重庆市大学城第一中学等差数列高考重点题型及易错点提醒
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.设等差数列{}n a 、{}n b 的前n 项和分别是n S 、n T .若237
n n S n T n =+,则6
3a b 的值为
( ) A .
5
11
B .38
C .1
D .2
2.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62
10S S ,则34a a +=( )
A .2
B .3
C .4
D .5
3.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11
B .10
C .6
D .3
4.定义
12n
n
p p p ++
+为n 个正数12,,
,n p p p 的“均倒数”,若已知数列{}n a 的前
n 项的“均倒数”为
12n ,又2n n a b =,则1223
910
111
b b b b b b +++
=( ) A .
8
17 B .
1021
C .
1123 D .
919
5.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .
825
两 B .
845
两 C .
865
两 D .
885
两 6.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45
B .50
C .60
D .80
7.设数列{}n a 的前n 项和2
1n S n =+. 则8a 的值为( ).
A .65
B .16
C .15
D .14
8.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8
B .13
C .26
D .162
9.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21
2
,则该数列的项数是( ) A .8
B .4
C .12
D .16
10.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( )
A .
1
2
尺布 B .
5
18
尺布 C .
16
31
尺布 D .
16
29
尺布 11.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项
B .133项
C .134项
D .135项
12.已知数列{}n a 满足25111,,25
a a a ==且
*121
2
1
0,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19
B .20
C .21
D .22
13.设等差数列{}n a 的前n 和为n S ,若(
)*
111,m m a a a m m N +-<<->∈,则必有( )
A .0m S <且10m S +>
B .0m S >且10m S +>
C .0m S <且10m S +<
D .0m S >且10m S +<
14.在数列{}n a 中,11a =,且11n
n n
a a na +=+,则其通项公式为n a =( ) A .
2
1
1n n -+ B .2
1
2n n -+
C .22
1
n n -+
D .2
2
2
n n -+
15.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S > D .70S <,且80S <
16.若数列{}n a 满足121
()2
n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020
D .2021
17.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )
A .3、8、13、18、23
B .4、8、12、16、20
C .5、9、13、17、21
D .6、10、14、18、22
18.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .
32
B .
92
C .2
D .9
19.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333
122n n n a a a ++=+,则10a 等于
( ) A .10
B
C .64
D .4
20.若两个等差数列{}n a ,{}n b 的前n 项和分别为n S 和n T ,且3221n n S n T n +=+,则12
15
a b =( ) A .
3
2
B .
7059
C .
7159
D .85
二、多选题
21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}
F n ,则(){}
F n 的通项公式为( )
A .(1)1()2
n n F n -+=
B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==
C .(
)1122n n
F n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦
D .(
)1122n n F n ⎡⎤⎛⎛⎥=+ ⎥⎝⎭⎝⎭⎦
22.题目文件丢失!
23.若不等式1
(1)(1)2n n
a n
+--<+对于任意正整数n 恒成立,则实数a 的可能取值为( ) A .2- B .1- C .1 D .2
24.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =
C .3430a a +=
D .当且仅当11n =时,n S 取得最大值
25.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4
B .5
C .7
D .8
26.已知等差数列{}n a 的前n 项和为,n S 且15
11
0,20,a a a 则( )
A .80a <
B .当且仅当n = 7时,n S 取得最大值
C .49S S =
D .满足0n S >的n 的最大值为12
27.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( )
A .244a a ⋅<
B .2
24154
a a +≥
C .
