【必考题】数学中考一模试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】数学中考一模试卷及答案
一、选择题
1.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=
,12
2
y y y +=.如图,已知点O 为坐标原点,点()30A -,
,O e 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )
A .22
9m n +=
B .22
3922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭
C .()()2
2
2323m n ++=
D .()2
22349m n ++=
2.下表是某学习小组一次数学测验的成绩统计表: 分数/分 70 80 90
100 人数/人
1
3
x
1
已知该小组本次数学测验的平均分是85分,则测验成绩的众数是( ) A .80分
B .85分
C .90分
D .80分和90分
3.下列图形是轴对称图形的有( )
A .2个
B .3个
C .4个
D .5个
4.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( )
A .12
B .24
C .123 D
.163
5.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .
()1
1
362
x x -= B .
()1
1362
x x += C .()136x x -= D .()136x x +=
6.不等式组213
312x x +⎧⎨+≥-⎩
<的解集在数轴上表示正确的是( )
A .
B .
C .
D .
7.已知命题A :“若a 为实数,则2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1
B .a =0
C .a =﹣1﹣k (k 为实数)
D .a =﹣1
﹣k 2(k 为实数)
8.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( ) A .1℃~3℃
B .3℃~5℃
C .5℃~8℃
D .1℃~8℃
9.如图,菱形ABCD 的对角线相交于点O ,若AC =8,BD =6,则菱形的周长为( )
A .40
B .30
C .28
D .20
10.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,
中位数分别是( )
A .15.5,15.5
B .15.5,15
C .15,15.5
D .15,15
11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )
A .50°
B .20°
C .60°
D .70°
12.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7
B .6+a >b+6
C .55
a b >
D .-3a >-3b
二、填空题
13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x
=
(0x >)及22k
y x =(0x >)
的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则
12k k =﹣________.
14.如图,在Rt△ABC 中,∠ACB=90°,∠ABC=30°,将△ABC 绕点C 顺时针旋转至△A′B′C,使得点A′恰好落在AB 上,则旋转角度为_____.
15.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.
16.如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.
17.如图,⊙O的半径为6cm,直线AB是⊙O的切线,切点为点B,弦BC∥AO,若∠A=30°,则劣弧»BC的长为 cm.
18.若式子3
x+在实数范围内有意义,则x的取值范围是_____.
19.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2
BC3
=,那么
tan∠DCF的值是____.
20.如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则tanC=________.
三、解答题
21.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?
22.今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为A,B,C,D四个等级,并绘制了如下不完整的频数分布表和扇形统计图:
等级成绩(s)频数(人数)
A90<s≤1004
B80<s≤90x
C 70<s≤80 16 D
s≤70
6
根据以上信息,解答以下问题: (1)表中的x= ;
(2)扇形统计图中m= ,n= ,C 等级对应的扇形的圆心角为 度; (3)该校准备从上述获得A 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用a 1,a 2表示)和两名女生(用b 1,b 2表示),请用列表或画树状图的方法求恰好选取的是a 1和b 1的概率.
23.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y (件)与销售单价x (元)之间存在一次函数关系,如图所示.
(1)求y 与x 之间的函数关系式;
(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.
24.如图是某市一座人行天桥的示意图,天桥离地面的高BC 是10米,坡面AC 的倾斜角
45CAB ∠=︒,在距A 点10米处有一建筑物HQ .为了方便行人推车过天桥,市政府部门
决定降低坡度,使新坡面DC 的倾斜角30BDC ∠=︒,若新坡面下D 处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数). 2 1.414≈3 1.732≈)
25.为了解某县建档立卡贫困户对精准扶贫政策落实的满意度,现从全县建档立卡贫困户中随机抽取了部分贫困户进行了调查(把调查结果分为四个等级:A级:非常满意;B 级:满意;C级:基本满意;D级:不满意),并将调查结果绘制成如下两幅不完整的统计图.请根据统计图中的信息解决下列问题:
(1)本次抽样调查测试的建档立卡贫困户的总户数______.
(2)图1中,∠α的度数是______,并把图2条形统计图补充完整.
