光电效应与康普顿效应比较
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光电效应与康普顿效应的比较
周嘉夫
(天水师范学院物理与信息科学学院,甘肃天水741001)
摘要: 光电效应和康普顿效应是光的粒子性的两个重要证据,通过对两效应实验规律的比较及产生条件的分析,论述两效应之间存在的本质差异,进一步说明光电效应和康普效应虽然都是光子与原子的作用过程,但产生条件和现象却是根本不同的。
关键词:光电效应康普顿效应光子散射电子自由电子差异能量作用比较
The Comparison of Photoelectric Effect and Konpton Effect
Zhou Jiafu
( School of Physics and Information Science, Tianshui Normal university, 741001) Abstract:Photoelectric effect and Compton effect is the particle nature of light are two important evidence. Effect of the two experiments and production of comparative law analysis of the conditions discussed between the two effects of differences in the photoelectric effect and further Compton Effect Although they are both the role of photon and atom, but phenomena arising from the conditions and it is step-by-step with the fundamental.
Key words:Scattering, Electron, PhotoelectricEffect, Konpton Effec,Free Electron,Photon,Function,Energy,Comparison
当频率为ν的光子与原子相互作用时,由于作用的形式及产生的后果不同,出现的现象主要有:①光子继续按原来的方式运动,就好象那儿没有原子存在一样,而原子也不受任何扰动;②产生光电效应,光子的能量被原子吸收,转移给某个电子,使该电子脱离原子的束缚(从原子中电离),形成一个自由电子和一个正离子;③产生康普顿效应,在该效应中,光子被原子内较松散的外层电子所散射,光子失掉一部分能量变为电子的反冲动能,散射光子的频率减小,由于原子核对外层电子束缚得很松,可把原子的外层电子看作自由电子。除此之外,光子与原子的相互作用,还可能会产生其它一些更复杂的现象,这里不再赘述。本文仅讨论将光电效应和康普顿效应作为光的粒子性的两个有力证据,说明光不仅具有分立的能量hv ,而且还具有一定的动量c hv 。用爱因斯坦的光子理论可以圆满解释光电效应和康普顿效应的实验结果。现行光学教材[1][2][3]中,均没有深入讨论两种效应的本质上差异。为什么它们同是光子与电子的碰撞过程,却引起了截然不同的两种效应?本文从实验事实出发,对光电效应和康普顿效应规律和本质作了比较。
1 光电效应和康普顿效应实验规律的比较
光电效应首先是由赫兹在1887年发现的。光照射在金属表面时,金属中有电子逸出的现象叫做光电效应。金属中所逸出的电子叫光电子,这一名字仅为了表示它是由于光的照射而从金属表面飞出的这一事实。其实它与通常的电子毫无区别,因此,光电子的定向移动所形成的电流叫做光电流。光电效应的规律可归纳为以下几点:
(1)要产生光电效应,入射光的频率必须0νν≥ (或0λλ≤),0ν叫极限频率,对不同金属0ν的值不同,与0ν相应的波长值0λ叫极限波长。如果人射光的频率0νν<(或0λλ>)则无论入射光强度多大,照射时间多长,都不会产生光电效应。
(2)从金属中释放的电子的最大初动能与光的强度无关,与光的频率有关。光电子的最大初动能随入射光频率的增大而线性地增大。
(3)光电子的发射与光的照射几乎是同时的,它们之间的时间不会超过910-s 。
(4) 入射光频率大于极限频率时,饱和光电流(单位时间内发射的光电子数)与入射光强度成正比。
康普顿效应是表明光具有粒子性的另一个现象。这现象首先是由康普顿于1922-1923年间发现的。当波长很短的X 射线通过某种物质时,散射光中除了有原有波长
0λ的X 射线外,还有较长波长λ的X 射线的散射现象称为康普顿效应。康普顿效应的实验规律可归纳成如下两点:
(1) 康普顿效应中波长的改变与散射角(散射线与人射线之间的夹角)θ的关系由康普顿散射公式确定,即0λλλ-=∆=-1(0λcos θ),式中常数=0λ0.2463•
A 叫做电子的康普顿波长,对于同一散射物质,波长差λ∆随θ角增大而增大,与入射光波长无关。
(2) 对于不同散射物质,在同样的散射方向上,波长差λ∆相同,但较长波长的射线强度随原子序数Z 的增大而减少[4],即随着Z 的增加康普顿效应变得不显著。 1.1光的波动理论不能解释光电效应和康普顿效应
在光电效应和康普顿效应中牵涉到的光子和个别电子的相互作用,光的波动理论是很难解释这种微观世界中的作用的,而必须用量子概念来解释。光电效应实验规律的前两条说明光电效应与光的频率有决定性的关系:入射光频率ν必须大于等于极限频率0ν才能发生光电效应,且发射出光电子的最大初动能随入射光频率的增大而增大,与光的强度无关。从光的波动理论看这是无法理解的,入射光强度大即入射光能量大,金属中电子吸收光的能量就大,应该更容易发生光电效应且光电子动能越大。而实验却说明只要入射光频率0νν<无论光强度多大都不能从物质中照射出电子,只要0νν≥,无论多微弱的光都能从物质中照射出电子,且电子的最大初动能随入射光频率的增大而增大。从波动理论看,“电子的发射与光的照射几乎是同时的”也是不可理解的。深入细致分析原子中电子接收光的能量过程,原子面积很小,在单位时间内吸收入射光的能量也很少,需要很长时间才能发射电子。波动理论能解释实验规律的最后一条,但从整体看,从关键的实验事实看,应该认为波动理论不能解释光电效应的实验规律。
1.2用光子理论可以完满地解释光电效应和康普顿效应的物理本质及规律
按照光子理论,当光射到金属表面时,金属中的电子把光子的能量νh (h 为普朗克常数)全部吸收,电子把这部分能量用作两种用途,一部分用来挣脱金属对它的束缚,即
用作逸出功w ,余下一部分转换成电子离开金属表面后的动能22
1mv ,按能量守恒与转换定律,应有w mv h +=22
1ν,这就是有名的爱因斯坦光电效应方程。利用这个方程能圆满地解释光电效应的所有规律。