北师大版完整版小学五年级数学下册应用题大全280题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版完整版小学五年级数学下册应用题大全280题含答案
一、北师大小学数学解决问题五年级下册应用题
1.成渝高速路长330千米,一辆大客车从重庆开往成都,一辆小轿车同时从成都开往重庆.2小时在途中相遇,已知小轿车的速度是大客车的1.2倍.两车每小时各行多少千米?2.鱼缸里水深2.8分米,放入一块珊瑚石完全浸没在水中,水面上升到3分米珊瑚石的体积是多少立方分米?
3.你能把宣传栏上破损的数补上吗?(用方程解)
4.超市购进甲和乙两种品牌的大米共101袋,其中甲品牌大米的袋数比乙品牌的1.2倍还多24袋。

超市购进甲、乙两种品牌的大米各多少袋?(列方程解答)
5.实验小学五(3)班学生合买一件生日礼物送给灾区的小朋友。

如果每人出8元,就多84元;如果每人出6元,就少12元。

实验小学五(3)班有多少名学生?
6.某工厂用一批钢材做零件,每个零件用钢4.5kg,可做160个,改进技术后,每个零件节约用钢1.3kg,改进技术后,这批钢材可做多少个零件?(用方程解)
7.张华买了一批菜油,放在A,B两个桶里,两个桶都未能装满。

如果把A桶油倒入B桶后,B桶装满,A桶还剩10升菜油;如果把B桶油倒入A桶后,A桶还要再加20升菜油才满。

已知A桶容量是B桶的2.5倍。

问:张华一共买了多少升菜油?
8.一个底面是正方形的长方体木块,高是10厘米,如果高减少3厘米,表面积就减少了60平方厘米,原来这个长方体木块的体积是多少?
9.把棱长为1cm的小正方体按如下方式摆放,请看图找规律并填表。

摆放的层数小正方体的个数露在外面的面的个数露在外面的面积
1
2
3
4
5
10.甲、乙两人赛跑,甲的速度是7米/秒,乙的速度是5.5米/秒,甲在乙后面15米,两人同时同向起跑,问甲经过几秒追上乙?
11.如图所示,一个棱长8cm,的正方体切去一个长4cm、宽4cm、高5.5cm的长方体后,在剩下的部分表面全部涂上油漆。

(1)剩下部分的体积是多少?
(2)涂油漆部分的面积是多少?
12.一辆汽车从甲地开往乙地,平均每小时行驶60km。

这辆汽车到达乙地后又以90千米时的速度返回甲地,往返一次共用2.5小时。

求甲、乙两地间的路程。

13.阳光小学五、六年级一个月共收集废电池80节。

五年级收集的废电池数量是六年级的1.5倍。

五、六年级各收集了多少节废电池?
14.5个棱长都是10cm的正方体纸箱堆放在墙角处(如下图)。

露在外面的面积是多少平方厘米?
15.某公司买了8箱防疫物资,箱子的棱长是1m,要堆放在仓库里。

小青设计了如下沿墙角摆放的方法:
① ② ③ ④
(1)占地面积最大的是第________种摆放方法,占地面积是________m2。

(2)露在外面的面积最少的是第几种摆放方法?露在外面的面积是多少?
16.玲玲家有一个长方体的玻璃鱼缸,长8dm,宽4dm,高6dm。

(1)制作这个鱼缸至少需要多少玻璃?【鱼缸上面没有玻璃】
(2)鱼缸里原来有一些水,放入4个同样大的装饰球后(如右图),水面上升了0.05dm。

每个装饰球的体积是多少dm3?
17.希望小学有一间长10米、宽6米、高3.5米的长方体教室。

(1)这间教室的空间有多大?
(2)现在要在教室粉刷墙壁,扣除门、窗、黑板面积6平方米,这间教室要刷多少平方米?
18.一个棱长是15cm的正方体水槽中,水深8cm,现将一块长12cm,宽是7.5cm的长方体石块,完全浸没在水中(水未溢出),水面上升5cm,石块的高是多少厘米?
19.明明家的厨房长2.4米,宽2米,高2.6米,用瓷砖贴它的四壁,若购买边长2分米的正方形瓷砖,每块5元,一共要用多少元?
20.如图,计算这块空心砖的表面积。