15
111a a +> D .1524a a a a ⋅>⋅
28.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( ) A .45n a n =-
B .23n a n =+
C .2
23n S n n =-
D .2
4n S n n =+
29.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >
B .数列1n a ⎧⎫
⎨
⎬⎩⎭
是递增数列 C .0n S <时,n 的最小值为13
D .数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项
30.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{
}n
a n
是递增数列 D .数列{}3n a nd +是递增数列
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.C 【分析】
令2
2n S n λ=,()37n T n n λ=+,求出n a ,n b ,进而求出6a ,3b ,则
6
3
a b 可得. 【详解】
令2
2n S n λ=,()37n T n n λ=+,
可得当2n ≥时,()()2
21221221n n n a S S n n n λλλ-=-=--=-,
()()()()137134232n n n b T T n n n n n λλλ-=-=+--+=+,
当1n =,()11112,3710a S b T λλλ====+=,符合()221n a n λ=-,
()232n b n λ=+
故622a λ=,322b λ=,
故6
3
1a b =. 【点睛】
由n S 求n a 时,11,1
,2n n
n S n a S S n -=⎧=⎨
-≥⎩,注意验证a 1是否包含在后面a n 的公式中,若不符
合要单独列出,一般已知条件含a n 与S n 的关系的数列题均可考虑上述公式求解. 2.B 【分析】
根据等差数列的性质,由题中条件,可直接得出结果. 【详解】
因为n S 为等差数列{}n a 的前n 项和,公差1d =,6
2
10S S ,
所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 3.A 【分析】
利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】
由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,
213a a d =+=,
解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 4.D 【分析】
由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】
设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n
=,则:2
2n S n =, 当1n =时,112a S ==,
当2n ≥时,142n n n a S S n -=-=-,
且14122a =⨯-=,据此可得 42n a n =-, 故212
n
n a b n =
=-,()()111111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:
1223910
1111111111233517191.21891919b b b b b b +++
⎡⎤⎛⎫⎛⎫⎛⎫=
-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭
⎝⎭⎣⎦
=⨯= 故选:D 5.C 【分析】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,
810
6
100a S =⎧⎨
=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,
则由题意得8106100a S =⎧⎨=⎩,即1
176109
101002a d a d +=⎧⎪
⎨⨯+=⎪⎩,解得186585a d ⎧
=⎪⎪⎨⎪=-⎪⎩
. 所以长兄分得86
5
两银子. 故选:C. 【点睛】
关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得
()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和
前n 项和公式. 6.C 【分析】
利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】
{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =
1158158()15215
156022
a a a S a +⨯⨯=
===
故选:C 【点睛】
本题考查等差数列性质及前n 项和公式,属于基础题 7.C 【分析】
利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】
由2
1n S n =+得,12a =,()2
111n S n -=-+,
所以()2
21121n n n a S S n n n -=-=--=-,
所以2,121,2
n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.
故选:C. 【点睛】
本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 8.B 【分析】
先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据
()
11313713132
a a S a +=
=求解出结果.
【详解】
因为()351041072244a a a a a a ++=+==,所以71a =,
又()
1131371313131132
a a S a +=
==⨯=, 故选:B. 【点睛】
结论点睛:等差、等比数列的下标和性质:若(
)*
2,,,,m n p q t m n p q t N +=+=∈,
(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2
m n p q t a a a a a ⋅=⋅=.
9.A 【分析】
设项数为2n ,由题意可得()21
212
n d -⋅=,及6S S nd -==奇偶可求解. 【详解】
设等差数列{}n a 的项数为2n , 末项比首项大
212
, ()212121;2
n a a n d ∴-=-⋅=① 24S =奇,30S =偶,
30246S S nd ∴-=-==奇偶②.
由①②,可得3
2
d =,4n =, 即项数是8, 故选:A. 10.D 【分析】
设该女子第()
N n n *∈尺布,前()
N n n *
∈天工织布n S 尺,则数列{}n a 为等差数列,设其公
差为d ,根据15a =,30390S =可求得d 的值. 【详解】
设该女子第()
N n n *∈尺布,前()
N n n *
∈天工织布n S 尺,则数列{}n a 为等差数列,设其公
差为d ,
由题意可得30130293015015293902
S a d d ⨯=+=+⨯=,解得16
29d =.
故选:D. 11.D 【分析】
由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】
被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则
()8151157n a n n =+-=-,令1572020n a n =-≤,解得:2
135
15
n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】
关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 12.B 【分析】
由等差数列的性质可得数列1n a ⎧⎫
⎨
⎬
⎩⎭
为等差数列,再由等差数列的通项公式可得1n n a ,进
而可得1
n a n
=,再结合基本不等式即可得解. 【详解】
因为*
121210,n n n n a a a ++-+=∈N ,所以12
211n n n a a a ++=+, 所以数列1n a ⎧⎫
⎨
⎬⎩⎭
为等差数列,设其公差为d , 由25111,25
a a a ==可得
25112,115a a a ==⋅, 所以11
11
2
1145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111
a d ⎧=⎪⎨⎪=⎩,
所以
()1111n n d n a a =+-=,所以1n a n
=,
所以不等式100n n a a +≥即100
n a n
+≥对任意的*n N ∈恒成立,
又10020n n +
≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】
关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 13.D 【分析】
由等差数列前n 项和公式即可得解. 【详解】
由题意,1110,0m m a a a a ++>+<, 所以1()02m m m a a S +=>,111(1)()
02
m m m a a S ++++=<. 故选:D. 14.D 【分析】
先由11n n n a a na +=+得出111n n n a a +-=,再由累加法计算出212
2
n n n a -+=,进而求出n a .
