一元二次方程的应用-几何应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第11课时一元二次方程的应用(2)——几何应用姓名________ 1.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于多少?
2.如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:1,如果
要使彩条所占面积是图案面积的19
75
,则竖彩条宽度为多少?
3.利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.
4.用一条长为60cm的绳子围成一个面积为acm2的长方形,a的值不可能为()A.240 B.225 C.60 D.30
5.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.几秒后△PBQ的面积为15cm2?
6.如图所示,在△ABC中,∠B=90°,AB=6cm,BC=3cm,点P以1cm/s的速度从点A开始沿边AB向点B 移动,点Q以2cm/s的速度从点B开始沿边BC向点C移动,如果点P、Q分别从点A、B同时出发,多少秒后P、Q之间的距离等于42cm.
7.在平面直角坐标系xOy中,过原点O及点A(0,2)、C(6,0)作矩形OABC,∠AOC的平分线交AB 于点D.点P从点O出发,以每秒2个单位长度的速度沿射线OD方向移动;同时点Q从点O出发,以每秒2个单位长度的速度沿x轴正方向移动.设移动时间为t秒,当t为多少时,△PQB为直角三角形.
8.直角△ABC中,斜边AB=5,直角边BC、AC之长是一元二次方程x2﹣(2m﹣1)x+4(m﹣1)=0的两根,求则m的值.
9.等腰△ABC的直角边AB=BC=10cm,点P、Q分别从A、C两点同时出发,均以1cm/秒的相同速度作直线运动,已知P沿射线AB运动,Q沿边BC的延长线运动,PQ与直线AC相交于点D.设P点运动时间为t,△PCQ的面积为S.
(1)求出S关于t的函数关系式;
(2)当点P运动几秒时,S△PCQ=S△ABC?
(3)作PE⊥AC于点E,当点P、Q运动时,线段DE的长度是否改变?证明你的结论.
10.某小区在绿化工程中有一块长为18m、宽为6m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.
11.如图,四边形ACDE是证明勾股定理时用到的一个图形,a,b,c是Rt△ABC和Rt△BED边长,易知,这时我们把关于x的形如的一元二次方程称为“勾系一元二次方程”.
请解决下列问题:
(1)写出一个“勾系一元二次方程";
(2)求证:关于x的“勾系一元二次方程”必有实数根;
(3)若x=﹣1是“勾系一元二次方程”的一个根,且四边形ACDE的周长是6,求△ABC 面积.
12.已知:如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于6cm2?
(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于5cm?
(3)在(1)中,△PQB的面积能否等于8cm2?说明理由.
13.如图,四边形ABCD为矩形,AB=16cm.AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s 的速度向B点移动,一直到达B点为止,点Q以2cm/s的速度向D点移动.
(1)P、Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?
(2)P、Q两点从出发开始到几秒时,点P和点Q之间的距离第一次是10cm?
(3)在运动过程中,点P和点Q之问的距离可能是18cm吗?如果可能,求出运动时间t,如果不可能,请说明理由.(2取1.4)