(单位:厘米)
21.姐妹俩同时从家出发去少年宫,妹妹步行每分钟走65米,姐姐骑车每分钟行155米。

姐姐到达少年宫立即返回,途中与妹妹相遇,她们从出发到相遇共用了5分钟。

她们家距少年宫有多少米?
22.一个正方体容器,棱长为20厘米,放入一个土豆后(完全浸没水中),水面升高了3厘米,这个土豆的体积是多少?
23.如图,一个棱长为5分米的正方体,在它6个面的正中和8个顶点处,分别挖去一个棱长为1分米的小正方体。

剩下立体图形的体积和表面积分别是多少?
24.一个长方体,如果高增加3厘米,就成为一个正方体。

这时表面积比原来增加了96平方厘米,原来的长方体的体积是多少立方厘米?
25.一个长方体玻璃容器,从里面量长、宽均是2dm,向容器中倒入5L水,再把一个土豆放入水中。

这时量得容器内的水深13cm。

这个土豆的体积是多少?
26.欣欣食品厂要做一个正方体广告箱,棱长0.8m。

(1)先用铝合金条做成正方体框架,共需多少米铝合金条?(不计接头和损耗)
(2)然后用广告布把它各面都包装起来,至少要用多少平方米的广告布?
27.一杯纯牛奶,乐乐喝了半杯后,觉得有些凉,就兑满了热水。

他又喝了半杯,就出去玩了。

乐乐一共喝了多少杯纯牛奶?多少杯水?
28.学校环形跑道长480米,笑笑和淘气从跑道的同一地点同时出发,都按顺时针方向跑,经过30分钟,笑笑第一次追上淘气。

淘气的速度是230米/分,笑笑每分跑多少米?(列方程解答)
29.一根铁丝恰好可以焊接成一个长5厘米,宽3厘米,高4厘米的长方体框架.若这根铁丝也恰好能焊接成一个正方体框架.
(1)这个正方体框架的棱长是多少厘米?
(2)给这个正方体框架的表面焊接上铁皮,铁皮的面积是多少平方厘米?
30.一个无盖的长方体铁皮水槽(如下图),做这个水槽至少需要多少平方分米铁皮?这个水槽最多可以盛水多少升?(单位:dm)
31.求下图中大圆球的体积。

32.AB两地相距384千米,甲乙两辆汽车同时从A地开往B地,当甲车到达B地时,乙车离B地还有60千米,已知乙车每小时行54千米,甲车每小时行多少千米?
33.将四个大小相同的正方体粘成一个长方体(如图)后,表面积减少54平方厘米,求长方体的表面积和体积。

34.一根方钢,长6米,横截面是一个边长为4厘米的正方形。

(1)这块方钢重多少吨?(1立方厘米钢重10克)
(2)一辆载重5吨的货车能否一次运载50根这样的方钢?
35.一种盒装纸巾的长、宽、高(如图1)所示。

用塑料包装纸将3盒这样的纸巾包装起来(如图2),至少需要多少平方厘米的塑料包装纸?(接头处忽略不计)
36.一个长方体水箱,从里面量长是40cm,宽是35cm,水箱中浸没一个钢球(水未溢出),水深15cm。

取出钢球后,水深12cm。

这个钢球的体积是多少立方厘米?
37.图形计算。

(1)这是一个长方体的展开图,求这个长方体的体积。

(2)每个小立方体的棱长是2厘米。

求下面这个图形的表面积。

38.一个长20cm、宽15cm、高8cm的长方体木块,每次都从这个木块中锯下一个最大的正方体。

锯三次后,剩下的体积是多少?
39.某公司订购400根方木,每根方木横截面的面积是25平方分米,长是4米,这些木料一共有多少方?(1方=1立方米)
40.一个长方体水箱,长10dm,宽8dm,水深4.5dm,当把一块石块浸入水箱后,水位上升到6.5dm,这块石块的体积是多少?
【参考答案】***试卷处理标记,请不要删除
一、北师大小学数学解决问题五年级下册应用题
1.解:设大客车每小时行x千米,则小轿车每小时行1.2x千米。