【详解】 解:11n
n n
a a na +=
+,
()11n n n a na a ++=∴,
化简得:11n n n n a a a a n ++=+, 两边同时除以1n n a a +并整理得:
111
n n
n a a +-=, 即
21
11
1a a -=,32112a a -=,43113a a -=,…,1111(2,)n n n n n z a a --
=-≥∈, 将上述1n -个式子相加得:
213243111111+a a a a a a --+-+ (1)
11
123n n a a -+-=+++…1n +-, 即
111(1)
2
n n n a a --=, 2111(1)(1)2=1(2,)222
n n n n n n n n n z a a ---+∴=++=≥∈, 又
1
1
1a =也满足上式, 212()2
n n n n z a -+∴=∈, 22
()2
n a n z n n ∴=
∈-+.
故选:D. 【点睛】 易错点点睛:利用累加法求数列通项时,如果出现1n -,要注意检验首项是否符合. 15.A 【分析】
根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】
依题意,有170a a +>,180a a +< 则()177
702
a a S +⋅=>
()()188
1884
02
a a S a a +⋅==+<
故选:A . 16.B 【分析】
根据递推关系式求出数列的通项公式即可求解. 【详解】
由121
()2n n a a n N *++=
∈,则11()2
n n a a n N *+=+∈, 即11
2
n n a a +-=
, 所以数列{}n a 是以1为首项,
1
2
为公差的等差数列, 所以()()11111122
n n a a n d n +=+-=+-⨯=, 所以2021a =20211
10112
+=. 故选:B 17.C 【分析】
根据首末两项求等差数列的公差,再求这5个数字. 【详解】
在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则71251
4716
a a d --=
==-, 则这5个数依次是5,9,13,17,21. 故选:C 18.A 【分析】
由2a 和4a 求出公差d ,再根据54a a d =+可求得结果. 【详解】
设公差为d ,则423634222
a a d --=
==--, 所以5433322
a a d =+=-=. 故选:A 19.D 【分析】
利用等差中项法可知,数列{}
3n a 为等差数列,根据11a =,22a =可求得数列{}
3
n a 的公
差,可求得3
10a 的值,进而可求得10a 的值. 【详解】
对*n N ∀∈都有3
3
3
122n n n a a a ++=+,由等差中项法可知,数列{}
3
n a 为等差数列,
由于11a =,22a =,则数列{}
3n a 的公差为33
217d a a =-=,
所以,33
101919764a a d =+=+⨯=,因此,10
4a .
故选:D. 20.C 【分析】
可设(32)n S kn n =+,(21)n T kn n =+,进而求得n a 与n b 的关系式,即可求得结果. 【详解】
因为{}n a ,{}n b 是等差数列,且
3221
n n S n T n +=+, 所以可设(32)n S kn n =+,(21)n T kn n =+,
又当2n 时,有1(61)n n n a S S k n -=-=-,1(41)n n n b T T k n -=-=-, ∴
1215(6121)71(4151)59
a k
b k ⨯-==⨯-, 故选:C .
二、多选题
21.BC 【分析】
根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】
解:斐波那契数列为1,1,2,3,5,8,13,21,……,
显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,
,
()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;
由()()()11,2F n F n F n n +=+-≥, 所以(
)(
)(
)()11F n n F n n ⎤+-
=--⎥⎣⎦
所以数列(
)()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭
是以
12+
为首项,12
+为公比的等比数列, 所以(
)(
)1n
F n n +-=⎝⎭
11515()n F F n n -
+=++, 令
1
n
n n F b -=
⎝⎭
,则11n n b +=
+,
所以1n n b b +=-,
所以n b ⎧⎪⎨⎪⎪⎩⎭
以
510-3
2-为公比的等比数列,
所以1
n n b -+,
所以()11
15n n n n
F n --⎤
⎤⎛⎫
+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭
⎝⎭⎝⎭⎣⎦
⎣⎦
; 即C 满足条件; 故选:BC 【点睛】
考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.