14.如图,在矩形ABCD中,BC=20cm,P、Q、M、N分别从A、B、C、D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形; (2)当x为何值时,以P、Q、M、N为顶点的四边形是平行四边形;
(3)以P、Q、M、N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.
参考答案
1.【解答】解:设CD与A′C′交于点H,AC与A′B′交于点G,
由平移的性质知,A′B′与CD平行且相等,∠ACB′=45°,∠DHA′=∠DA′H=45°,
∴△DA′H是等腰直角三角形,A′D=DH,四边形A′GCH是平行四边形,
∵S A′GCH=HC•B′C=(CD﹣DH)•DH=1,
∴DH=A′D=1,
∴AA′=AD﹣A′D=1.
故答案为1.
2.【解答】解:设竖彩条的宽为xcm,则横彩条的宽为2xcm,则
(30﹣2x)(20﹣4x)=30×20×(1﹣),
整理得:x2﹣20x+19=0,
解得:x1=1,x2=19(不合题意,舍去).
答:竖彩条的宽度为1cm.
3.x(58﹣2x)=200
解得:x1=25,x2=4
∴另一边为8米或50米.
答:当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.
4.【解答】解:设围成面积为acm2的长方形的长为xcm,则宽为(60÷2﹣x)cm,依题意,得x(60÷2﹣x)=a,整理,得
x2﹣30x+a=0,
∵△=900﹣4a≥0,
解得a≤225,
∴a的值不可能为240;
5.【解答】解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,
则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,
×(8﹣t)×2t=15,
解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).
答:动点P,Q运动3秒时,能使△PBQ的面积为15cm2.
6.【解答】解:设点P、Q分别从点A、B同时出发,xs后P、Q之间的距离等于4cm, ∵AP=1•x=x,BQ=2x,
∴BP=AB﹣AP=6﹣x,
∴BP2+BQ2=PQ2,
即(6﹣x)2+(2x)2=(4)2,
解得:x1=,x2=2(不合题意,舍去).
答:点P、Q分别从点A、B同时出发,s后P、Q之间的距离等于4cm.
7.【解答】解:作PG⊥OC于点G,在Rt△POG中,
∵∠POQ=45°,
∴∠OPG=45°,
∵OP=t,
∴OG=PG=t,
∴点P(t,t),
又∵Q(2t,0),B(6,2),
根据勾股定理可得:PB2=(6﹣t)2+(2﹣t)2,QB2=(6﹣2t)2+22,PQ2=(2t﹣t)2+t2=2t2,①若∠PQB=90°,则有PQ2+BQ2=PB2,
即:2t2+[(6﹣2t)2+22]=(6﹣t)2+(2﹣t)2,
整理得:4t2﹣8t=0,
解得:t1=0(舍去),t2=2,
∴t=2,
②若∠PBQ=90°,则有PB2+QB2=PQ2,
∴[(6﹣t)2+(2﹣t)2]+[(6﹣2t)2+22]=2t2,
整理得:t2﹣10t+20=0,
解得:t=5±.
∴当t=2或t=5+或t=5﹣时,△PQB为直角三角形.
故答案为:2或5+或5﹣.
8.【解答】解:如图.设BC=a,AC=b.
根据题意得a+b=2m﹣1,ab=4(m﹣1).
由勾股定理可知a2+b2=25,
∴a2+b2=(a+b)2﹣2ab=(2m﹣1)2﹣8(m﹣1)=4m2﹣12m+9=25,
∴4m2﹣12m﹣16=0,
即m2﹣3m﹣4=0,
解得m1=﹣1,m2=4.
∵a+b=2m﹣1>0,
即m>,
∴m=4.
故答案为:4.
9.【解答】解:(1)当t<10秒时,P在线段AB上,此时CQ=t,PB=10﹣t