(1.2x+x)×2=330
2.2x×2=330
4.4x=330
x=330÷4.4
x=75
75×1.2=90(千米)
答:大客车每小时行75千米,小轿车每小时行90千米。

【解析】【分析】本题属于相遇问题,等量关系:(大客车的速度+小客车的速度)×行驶时间=行驶路程,根据等量关系列方程,根据等式性质解方程。

2.解: 6×5× (3-2.8)
=30×0.2
= 6(dm³)
答:水面上升到3分米珊瑚石的体积是6立方分米。

【解析】【分析】珊瑚石的体积=底面积×(放入珊瑚石后水面高度-原来水深)。

3.解:设梯形的高是x米。

(95+117)×x÷2=5830
(95+117)×x=5830×2
(95+117)×x=11660
212x=11660
x=11660÷212
x=55
答:梯形的高是55米。

【解析】【分析】等量关系:(梯形的上底+下底)×高÷2=梯形面积;根据等量关系列方程,根据等式性质解方程。

4.解:设超市购进乙品牌的大米x袋,则甲品牌大米为(1.2x+24)袋。

x+1.2x+24=101
2.2x+24=101
2.2x+24-24=101-24
2.2x=77
x=35
甲品牌:1.2x+24
=35×1.2+24
=42+24
=66(袋)
答:超市购进甲品牌的大米66袋、乙品牌的大米35袋。

【解析】【分析】根据等量关系式“甲品牌袋数+乙品牌袋数=甲乙品牌总袋数”,列方程解答即可。

5.解:设这个实验班有x名学生。

8x-84=6x+12
8x=6x+12+84
8x=6x+96
8x-6x=96
2x=96
x=96÷2
x=48
答:实验小学五(3)班有48名学生。

【解析】【分析】本题有两个相等关系,学生数不变,生日礼物价钱不变,学生数设为x,根据生日礼物价钱不变列方程;
学生对的总钱数-84元=生日礼物价钱,学生对的总钱数+12元=生日礼物价钱,等量关系:学生对的总钱数-84元=学生对的总钱数+12元,根据等量关系列方程,根据等式性质解方程。

6.解:设改进技术后,这批钢材可做x个零件。

(4.5-1.3)x=4.5×160
3.2x=720
x=720÷3.2
x=225
答:改进技术后,这批钢材可做225个零件.
【解析】【分析】等量关系:改进技术后,每个零件用钢的质量×做的零件个数=改进技术前,每个零件用钢的质量×做的零件个数,根据等量关系列方程,根据等式性质解方程。

7.解:设B桶能装x升油,则A桶的容量是2.5x升。

x+10=2.5x-20
x+10-x=2.5x-20-x
10=1.5x-20
1.5x-20=10
1.5x=20+10
1.5x=30
x=30÷1.5
x=20
20+10=30(升)
答:张华一共买了30升油。

【解析】【分析】本题可列方程进行解答,更好理解。

设B桶能装x升油,A桶容量是B 桶的2.5倍,所以A桶的容量是2.5x升,由于把A桶油倒入B桶后,B桶装满,A桶还多10升,由此可知,共有油(x+10)升;又把B桶倒入A桶,A 桶还能再加20升才满,则油的总量是(2.5x-20)升,则此可得方程:x+10=2.5x-20,解此方程求出B桶的容量后,即能求出张华一共买了多少升油。