(3)某县建档立卡贫困户有10000户,如果全部参加这次满意度调查,请估计非常满意的人数约为多少户?
a b c d e)中随机选取两户,调查他(4)调查人员想从5户建档立卡贫困户(分别记为,,,,
们对精准扶贫政策落实的满意度,请用列表或画树状图的方法求出选中贫困户e的概率.【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
根据中点坐标公式求得点B的坐标,然后代入,a b满足的等式进行求解即可.
【详解】
∵点()30A -,
,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=
,02
b n +=, ∴23,2a m b n =+=,
又,a b 满足等式:229a b +=, ∴()2
22349m n ++=, 故选D . 【点睛】
本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.
2.D
解析:D 【解析】 【分析】
先通过加权平均数求出x 的值,再根据众数的定义就可以求解. 【详解】
解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3
∴该组数据的众数是80分或90分. 故选D . 【点睛】
本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x 是解答问题的关键.
3.C
解析:C 【解析】
试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断. 解:图(1)有一条对称轴,是轴对称图形,符合题意;
图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意; 图(3)有二条对称轴,是轴对称图形,符合题意; 图(3)有五条对称轴,是轴对称图形,符合题意; 图(3)有一条对称轴,是轴对称图形,符合题意. 故轴对称图形有4个. 故选C .
考点:轴对称图形.
4.D
解析:D
【解析】
如图,连接BE,
∵在矩形ABCD中,AD∥BC,∠EFB=60°,
∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°.
∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,
∴∠BEF=∠DEF=60°.
∴∠AEB=∠AEF-∠BEF=120°-60°=60°.
在Rt△ABE中,AB=AE•tan∠AEB=2tan60°3.
∵AE=2,DE=6,∴AD=AE+DE=2+6=8.
∴矩形ABCD的面积33D.
考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.
5.A
解析:A
【解析】
【分析】
共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.
【详解】
解:设有x个队参赛,根据题意,可列方程为:
1
x(x﹣1)=36,
2
故选:A.
【点睛】
此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 6.A
解析:A
【解析】
【分析】
先求出不等式组的解集,再在数轴上表示出来即可.
【详解】
213312x x +⎧⎨
+≥-⎩
<①
② ∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,
故选A . 【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.
7.D
解析:D 【解析】 【分析】
2a a =可确定a 的范围,排除掉在范围内的选项即可. 【详解】
解:当a ≥02a a =, 当a <02a a =-,
∵a =1>0,故选项A 不符合题意, ∵a =0,故选项B 不符合题意,
∵a =﹣1﹣k ,当k <﹣1时,a >0,故选项C 不符合题意, ∵a =﹣1﹣k 2(k 为实数)<0,故选项D 符合题意, 故选:D . 【点睛】
2
00
a a a a a a ≥⎧==⎨
-≤⎩,正确理解该性质是解题的关键.
8.B
解析:B 【解析】 【分析】
根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解. 【详解】
解:设温度为x ℃,
根据题意可知1538
x x x x ≥⎧⎪≤⎪
⎨≥⎪⎪≤⎩
解得35x ≤≤. 故选:B . 【点睛】
本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.
9.D
解析:D 【解析】 【分析】
根据菱形对角线互相垂直平分的性质,可以求得BO =OD ,AO =OC ,在Rt △AOB 中,根据勾股定理可以求得AB 的长,即可求出菱形ABCD 的周长. 【详解】
∵四边形ABCD 是菱形,
∴AB =BC =CD =AD ,BO =OD =3,AO =OC =4,AC ⊥BD , ∴AB ==5,
∴菱形的周长为4×
5=20. 故选D . 【点睛】
本题考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等和对角线互相垂直且平分的性质,本题中根据勾股定理计算AB 的长是解题的关键.
10.D
解析:D 【解析】 【分析】 【详解】
根据图中信息可知这些队员年龄的平均数为:
132146158163172181
268321
⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,
该足球队共有队员2+6+8+3+2+1=22人,
则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .
11.D
解析:D 【解析】
题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,
∴∠DBA =∠ACD =70°.故选D .
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
12.D
解析:D
【解析】
A.∵a >b ,∴a-7>b-7,∴选项A 正确;
B.∵a >b ,∴6+a >b+6,∴选项B 正确;
C.∵a >b ,∴55
a b >,∴选项C 正确;
D.∵a >b ,∴-3a <-3b ,∴选项D 错误.