当t>10秒时,P在线段AB得延长线上,此时CQ=t,PB=t﹣10

(2)∵S△ABC=
∴当t<10秒时,S△PCQ=
整理得t2﹣10t+100=0无解(6分)
当t>10秒时,S△PCQ=
整理得t2﹣10t﹣100=0解得t=5±5(舍去负值)(7分)
∴当点P运动秒时,S△PCQ=S△ABC(8分)
(3)当点P、Q运动时,线段DE的长度不会改变.
证明:过Q作QM⊥AC,交直线AC于点M
易证△APE≌△QCM,
∴AE=PE=CM=QM=t,
∴四边形PEQM是平行四边形,且DE是对角线EM的一半.又∵EM=AC=10∴DE=5
∴当点P、Q运动时,线段DE的长度不会改变.
同理,当点P在点B右侧时,DE=5
综上所述,当点P、Q运动时,线段DE的长度不会改变.
10.【解答】解:设人行道的宽度为x米,根据题意得,
(18﹣3x)(6﹣2x)=60,
化简整理得,(x﹣1)(x﹣8)=0.
解得x1=1,x2=8(不合题意,舍去).
答:人行通道的宽度是1m.
11.【解答】(1)解:当a=3,b=4,c=5时
勾系一元二次方程为3x2+5x+4=0;
(2)证明:根据题意,得
△=(c)2﹣4ab=2c2﹣4ab
∵a2+b2=c2
∴2c2﹣4ab=2(a2+b2)﹣4ab=2(a﹣b)2≥0
即△≥0
∴勾系一元二次方程必有实数根;
(3)解:当x=﹣1时,有a﹣c+b=0,即a+b=c
∵2a+2b+c=6,即2(a+b)+c=6
∴3c=6
∴c=2
∴a2+b2=c2=4,a+b=2
∵(a+b)2=a2+b2+2ab
∴ab=2
∴S△ABC=ab=1.
12.【解答】解:(1)设经过x秒以后△PBQ面积为6
×(5﹣x)×2x=6
整理得:x2﹣5x+6=0
解得:x=2或x=3
答:2或3秒后△PBQ的面积等于6cm2
(2)当PQ=5时,在Rt△PBQ中,∵BP2+BQ2=PQ2,
∴(5﹣t)2+(2t)2=52,
5t2﹣10t=0,
t(5t﹣10)=0,
t1=0,t2=2,
∴当t=0或2时,PQ的长度等于5cm.
(3)设经过x秒以后△PBQ面积为8,
×(5﹣x)×2x=8
整理得:x2﹣5x+8=0
△=25﹣32=﹣7<0
∴△PQB的面积不能等于8cm2.
13.【解答】解:(1)设P、Q两点从出发开始到x秒时四边形PBCQ的面积为33cm2,
则PB=(16﹣3x)cm,QC=2xcm,
根据梯形的面积公式得(16﹣3x+2x)×6=33,
解得x=5;
答:P、Q两点从出发开始到5秒时四边形PBCQ的面积为33cm2;
(2)设P,Q两点从出发经过t秒时,点P,Q间的距离是10cm,
作QE⊥AB,垂足为E,
则QE=AD=6,PQ=10,
∵P A=3t,CQ=BE=2t,
∴PE=AB﹣AP﹣BE=|16﹣5t|,
由勾股定理,得(16﹣5t)2+62=102,
解得t1=4。

8,t2=1.6.
答:从出发到1.6秒或4。

8秒时,点P和点Q的距离是10cm.
(3)∵==<18,
∴在运动过程中,点P和点Q之问的距离不可能是18cm.
14.【解答】解:(1)当点P与点N重合或点Q与点M重合时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边可能构成一个三角形.
①当点P与点N重合时,由x2+2x=20,得x1=﹣1,x2=﹣﹣1(舍去).
因为BQ+CM=x+3x=4(﹣1)<20,此时点Q与点M不重合.
所以x=﹣1符合题意.
②当点Q与点M重合时,由x+3x=20,得x=5.
此时DN=x2=25>20,不符合题意.
故点Q与点M不能重合.
所以所求x的值为﹣1.
(2)由(1)知,点Q只能在点M的左侧,
①当点P在点N的左侧时,
由20﹣(x+3x)=20﹣(2x+x2),
解得x1=0(舍去),x2=2.
当x=2时四边形PQMN是平行四边形.
②当点P在点N的右侧时,
由20﹣(x+3x)=(2x+x2)﹣20,
解得x1=﹣10(舍去),x2=4.
当x=4时四边形NQMP是平行四边形.
所以当x=2或x=4时,以P,Q,M,N为顶点的四边形是平行四边形.
(3)过点Q,M分别作AD的垂线,垂足分别为点E,F.
由于2x>x,
所以点E一定在点P的左侧.
若以P,Q,M,N为顶点的四边形是等腰梯形,
则点F一定在点N的右侧,且PE=NF,
即2x﹣x=x2﹣3x.
解得x1=0(舍去),x2=4.
由于当x=4时,以P,Q,M,N为顶点的四边形是平行四边形,
所以以P,Q,M,N为顶点的四边形不能为等腰梯形.。

相关文档
最新文档