分析本题要注意两次倒入的油的总量没有发生变化,并由此列出等量关系式是完成本题的关键。

8.解:60÷4÷3
=15÷3
=5(厘米)
10×5×5
=50×5
=250(立方厘米)
答:原来这个长方体木块的体积是250立方厘米。

【解析】【分析】减少的表面积÷4÷减少的高=长方体的底面边长,长方体的底面边长×边长×高=长方体木块的体积。

9.解:
摆三层有4+1+2+3个正方体,摆四层有10+1+2+3+4个正方体,摆五层有20+1+2+3+4+5个正方体;
露在外面的面的个数:摆一层有1×3个,摆2层有(1+2)×3,摆3层有(1+2+3)×3,摆4层有(1+2+3+4)×3,摆5层有(1+2+3+4+5)×3个;
露在外面的面积=露在外面的个数×每一个小正方形的面积(小正方形的面积=棱长×棱长),计算即可。

10.解:设甲经过几秒追上乙。

5.5x+15=7x
x=10
答:甲经过10秒追上乙。

【解析】【分析】本题可以用方程作答,即设甲经过几秒追上乙,题中存在的等量关系是:乙的速度×甲追上乙用的时间+甲和乙之间的距离=甲的速度×甲追上乙用的时间,据此代入数据和字母作答即可。

11.(1)解:8×8×8-4×4×5.5=424(立方厘米)
答:剩下部分的体积是424立方厘米。

(2)解:8×8×6=384(平方厘米)
答:涂油漆部分的面积是384平方厘米。

【解析】【分析】(1)正方体体积=棱长×棱长×棱长,长方体体积=长×宽×高,剩下部分的体积=正方体体积-长方体体积;
(2)把挖掉部分露出的三个面向右,向前,向上平移可以知道,涂油漆部分的面积就是正方体的表面积,正方体表面积=棱长×棱长×6,据此解答。

12.解:设去时时间为x小时,则返回时间为(2.5-x)小时,
60x=90×(2.5-x)
60x=90×2.5-90x
60x+90x=90×2.5-90x+90x
150x=225
150x÷150=225÷150
x=1.5
1.5×60=90(千米)
答:甲、乙两地间的路程是90千米。

【解析】【分析】此题主要考查了列方程解决问题,去时与返回时的路程不变,设去时时间为x小时,则返回时间为(2.5-x)小时,去时速度×去时用的时间=返回速度×返回用的时间,据此列方程解答,然后用速度×时间=路程,据此列式解答。

13.解:设六年级收集废电池x节,则五年级收集1.5x节,
1.5x+x=80
2.5x=80
2.5x÷2.5=80÷2.5
x=32
五年级:32×1.5=48(节)
答:五年级收集48节废电池,六年级收集32节废电池。

【解析】【分析】此题主要考查了列方程解决问题,设六年级收集废电池x节,则五年级收集1.5x节,五年级收集的废电池数量+六年级收集的废电池数量=80,据此列方程解答。

14.解:观察几何体得:从上面可以看到4个正方形面,从前面可以看到3个正方形面,从右面可以看到4个正方形面,所以露在外面的面一共有:4+3+4=11(个),则露在外面的面积:10×10×11=1100(平方厘米)。

答:露在外面的面积是1100平方厘米。

【解析】【分析】先从不同的方向观察几何体,得到每个方向看到的正方形面的数量,从而求得露在外面的正方形面的数量,再根据“露在外面的面积=棱长×棱长×露在外面的正方形面的数量”,代入数据解答即可。

15.(1)1;8
(2)解:①露在外面的面积:1×1×8×2+1×1=16+1=17(m²);
②露在外面的面积:1×1×8+1×1×4+1×1×2=8+4+2=12+2=14(m²);
③露在外面的面积:1×1×4×3=4×3=12(m²);
④露在外面的面积:1×1+1×1×4+1×1×5+1×1×6=1+4+5+6=10+6=16(m²);
17>16>14>12;
答:露在外面的面积最少的是第③中摆放方法,露在外面的面积是12m²。

【解析】【解答】(1)①占地面积:1×1×8=1×8=8(m²);②占地面积:1×1×4=1×4=4(m²);③占地面积1×1×4=1×4=4(m²);④占地面积:1×1×6=1×6=6(m²);8>6>4;占地面积最大的是第1种摆放方法,占地面积是8m²。