22.无
23.ABC 【分析】
根据不等式1(1)(1)2n n
a n +--<+对于任意正整数n 恒成立,即当n 为奇数时有12+
a n
-<恒成立,当n 为偶数时有1
2a n
<-恒成立,分别计算,即可得解. 【详解】
根据不等式1(1)(1)2n n
a n +--<+对于任意正整数n 恒成立, 当n 为奇数时有:1
2+a n
-<恒成立,
由12+n 递减,且1
223n <+≤,
所以2a -≤,即2a ≥-,
当n 为偶数时有:1
2a n
<-恒成立, 由12n -
第增,且31
222n ≤-<, 所以3
2
a <
, 综上可得:322
a -≤<, 故选:ABC . 【点睛】
本题考查了不等式的恒成立问题,考查了分类讨论思想,有一定的计算量,属于中当题. 24.AC 【分析】
先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】
解:设等差数列{}n a 的公差为d , 则52318312a a d d =+=+=,解得2d =-.
所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】
本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:
(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;
(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定; 25.BD 【分析】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:
()()
111110022n n n d n n S na na --=+
=+= 整理得1200
21a n n
=
+-, 因为1a *
∈N ,所以n 为200的因数,()200
12n n
+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】
关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.
26.ACD 【分析】
由题可得16a d =-,0d <,21322
n d d S n n =
-,求出80a d =<可判断A ;利用二次函数的性质可判断B ;求出49,S S 可判断C ;令213022
n d d
S n n =->,解出即可判断D. 【详解】
设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-,
10a >,0d ∴<,且()21113+
222
n n n d d S na d n n -==-, 对于A ,
81+7670a a d d d d ==-+=<,故A 正确;
对于B ,21322n d d S n n =-的对称轴为13
2
n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误;
对于C ,4131648261822d d S d d d =
⨯-⨯=-=-,9138191822
d d S d =⨯-⨯=-,故49S S =,故C 正确;
对于D ,令213022
n d d
S n n =->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD. 【点睛】
方法点睛:由于等差数列()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 27.ABC 【分析】
由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】 由题知,只需1220
010
a d d d =->⎧⇒<<⎨
>⎩,
()()2242244a a d d d ⋅=-⋅+=-<,A 正确;
()()2
222415
223644
a a d d d d +=-++=-+>≥
,B 正确; 21511111122221a a d d d
+=+=>-+-,C 正确;
()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,
D 错误. 【点睛】
本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断. 28.AC 【分析】
由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和前n 项和公式 【详解】
由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232
n n n S n n --==-.
故选:AC. 【点睛】
本题考查等差数列,考查运算求解能力. 29.ACD 【分析】 由已知得()
()612112712+12+2
2
0a a a a S ==
>,又70a <,所以6>0a ,可判断A ;由已知
得出24
37
d -
<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又
()1112+3n a n d =-,可得出1n
a 在1,6n n N
上单调递增,1
n
a 在
7n n
N ,
上单调递增,可判断B ;由()
313117
713+12
2
03213a a a S a ⨯=
=<=
,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】
由已知得311+212,122d a a a d ===-,()
()612112712+12+2
2
0a a a a S =
=
>,又
70a <,所以6>0a ,故A 正确;
由716167
1+612+40+512+3>0+2+1124+7>0
a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得24
37d -<<-,又()()3+312+3n a n d n d a =-=-,
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又
()1112+3n a n d
=-,所以[]1,6n ∈时,1>0n
a ,7n ≥时,1
0n a <,
所以
1
n
a 在1,6n n N
上单调递增,
1
n
a 在7n n N ,上单调递增,所
以数列1n a ⎧⎫
⎨
⎬⎩⎭
不是递增数列,故B 不正确; 由于()
313117
713+12
2
03213a a a S a ⨯=
=<=
,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,
0n
S <,所以当[]7,12n ∈时,0n a <,>0n S ,0n
n
S a <,[]712
n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项,故D 正确;
【点睛】
本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 30.AD 【分析】
根据等差数列的性质,对四个选项逐一判断,即可得正确选项. 【详解】
0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,
()()2
111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d -<时,数列{}n na 不是递增数列,故②不正确, 1n a a d d n n -=+,当10a d -<时,{}n a n 不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确,
故选:AD 【点睛】
本题主要考查了等差数列的性质,属于基础题.。