故选D. 二、填空题
13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比 解析:【解析】
【分析】
根据反比例函数k 的几何意义可知:AOP ∆的面积为
112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.
【详解】
解:根据反比例函数k 的几何意义可知:AOP ∆的面积为
112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为
121122
k k -,∴1211422k k -=,∴128k k -=. 故答案为8.
【点睛】
本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型. 14.60°【解析】试题解析:∵∠ACB=90°∠ABC=30°∴∠A=90°-
30°=60°∵△ABC 绕点C 顺时针旋转至△A′B′C 时点A′恰好落在AB 上∴AC=A′C∴△A′AC 是等边三角形∴∠ACA
解析:60°
【解析】
试题解析:∵∠ACB=90°,∠ABC=30°,
∴∠A=90°-30°=60°,
∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,
∴AC=A′C,
∴△A′AC是等边三角形,
∴∠ACA′=60°,
∴旋转角为60°.
故答案为60°.
15.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB =25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-
DF=15故答案为15【点睛】直角三角形斜边上的中线性质:
解析:5
【解析】
【分析】
【详解】
试题解析:∵∠AFB=90°,D为AB的中点,
∴DF=1
2
AB=2.5,
∵DE为△ABC的中位线,
∴DE=1
2
BC=4,
∴EF=DE-DF=1.5,
故答案为1.5.
【点睛】
直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
16.18【解析】【分析】根据三角形中位线定理得到AC=2DE=5AC∥DE根据勾股定理的逆定理得到∠ACB=90°根据线段垂直平分线的性质得到DC=BD根据三角形的周长公式计算即可【详解】∵DE分别是A
解析:18
【解析】
【分析】
根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到
∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.
【详解】
∵D,E分别是AB,BC的中点,
∴AC=2DE=5,AC∥DE,
AC2+BC2=52+122=169,
AB2=132=169,
∴AC2+BC2=AB2,
∴∠ACB=90°,
∵AC∥DE,
∴∠DEB=90°,又∵E是BC的中点,
∴直线DE是线段BC的垂直平分线,
∴DC=BD,
∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,
故答案为18.
【点睛】
本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
17.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦
BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B
解析:2π.
【解析】
根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出
∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).
又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).
∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).
又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).
∴∠BOC=60°(等边三角形的每个内角等于60°).
又∵⊙O的半径为6cm,∴劣弧»BC的长=606
=2
180
π
π
⋅⋅
(cm).
18.x≥﹣3【解析】【分析】直接利用二次根式的定义求出x的取值范围【详解】解:若式子在实数范围内有意义则x+3≥0解得:x≥﹣3则x的取值范围是:x≥﹣3故答案为:x≥﹣3【点睛】此题主要考查了二次根式
解析:x≥﹣3
【解析】
【分析】
直接利用二次根式的定义求出x的取值范围.
【详解】
.在实数范围内有意义,
则x+3≥0,
解得:x≥﹣3,
则x的取值范围是:x≥﹣3.
故答案为:x ≥﹣3.
【点睛】
此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.
19.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB=CD∠D=90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF=BC∵∴∴设CD =2xCF =3x∴∴tan∠DCF=故答案为:【点
解析:
2
. 【解析】
【分析】
【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,
∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3
=.∴设CD =2x ,CF =3x ,
∴.
∴tan ∠DCF =DF =CD 2x 2
=.
【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.
20.【解析】【分析】连接BD 根据中位线的性质得出EFBD 且EF=BD 进而根据勾股定理的逆定理得到△BDC 是直角三角形求解即可【详解】连接BD 分别是ABAD 的中点EFBD 且EF=BD 又△BDC 是直角三角形 解析:43
【解析】
【分析】
连接BD ,根据中位线的性质得出EF //BD ,且EF=
12
BD ,进而根据勾股定理的逆定理得到△BDC 是直角三角形,求解即可.
【详解】
连接BD ,E F Q 分别是AB 、AD 的中点
∴EF //BD ,且EF=12
BD
4EF =Q
8BD ∴=
又Q 8106BD BC CD ===,,
∴△BDC 是直角三角形,且=90BDC ∠︒
∴tanC=BD DC =86=43
. 故答案为:43
.
三、解答题
21.20元/束.
