贝塞尔(Bessel)展开公式 Jacobi–Anger expansion

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

From Wikipedia, the free encyclopedia
In mathematics, the Jacobi–Anger expansion (or Jacobi–Anger identity) is an expansion of exponentials of trigonometric functions in the basis of their harmonics. It is useful in physics (for example, to convert between plane waves and cylindrical waves), and in signal processing (to describe FM signals). This identity is named after the 19th-century mathematicians Carl Jacobi and Carl Theodor Anger.
The most general identity is given by:[1][2]
where J n(z) is the n-th Bessel function. Using the relation valid for integer n, the expansion becomes:[1][2]
The following real-valued variations are often useful as well:[3]
1.
^ a b Colton & Kress (1998) p. 32.
2.
^ a b Cuyt et al. (2008) p. 344.
3.
^ Abramowitz & Stegun (1965) p. 361, 9.1.42–45 (http://www.math.sfu.ca/~cbm/aands/page_361.htm)
Abramowitz, Milton; Stegun, Irene A., eds. (1965), "Chapter 9" (http://www.math.sfu.ca
/~cbm/aands/page_355.htm) , Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, pp. 355, MR0167642 (
/mathscinet-getitem?mr=0167642) , ISBN 978-0486612720, http://www.math.sfu.ca
/~cbm/aands/page_355.htm.
Colton, David; Kress, Rainer (1998), Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, 93 (2nd ed.), ISBN 978-3-540-62838-5
Cuyt, Annie; Petersen, Vigdis; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B.
(2008), Handbook of continued fractions for special functions, Springer,
ISBN 978-1-4020-6948-2
Weisstein, Eric W.. "Jacobi–Anger expansion" (/Jacobi-
AngerExpansion.html) . MathWorld — a Wolfram web resource.
/Jacobi-AngerExpansion.html. Retrieved 2008-11-11. Retrieved from "/wiki/Jacobi%E2%80%93Anger_expansion"
Categories: Special functions | Mathematical identities
This page was last modified on 4 May 2010 at 04:58.
T ext is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. See T erms of Use for details.
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit
organization.
Privacy policy
About Wikipedia
Disclaimers。

相关文档
最新文档