七年级上学期数学期中试卷及答案完整

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上学期数学期中试卷及答案完整 一、选择题 1.49的平方根是()
A .7
B .﹣7
C .7±
D .49± 2.下列图案可以由部分图案平移得到的是( )
A .
B .
C .
D . 3.点()P m n ,在第二象限内,则点(),Q m m n --在第______象限.
A .一
B .二
C .三
D .四
4.下列命题是假命题的是( )
A .同位角相等,两直线平行
B .三角形的一个外角等于与它不相邻的两个内角的和
C .平行于同一条直线的两条直线平行
D .平面内,到一个角两边距离相等的点在这个角的平分线上
5.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )
A .12390∠+∠-∠=︒
B .12390∠+∠+∠=︒
C .321180∠+∠-∠=︒
D .132180∠+∠-∠=︒ 6.若a 2=16,3b =2,则a +b 的值为( ) A .12 B .4 C .12或﹣4 D .12或4 7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a ,b 上,已知∠2=35°,则∠1的度数为( )
A .45°
B .125°
C .55°
D .35°
8.如图,在平面直角坐标系中,A (1,1),B (﹣1,1),C (﹣1,﹣2),D (1,﹣2).把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A ﹣B ﹣C ﹣D ﹣A …的规律绕在四边形ABCD 的边上,则细线另一端所在位置的点的坐标是( )
A .(﹣1,0)
B .(1,﹣2)
C .(1,1)
D .(﹣1,﹣1)
二、填空题
9.计算:36的结果为_____.
10.已知点P 关于x 轴的对称点为(,1)a -,关于y 轴的对称点为(2,)b -,那么点P 的坐标是________.
11.如图,在ABC 中,70A ∠=︒,ABC ∠的角平分线与ABC 的外角角平分线交于点E ,则E ∠=__________度.
12.如图,把一把直尺放在含30度角的直角三角板上,量得154∠=︒,则2∠的度数是_______.
13.如图,将一张长方形纸片沿EF 折叠后,点A ,B 分别落在A ′,B ′的位置.如果∠1=59°,那么∠2的度数是_____.
14.a ※b 是新规定的这样一种运算法则:a ※b=a+2b ,例如3※(﹣2)=3+2×(﹣2)=﹣
1.若(﹣2)※x=2+x ,则x 的值是_____.
15.P (2m -4,1-2m )在y 轴上,则m =__________.
16.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (4,0),沿长方形BCDE 的边作环绕运动.物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是___.
三、解答题
17.计算下列各题: (1)2213-12;
(2)-318×16; (3)-3216+3125+
()2-3. 18.求下列各式中的x .
(1)x 2-81=0
(2)(x ﹣1)3=8
19.如图,点D ,F 分别是BC 、AB 上的点,//DF AC ,FDE A ∠=∠.
(1)对//DE AB 说明理由,将下列解题过程补充完整.
解://DF AC (已知)
A ∴∠=________(________________________)
A FDE ∠=∠(已知)
FDE ∴∠=___________(________________________)
//DE AB ∴(______________________________)
(2)若AED ∠比BFD ∠大40︒,求BFD ∠的度数.
20.ABC ∆与A B C '''∆在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标:A ' ; B ' ;C ' ;
(2)说明A B C '''∆由ABC ∆经过怎样的平移得到?答:_______________.
(3)若点(),P a b 是ABC ∆内部一点,则平移后A B C '''∆内的对应点P '的坐标为_________; (4)求ABC ∆的面积.
21.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不能全部地写出来,于是小聪用21-来表示2的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为2的整数部分是1,用个数减去其整数部分,差就是它的小数部分.
请解答下列问题:
(1)10的整数部分是____,小数部分是_____.
(2)如果55-的小数部分是a ,412-的整数部分是b ,求5a b ++的值. (3)已知611x y -=+,其中x 是正整数,01y <<,求x y -的相反数.
22.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
23.如图,已知直线//AB 射线CD ,110CEB ∠=︒.P 是射线EB 上一动点,过点P 作//PQ EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.
(1)若点P ,F ,G 都在点E 的右侧.
①求PCG ∠的度数;
②若30EGC ECG ∠-∠=︒,求CPQ ∠的度数.(不能使用“三角形的内角和是180︒”直接解题)
(2)在点P 的运动过程中,是否存在这样的偕形,使:3:2EGC EFC ∠∠=?若存在,直接写出CPQ ∠的度数;若不存在.请说明理由.
24.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?
(特殊化)
(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;
(2)当∠1=70°,求∠EPB的度数;
(一般化)
(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据一个正数有两个平方根,它们互为相反数解答即可.
【详解】
=,7的平方根是7
497
497
±.
故选:C.
【点睛】
本题考查了平方根的概念,掌握一个正数有两个平方根,它们互为相反数;0的平方根是0,解题关键是先求出49的算术平方根.
2.C
【分析】
根据平移的定义,逐一判断即可.
【详解】
解:、是旋转变换,不是平移,选项错误,不符合题意;
、轴对称变换,不是平移,选项错误,不符合题意;
、是平移,选项正确,符合题意;
、图形的大
解析:C
【分析】
根据平移的定义,逐一判断即可.
【详解】
解:A、是旋转变换,不是平移,选项错误,不符合题意;
B、轴对称变换,不是平移,选项错误,不符合题意;
C、是平移,选项正确,符合题意;
D、图形的大小发生了变化,不是平移,选项错误,不符合题意.
故选:C.
【点睛】
本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.
3.D
【分析】
先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解.
【详解】
解:∵点P(m,n)在第二象限,
∴m<0,n>0,
∴-m>0,m-n<0,
∴点Q(-m,m-n)在第四象限.
故选D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.D
【分析】
利用平行线的判定、三角形的外角的性质、角平分线的判定等知识分别判断后即可确定正确的选项.
【详解】
解:A、同位角相等,两直线平行,正确,是真命题,不符合题意;
B、三角形的一个外角等于与它不相邻的两个内角的和,正确,是真命题,不符合题意;
C、平行于同一条直线的两条直线平行,正确,是真命题,不符合题意;
D、角的内部,到一个角两边距离相等的点在这个角的平分线上,故原命题错误,是假命题,符合题意;
故选:D.
【点睛】
考查了命题与定理的知识,解题的关键是了解平行线的判定、三角形的外角的性质、角平分线的判定等知识,难度不大.
5.D
【分析】
根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.
【详解】
解:∵AB∥EF,
∴∠1+∠AOF=180°,
∵CD∥AB,
∴∠3=∠AOC,
又∵∠AOF=∠AOC−∠2=∠3-∠2,
∴∠1+∠3-∠2=180°.
故选:D.
【点睛】
本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.
6.D
【分析】
根据平方根和立方根的意义求出a、b即可.
【详解】
解:∵a2=16,
∴a=±4,