【解析】
【分析】
设第一批花每束的进价是x 元/束,则第一批进的数量是:4000x ,再根据等量关系:第二批进的数量=第一批进的数量×
1.5可得方程. 【详解】
设第一批花每束的进价是x 元/束,
依题意得:4000x ×1.5=45005
x -, 解得x =20.
经检验x =20是原方程的解,且符合题意.
答:第一批花每束的进价是20元/束.
【点睛】
本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.
22.(1)14;(2)10、40、144;(3)恰好选取的是a 1和b 1的概率为
16
. 【解析】
【分析】(1)根据D 组人数及其所占百分比可得总人数,用总人数减去其他三组人数即可得出x 的值;
(2)用A 、C 人数分别除以总人数求得A 、C 的百分比即可得m 、n 的值,再用360°乘以C 等级百分比可得其度数;
(3)首先根据题意列出表格,然后由表格求得所有等可能的结果与恰好选取的是a 1和b 1
的情况,再利用概率公式即可求得答案.
【详解】(1)∵被调查的学生总人数为6÷
15%=40人, ∴x=40﹣(4+16+6)=14,
故答案为14;
(2)∵m%=
440×100%=10%,n%=1640
×10%=40%, ∴m=10、n=40,
C 等级对应的扇形的圆心角为360°×40%=144°,
故答案为10、40、144; (3)列表如下:
a 1和
b 1的有2种结果,
∴恰好选取的是a 1和b 1的概率为21126
=. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,列表法或树状图法求概率,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小;概率=所求情况数与总情况数之比.
23.(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.
【解析】
【分析】
(1)可用待定系数法来确定y 与x 之间的函数关系式;
(2)根据利润=销售量×单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;
(3)首先得出w 与x 的函数关系式,进而利用所获利润等于3600元时,对应x 的值,根据增减性,求出x 的取值范围.
【详解】
(1)由题意得:4030055150k b k b +=⎧⎨+=⎩ 10700k b =-⎧⇒⎨=⎩
. 故y 与x 之间的函数关系式为:y=-10x+700,
(2)由题意,得
-10x+700≥240,
解得x≤46,
设利润为w=(x-30)•y=(x-30)(-10x+700),
w=-10x 2+1000x-21000=-10(x-50)2+4000,
∵-10<0,
∴x <50时,w 随x 的增大而增大,
∴x=46时,w 大=-10(46-50)2+4000=3840,
答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;
(3)w-150=-10x 2+1000x-21000-150=3600,
-10(x-50)2=-250,
x-50=±5,
x 1=55,x 2=45,
如图所示,由图象得:
当45≤x≤55时,捐款后每天剩余利润不低于3600元.
【点睛】
此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点.
24.该建筑物需要拆除.
【解析】
分析:根据正切的定义分别求出AB 、DB 的长,结合图形求出DH ,比较即可. 详解:由题意得,10AH =米,10BC =米,
在Rt ABC ∆中,45CAB ∠=︒,
∴10AB BC ==,
在Rt DBC ∆中,30CDB ∠=︒, ∴103tan BC DB CDB
==∠ ∴()DH AH AD AH DB AB =-=-- 101031020103 2.7=-=-≈(米), ∵2.7米3<米,
∴该建筑物需要拆除.
点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.
25.(1)60;(2)54°;(3)1500户;(4)见解析,2 5 .
【解析】
【分析】
(1)用B级人数除以B级所占百分比即可得答案;(2)用A级人数除以总人数可求出A 级所占百分比,乘以360°即可得∠α的度数,总人数减去A级、B级、D级的人数即可得C级的人数,补全条形统计图即可;(3)用10000乘以A级人数所占百分比即可得答案;(4)画出树状图,得出所有可能出现的结果及选中e的结果,根据概率公式即可得答案.【详解】
(1)21÷35%=60(户)
故答案为60
(2)9÷60×360°=54°,
C级户数为:60-9-21-9=21(户),
补全条形统计图如所示:
故答案为:54°
(3)
9 100001500
60
⨯=(户)
(4)由题可列如下树状图:
由树状图可知,所有可能出现的结果共有20种,选中e的结果有8种
∴P(选中e)=82 205
=.
【点睛】
本题考查了条形统计图、扇形统计图及概率,概率=所求结果数与所有可能出现的结果数的比值,正确得出统计图中的信息,熟练掌握概率公式是解题关键.。

相关文档
最新文档