故答案为:1;8。

【分析】占地面积一般是指几何体的底层面积;露在外面的面积一般是指不接触底面或墙面的面积;据此解答即可。

16.(1)解:8×4+8×6×2+4×6×2
=32+96+48
=176(平方分米)
答:制作这个鱼缸至少需要176平方分米玻璃。

(2)解:8×4×0.05÷4
=8×0.05
=0.4(立方分米)
答:每个装饰球的体积是0.4立方分米。

【解析】【分析】(1)底面面积+前后两个面的面积+左右两个面的面积=制作这个鱼缸至少需要的玻璃面积;
(2)鱼缸的长×宽×水面上升的高度=4个装饰球的体积;4个装饰球的体积÷4=每个装饰球的体积。

17.(1)解:10 ×6×3.5
=60×3.5
=210(立方米)
答:这间教室的空间有210立方米。

(2)解:10×6+(10×3.5+3.5×6)×2-6
=60+(35+21)×2-6
=60+56×2-6
=60+112-6
=166(平方米)
答:这间教室要刷166平方米。

【解析】【分析】(1)长方体体积=长×宽×高,根据体积公式计算这间教室的空间;(2)地面是不需要粉刷的,根据长方体表面积公式,只计算一个底面,再加上四个侧面,然后减去门、窗、黑板的面积即可求出需要粉刷的面积。

18.解:15×15×5÷(12×7.5)
=1125÷90
=12.5(厘米)
答:石块的高是12.5厘米。

【解析】【分析】石块的高=上升的体积÷(石块的长×宽)=正方体水槽的棱长×棱长×水面上升的高度×(石块的长×宽),据此代入数值解答即可。

19.解:(2.4×2.6+2×2.6)×2
=(6.24+5.2)×2
=11.44×2
=22.88(平方米),
22.88÷(0.2×0.2)×5
=22.88÷0.04×5
=572×5
=2860(元)。

答:一共要用2860元。

【解析】【分析】先根据“厨房四壁的面积=(长×高+宽×高)×2”计算出厨房四壁的面积,再根据“一共要用的钱数=瓷砖的数量×每块瓷砖的价钱=厨房四壁的面积÷每块瓷砖的面积×每块砌砖的价钱=厨房四壁的面积÷(瓷砖的边长×边长)×每块砌砖的价钱”,代入数值解答即可。

20.解:(40×30+30×25+40×25)×2-12×10×2+(12+10)×25×2=6760(平方厘米)
答:这块空心砖的表面积是6760平方厘米。

【解析】【分析】先计算出大长方体的表面积,然后减去两个长12厘米、宽10厘米的长方形的面积,最后加上空心部分四周的面积即可.
21.解:设她们家距少年宫有x米,则
2x=(65+155)×5
2x=220×5
2x=1100
2x÷2=1100÷2
x=550
答:她们家距少年宫有550米。

【解析】【分析】设她们家距少年宫有x米,分析题意可得姐姐和妹妹两人行驶的总路程(两人的速度和×行驶的时间)=她们家距少年宫距离的2倍,则可列出方程2x=(65+155)×5,根据等式的基本性质求解即可。

22.解:20×20×3
=400×3
=1200(立方厘米)
答:这个土豆的体积为1200立方厘米。

【解析】【分析】水面升高部分水的体积就是土豆的体积,因此用容器的底面积乘水面升高的高度即可求出土豆的体积。

23.解:剩下立体图形的体积:
5×5×5-1×1×1×(6+8)
=25×5-1×14
=125-14
=111(立方分米)
剩下立体图形的表面积:
5×5×6+1×1×4×6
=25×6+4×6
=150+24
=174(平方分米)
答:剩下立体图形的体积是111立方分米,表面积是174平方分米。

【解析】【分析】观察图可知,剩下立体图形的体积=原来正方体的体积-减少的14个小正方体的体积;
剩下立体图形的表面积=原来正方体的表面积+增加的24个正方形面的面积,据此列式解答。