2,
∴b=8,
∴a+b=4+8或﹣4+8,
即a+b=12或4.
故选:D.
【点睛】
本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a、b的值,注意:一个正数的平方根有两个.
7.C
【分析】
根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出
答案.
【详解】
解:∵∠ACB =90°,∠2=35°,
∴∠3=180°-90°-35°=55°,
∵a ∥b ,
∴∠1=∠3=55°.
故选:C .
【点睛】
本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中.
8.B
【分析】
根据点、、、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置.
【详解】
解:,,,,
,,且四边形为长方形
解析:B
【分析】
根据点A 、B 、C 、D 的坐标可得出AB 、BC 的长度以及四边形ABCD 为长方形,进而可求出长方形ABCD 的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置.
【详解】
解:(1,1)A ,(1,1)B -,(1,2)C --,(1,2)D -,
2AB CD ∴==,3AD BC ==,且四边形ABCD 为长方形,
∴长方形ABCD 的周长()210ABCD C AB BC =+=长方形.
2017201107=⨯+,7AB BC CD ++=,
∴细线的另一端落在点D 上,即(1,2)-.
故选:B .
【点睛】
本题考查了规律型中点的坐标、长方形的判定以及长方形的周长,根据长方形的周长结合细线的长度找出细线终点所在的位置是解题的关键.
二、填空题
9.6
【分析】
根据算术平方根的定义即可求解.
【详解】
解:的结果为6.
故答案为6
【点睛】
考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数
解析:6
【分析】
根据算术平方根的定义即可求解.
【详解】
6.
故答案为6
【点睛】
考查了算术平方根,非负数a的算术平方根a有双重非负性:①被开方数a是非负数;②算术平方根a本身是非负数.
10.【分析】
根据点坐标关于坐标轴的对称规律即可得.
【详解】
点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变
点关于轴
解析:(2,1)
【分析】
根据点坐标关于坐标轴的对称规律即可得.
【详解】
点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变
a-,则点P的纵坐标为1
点P关于x轴的对称点为(,1)
-,则点P的横坐标为2
点P关于y轴的对称点为(2,)b
则点P的坐标为(2,1)
故答案为:(2,1).
【点睛】
本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.
11.35
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E .
【详解】

