档
最新文档