24.解:设原长方体的长为x厘米,则它的宽也为x厘米。

3x×4=96
12x=96
12x÷12=96÷12
x=8
8×8×(8-3)=64×5=320(立方厘米)
答:原来的长方体的体积是320立方厘米。

【解析】【分析】表面积增加数量=长方体的长×3×4,据此列出方程,求出原长方题的长;长方体体积=长×宽×高。

25.解:5L=5dm3,
5÷2÷2
=2.5÷2
=1.25(分米)
=12.5(厘米)
2分米=20厘米,
20×20×(13-12.5)
=20×20×0.5
=400×0.5
=200(立方厘米)
答:这个土豆的体积是200立方厘米。

【解析】【分析】根据题意可知,先求出原来长方体容器里水的高度,长方体的容积÷长÷宽=长方体容器内水的深度,放入土豆后,水的深度增加,增加部分的体积就是土豆的体积,长方体的长×宽×上升的水位=土豆的体积,据此列式解答。

26.(1)解:0.8×12=9.6(米)
答:共需9.6米铝合金条。

(2)解:0.8×0.8×6=3.84(平方米)
答:至少要用3.84平方米的广告布。

【解析】【分析】(1)正方体棱长和=正方体棱长×12;
(2)正方体表面积=棱长×棱长×6。

27.解:纯牛奶:

=+
=(杯)
水喝了×=(杯)
答:乐乐一共喝了杯纯牛奶,杯水。

【解析】【分析】根据题意可知,把这杯纯牛奶的总量看作单位“1”,先喝了半杯,则喝了
杯纯牛奶,剩下杯纯牛奶;然后兑满了热水,他又喝了半杯,此时喝了剩下杯纯牛奶的
一半,一共喝了+×杯纯牛奶;水则喝了杯的一半,据此解答。

28.解:设笑笑每分跑x米。

30x-230×30=480
30x-6900=480
30x-6900+6900=480+6900
30x=7380
x=246
答:笑笑每分跑246米。

【解析】【分析】此题主要考查了追及问题,可以列方程解答,设笑笑每分跑x米,笑笑跑的路程-淘气跑的路程=追及时相差的路程,据此列方程解答。

29.(1)解:(5+3+4)×4
=12×4
=48(厘米)
48÷12=4(厘米)
答:这个正方体框架的棱长是4厘米。

(2)解:42×6
=16×6
=96(平方厘米)
答:铁皮的面积是96平方厘米。

【解析】【分析】(1)(长+宽+高)×4=长方体棱长和,据此求出长方体的棱长和,长方体棱长和就是铁丝的长,也是正方体的棱长和,正方体棱长和÷12=正方体棱长;
(2)铁皮的面积就是正方体的表面积,正方体的表面积=棱长×棱长×6,据此解答。

30.解:12×5+(12×2+5×2)×2=128(dm2)
12×5×2=120(dm3)=120(L)
答:做这个水槽至少需要128平方分米铁皮,这个水槽最多可以盛水120升。

【解析】【分析】因为无盖,所以做这个水槽至少需要的铁皮面积就是5个面的面积,长×宽+长×高×2+宽×高×2=至少需要铁皮的面积;长×宽×高=长方体体积,据此先算出长方体体积,再把体积单位化为容积单位。

31.解:(24-12)÷3=4cm3
12-4=8cm3
答:大圆球的体积是8cm3。

【解析】【分析】从第二个图和第三个图可以看出,第三个图比第二个图多3个小球,所以每个小球的体积=第三个图比第二个图多流出水的体积÷3,那么大圆球的体积=第二个图流出水的体积-1个小球的体积,据此代入数据作答即可。

32.解:设甲车每小时行x千米,则
384÷x=(384-60)÷54
384÷x=324÷54
384÷x=6
x=384÷6
x=64
答:甲车每小时行64千米。

【解析】【分析】设甲车每小时行x千米,根据甲车和乙车行驶的时间相同即可得出等量关系式“甲车行驶的路程÷甲车的速度=乙车行驶的路程÷乙车的速度”,可列出方程384÷x=(384-60)÷54,根据等式的基本性质求解即可得出x的值。