解析:35
【分析】
根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠EBC 表示出∠ECD ,再利用∠E 与∠EBC 表示出∠ECD ,然后整理即可得到∠A 与∠E 的关系,进而可求出∠E .
【详解】
解:∵BE 和CE 分别是∠ABC 和∠ACD 的角平分线,
∴∠EBC =12∠ABC ,∠ECD =1
2∠ACD ,
又∵∠ACD 是△ABC 的一外角,
∴∠ACD =∠A +∠ABC ,
∴∠ECD =12(∠A +∠ABC )=12∠A +∠ECD ,
∵∠ECD 是△BEC 的一外角,
∴∠ECD =∠EBC +∠E ,
∴∠E =∠ECD -∠EBC =12∠A +∠EBC -∠EBC =12∠A =12×70°=35°,
故答案为:35.
【点睛】
本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键. 12.【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三
解析:114︒
【分析】
由已知可知460∠=︒,由平行可知13∠=∠,根据三角形外角的性质可知234∠=∠+∠从而求得的答案.
【详解】
∠=︒
已知可知460
直尺的两边平行
∴13
∠=∠
∴234145460114
∠=∠+∠=∠+∠=︒+︒=︒
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键.13.62°
【分析】
根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁
解析:62°
【分析】
根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.
【详解】
解:∵将一张长方形纸片沿EF折叠后,
点A、B分别落在A′、B′的位置,∠1=59°,
∴∠EFB′=∠1=59°,
∴∠B′FC=180°−∠1−∠EFB′=62°,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠2=∠B′FC=62°,
故答案为:62°.
【点睛】
本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
14.4
【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.
故答案为:4.
点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根
解析:4
【解析】根据题意可得(﹣2)※x=﹣2+2x,进而可得方程﹣2+2x=2+x,解得:x=4.
故答案为:4.
点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.
15.2
【分析】
根据y轴上的点的横坐标是0列式计算即可得到m的值.
【详解】
∵点P(2m-4,1-2m)在y轴上,
∴2m-4=0,
解得m=2.
故答案为:2.
【点睛】
此题考查点的坐标,熟记y
解析:2
【分析】
根据y轴上的点的横坐标是0列式计算即可得到m的值.
【详解】
∵点P(2m-4,1-2m)在y轴上,
∴2m-4=0,
解得m=2.
故答案为:2.
【点睛】
此题考查点的坐标,熟记y轴上的点的横坐标为0是解题的关键.
16.【分析】
利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:矩形的周长为,
所以,第一次相遇的时间为秒,
此时,
解析:(2,2)--
【分析】
利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.
【详解】
解:矩形的周长为2(84)24⨯+=,
所以,第一次相遇的时间为24(24)4÷+=秒,
此时,甲走过的路程为428⨯=,
相遇坐标为(2,2)-,
第二次相遇又用时间为428⨯=(秒),
甲又走过的路程为8216⨯=,
相遇坐标为(2,2)--,
∵3824=÷,
∴第3次相遇时在点A 处,则
以后3的倍数次相遇都在点A 处,
∵202136732,
∴第2021次相遇地点与第2次相遇地点的相同,
∴第2021次相遇地点的坐标为(2,2)--.
故填:(2,2)--.
【点睛】
此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.
三、解答题
17.(1)5;(2)-2;(3)2
【解析】
【分析】
根据实数的性质进行化简,再求值.
【详解】
解:(1)==5;
(2)-× =-×4=-2;
(3)-++=-6+5+3=2.
【点睛】
此题主要
解析:(1)5;(2)-2;(3)2
【分析】
根据实数的性质进行化简,再求值.【详解】

1
2
×4=-2;
【点睛】
此题主要考查实数的计算,解题的关键是熟知实数的性质.
18.(1)x=±9;(2)x=3
【分析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)利用立方根定义开立方即可求出解.
【详解】
解:(1)方程整理得:x2=81,
开方得:x=±9;