33.解:每个正方形面的面积:54÷6=9(平方厘米),
长方体表面积:9×18=162(平方厘米),
3×3=9,所以正方体棱长是3厘米,
体积:3×3×3×4=27×4=108(立方厘米)
答:长方体的表面积是162平方厘米,体积是108立方厘米。

【解析】【分析】四个正方体拼成长方体后,表面积会减少6个正方形的面的面积,所以用54除以6即可求出一个正方形面的面积。

长方体的表面积共有18个小正方形面的面积,由此计算长方体表面积。

根据正方形面积公式确定正方体的棱长,然后用正方体体积乘4求出长方体的体积即可。

34.(1)解:6米=600厘米
4×4×600×10
=16×600×10
=9600×10
=96000(克)
96000÷1000÷1000=0.096(吨)
答:这块方钢重0.096吨。

(2)解:0.096×50=4.8(吨)
4.8<5,所以能运完。

答:一辆载重5吨的货车能一次运载50根这样的方钢。

【解析】【分析】(1)方钢的体积=截面的面积(边长×边长)×长(方钢的长,注意将方钢长的单位化为厘米),再用方钢的体积×1立方厘米钢重的克数计算出一根方钢的克数,
再将其化成吨数即可;
(2)用一根方钢的吨数×方钢的根数=50根方钢的吨数,再与货车载重的吨数比较即可。

35.解:8×3=24(cm)
(21×10+21×24+10×24)×2
=(210+504+240)×2
=954×2
=1908(平方厘米)
答:至少需要1908平方厘米的塑料包装纸。

【解析】【分析】观察图可知,先求出现在的长方体的高,然后用公式:长方体的表面积=(长×宽+长×高+宽×高)×2,据此列式解答。

36.解:h=15-12=3 cm
40×35×3=4200cm3
答:这个钢球的体积是4200立方厘米。

【解析】【分析】这个钢球的体积=水箱的长×水箱的宽×取出钢球后的高度差,其中取出钢球后的高度差=取出钢球前水的深度-取出钢球后水的深度,据此代入数据作答即可。

37.(1)解:(38-4×2)÷2
=(38-8)÷2
=30÷2
=15(cm)
15×10×4
=150×4
=600(cm3)
答:这个长方体的体积是600cm3。

(2)解:(5+7+6)×2
=18×2
=36(个)
36×2×2
=72×2
=144(cm2)
答:这个图形的表面积是144cm2。

【解析】【分析】(1)观察图可知,先求出这个长方体的长,(38-高×2)÷2=长,然后用公式:长方体的体积=长×宽×高,据此列式解答;
(2)根据题意可知,先求出这个组合体露在外面的面数,然后用露在外面的面数×每个小正方体的棱长×棱长=这个图形的表面积,据此列式解答。

38.解:第一次:8×8×8
=64×8
=512(cm3)
第二次:8×8×8
=64×8
=512(cm3)
第三次:7×7×7
=49×7
=343(cm3)
剩下的体积=20×15×8-512-512-343
=300×8-512-512-343
=2400-512-512-343
=1888-512-343
=1376-343
=1033(cm3)
答:剩下的体积是1033 cm3。

【解析】【分析】第一次:从长上锯一个棱长为8厘米的正方体;第二次从宽上锯一个长为8厘米的立方体;第三次宽只剩下7厘米,所以只能锯一个棱长为7的正方体,再用长方体的体积(长×宽×高)减去三个正方体的体积(棱长×棱长×棱长),代入数值计算即可。

39. 25平方分米=0.25平方米
0.25×4×400=400(立方米)=400(方)
答:这些木料一共有400方。

【解析】【分析】1根方木体积=方木横截面的面积×长,1根方木体积×400根=400根方木体积。

40.解:10×8×(6.5-4.5)
=10×8×2
=80×2
=160(dm3)
答:这块石块的体积是160dm3。

【解析】【分析】此题主要考查了不规则物体的体积计算,水位上升部分的体积就是石块的体积,长方体水箱的长×宽×水位上升的高度=这块石块的体积,据此列式解答。

相关文档
最新文档