解析:(1)x=±9;(2)x=3
【分析】
(1)方程整理后,利用平方根定义开方即可求出解;
(2)利用立方根定义开立方即可求出解.
【详解】
解:(1)方程整理得:x2=81,
开方得:x=±9;
(2)方程整理得:(x-1)3=8,
开立方得:x-1=2,
解得:x=3.
【点睛】
本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键.
19.(1)∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;(2)70°
【分析】
(1)根据平行线的性质得出∠A=∠BFD,求出∠BFD=∠FDE,根据平行线的判定得出即可
解析:(1)∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;(2)70°
(1)根据平行线的性质得出∠A=∠BFD,求出∠BFD=∠FDE,根据平行线的判定得出即可;
(2)根据平行线的性质得出∠A+∠AED=180°,∠A=∠BFD,再求出∠AED﹣∠A=40°,即可求出答案.
【详解】
(1)证明:∵DF//AC(已知),
∴∠A=∠BFD(两直线平行,同位角相等),
∵∠A=∠FDE(已知),
∴∠FDE=∠BFD(等量代换),
∴DE//AB(内错角相等,两直线平行);
故答案为:∠BFD;两直线平行,同位角相等;∠BFD;等量代换;内错角相等,两直线平行;
(2)解:∵DF//AC,
∴∠A=∠BFD,
∵∠AED比∠BFD大40°,
∴∠AED﹣∠BFD=40°,
∴∠AED﹣∠A=40°,
∴∠AED=40°+∠A,
∵DE//AB,
∴∠A+∠AED=180°,
∴∠A+40°+∠A=180°,
∴∠A=70°,
∴∠BFD=70°.
【点睛】
本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2
【分析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据对
解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2
【分析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据对应点A、A′的变化写出平移方法即可;
(3)根据平移规律逆向写出点P′的坐标;
(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
【详解】
解:(1)A′(-3,1);B′(-2,-2);C′(-1,-1);
(2)向左平移4个单位,向下平移2个单位;
(3)若点P(a,b)是△ABC内部一点,
则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2);
(4)△ABC的面积=
111 23131122
222
⨯-⨯⨯-⨯⨯-⨯⨯=2.
【点睛】
本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.
21.(1)3;;(2)7;(3)
【分析】
(1)先求出的取值范围,即可求出的整数部分,从而求出结论;
(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;

解析:(1)33;(2)7;(3)2
【分析】
(1
(2)先估算5的大小,再求出其小数部分a2的大小,再求出其整数部分b的值,即可求解;
(3)根据题意先求出x,y所表示的数,再求出x-y,即可求出其相反数.
【详解】
解:(1)∵3<4,
∴33
故答案为:33;
(2)∵23
<
∴32
-<<-
∴253
<<
∴5的小数部分a=5-2=3

67
∴425
<<

2的整数部分b=4
∴a b++
=34=7;
(3)∵34<< ∴
-4<-3 ∴
263< ∴
62,小数部分为62=4
∵6x y =+,其中x 是正整数,01y <<,
∴2x =,y=
4
∴x y -=(242--=
∴x y -
的相反数为2
【点睛】
此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键. 22.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x 米,
由题意得:x 2=81,
解得:x =±9,
∵x >0,
∴x =9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r 米,
由题意得:πr 2=81.
解得:=r ∵r >0.
∴=r
∴圆的周长=
2π≈
∵56
<,
∴3036
<,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
23.(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°
解析:(1)①35°;(2)55°;(2)存在,52.5︒或7.5︒
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E 的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=1
2∠QCF+1
2
∠FCE=1
2
∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=1
2
(70°−40°)=15°,∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC=3x°,∠EFC=2x°,
①当点G、F在点E的右侧时,
∵AB∥CD,
∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,
∴∠PCF=∠PCQ=1
2∠FCQ=1
2
∠EFC=x°,
则∠ECG=∠GCF=∠PCF=∠PCD=x°,
∵∠ECD=70°,
∴4x=70°,解得x=17.5°,
∴∠CPQ=3x=52.5°;
②当点G、F在点E的左侧时,反向延长CD到H,
∵∠EGC=3x°,∠EFC=2x°,
∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,
∴∠ECG=∠GCF=∠GCH-∠FCH=x°,
∵∠CGF=180°-3x°,∠GCQ=70°+x°,
∴180-3x=70+x,
解得x=27.5,
∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,
∴∠PCQ=1
2
∠FCQ=62.5°,
∴∠CPQ=∠ECP=62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
24.(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当
解析:(1)∠EPB=170°;(2)①当交点P在直线b的下方时:∠EPB=20°,②当交点P在直线a,b之间时:∠EPB=160°,③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|.
【分析】
(1)利用外角和角平分线的性质直接可求解;
(2)分三种情况讨论:①当交点P在直线b的下方时;②当交点P在直线a,b之间时;③当交点P在直线a的上方时;分别画出图形求解;
(3)结合(2)的探究,分两种情况得到结论:①当交点P在直线a,b之间时;②当交点P在直线a上方或直线b下方时;
【详解】
解:(1)∵BD平分∠ABC,
∠ABC=50°,
∴∠ABD=∠DBC=1
2
∵∠EPB是△PFB的外角,
∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;
(2)①当交点P在直线b的下方时:
∠EPB=∠1﹣50°=20°;
②当交点P在直线a,b之间时:
∠EPB=50°+(180°﹣∠1)=160°;
③当交点P在直线a的上方时:
∠EPB=∠1﹣50°=20°;
(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;
②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;
【点睛】
考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.。

相关文档
最新文档