【2014-2015年度高中数学(人教A版)选修2-1练习:1.4.2含有一个量词的命题的否定

合集下载

高中数学人教A版选修2-1 第一章 常用逻辑用语 1.4.1、1.4.2、1.4.3 Word版含答案

高中数学人教A版选修2-1 第一章 常用逻辑用语 1.4.1、1.4.2、1.4.3 Word版含答案

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.下列命题为特称命题的是( )A .奇函数的图象关于原点对称B .正四棱柱都是平行六面体C .棱锥仅有一个底面D .存在大于等于3的实数x ,使x 2-2x -3≥0【解析】 A ,B ,C 中命题都省略了全称量词“所有”,所以A ,B ,C 都是全称命题;D 中命题含有存在量词“存在”,所以D 是特称命题,故选D.【答案】 D2.下列命题为真命题的是( )A .∀x ∈R ,cos x <2B .∃x ∈Z ,log 2(3x -1)<0C .∀x >0,3x >3D .∃x ∈Q ,方程2x -2=0有解【解析】 A 中,由于函数y =cos x 的最大值是1,又1<2,所以A 是真命题;B 中,log 2(3x -1)<0⇔0<3x -1<1⇔13<x <23,所以B 是假命题;C 中,当x =1时,31=3,所以C 是假命题;D 中,2x -2=0⇔x =2∉Q ,所以D 是假命题.故选A.【答案】 A3.下列命题的否定是真命题的是( )A .存在向量m ,使得在△ABC 中,m ∥AB→且m ∥AC → B .所有正实数x ,都有x +1x ≥2C .所有第四象限的角α,都有sin α<0D .有的幂函数的图象不经过点(1,1)【解析】 A 中,当m =0时,满足m ∥AB→且m ∥AC →,所以A 是真命题,其否定是假命题;B 中,由于x >0,所以x +1x ≥2x ·1x =2,当且仅当x =1x 即x =1时等号成立,所以B 是真命题,其否定是假命题;C 中,由于第四象限角的正弦值是负数,所以C 是真命题,其否定是假命题;D 中,对于幂函数f (x )=x α,均有f (1)=1,所以幂函数的图象均经过点(1,1),所以D 是假命题,其否定是真命题,故选D.【答案】 D4.已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)【解析】 f (x )=ax 2+bx +c =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a >0), ∵2ax 0+b =0,∴x 0=-b 2a ,当x =x 0时,函数f (x )取得最小值,∴∀x ∈R ,f (x )≥f (x 0),从而A ,B ,D 为真命题,C 为假命题.【答案】 C5.对下列命题的否定说法错误的是( )A .p :能被2整除的数是偶数;綈p :存在一个能被2整除的数不是偶数B .p :有些矩形是正方形;綈p :所有的矩形都不是正方形C .p :有的三角形为正三角形;綈p :所有的三角形不都是正三角形D .p :∃n ∈N ,2n ≤100;綈p :∀n ∈N ,2n >100【答案】 C二、填空题6.命题“偶函数的图象关于y 轴对称”的否定是_____________.【解析】 题中的命题是全称命题,省略了全称量词,加上全称量词后该命题可以叙述为:所有偶函数的图象关于y 轴对称.将命题中的全称量词“所有”改为存在量词“有些”,结论“关于y 轴对称”改为“关于y 轴不对称”,所以该命题的否定是“有些偶函数的图象关于y 轴不对称”.【答案】 有些偶函数的图象关于y 轴不对称7.已知命题:“∃x0∈[1,2],使x20+2x0+a≥0”为真命题,则实数a的取值范围是__________.【解析】当x∈[1,2]时,x2+2x=(x+1)2-1是增函数,所以3≤x2+2x≤8,由题意有a+8≥0,∴a≥-8.【答案】[-8,+∞)8.下列命题:①存在x<0,使|x|>x;②对于一切x<0,都有|x|>x;③已知a n=2n,b n=3n,对于任意n∈N*,都有a n≠b n;④已知A={a|a=2n},B={b|b=3n},对于任意n∈N*,都有A∩B =∅.其中,所有正确命题的序号为________. 【导学号:18490027】【解析】命题①②显然为真命题;③由于a n-b n=2n-3n=-n<0,对于∀n∈N*,都有a n<b n,即a n≠b n,故为真命题;④已知A={a|a =2n},B={b|b=3n},如n=1,2,3时,A∩B={6},故为假命题.【答案】①②③三、解答题9.写出下列命题的否定:(1)p:一切分数都是有理数;(2)q:有些三角形是锐角三角形;(3)r:∃x0∈R,x20+x0=x0+2;(4)s:∀x∈R,2x+4≥0.【解】 (1)綈p :有些分数不是有理数.(2)綈q :所有的三角形都不是锐角三角形.(3)綈r :∀x ∈R ,x 2+x ≠x +2.(4)綈s :∃x 0∈R ,2x 0+4<0.10.若x ∈[-2,2],关于x 的不等式x 2+ax +3≥a 恒成立,求a 的取值范围.【解】 设f (x )=x 2+ax +3-a ,则此问题转化为当x ∈[-2,2]时,f (x )min ≥0即可.①当-a 2<-2,即a >4时,f (x )在[-2,2]上单调递增,f (x )min =f (-2)=7-3a ≥0,解得a ≤73.又因为a >4,所以a 不存在.②当-2≤-a 2≤2,即-4≤a ≤4时,f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=12-4a -a 24≥0,解得-6≤a ≤2. 又因为-4≤a ≤4,所以-4≤a ≤2.③当-a 2>2,即a <-4时,f (x )在[-2,2]上单调递减,f (x )min =f (2)=7+a ≥0,解得a ≥-7.又因为a <-4,所以-7≤a <-4.综上所述,a 的取值范围是{a |-7≤a ≤2}.[能力提升]1.已知命题p :∃x 0∈(-∞,0),2x 0<3x 0,命题q :∀x ∈⎝⎛⎭⎪⎫0,π2,cos x <1,则下列命题为真命题的是( )A .p ∧qB .p ∨(綈q )C .(綈p )∧qD .p ∧(綈q )【解析】 当x 0<0时,2x 0>3x 0,∴不存在x 0∈(-∞,0)使得2x 0<3x 0成立,即p 为假命题,显然∀x ∈⎝⎛⎭⎪⎪⎫0,π2,恒有0<cos x <1,∴命题q 为真,∴(綈p )∧q 是真命题. 【答案】 C2.(2013·四川高考)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A ,2x ∈B ,则( )A .綈p :∃x ∈A ,2x ∈BB .綈p :∃x ∉A ,2x ∈BC .綈p :∃x ∈A ,2x ∉BD .綈p :∀x ∉A ,2x ∉B【解析】 命题p 是全称命题: ∀x ∈M ,p (x ),则綈p 是特称命题:∃x ∈M ,綈p (x ).故选C.【答案】 C3.已知函数f (x )=x 2+m ,g (x )=⎝ ⎛⎭⎪⎫12x ,若对任意x 1∈[-1,3],存在x 2∈[0,2],使f (x 1)≥g (x 2),则实数m 的取值范围是________.【解析】 因为对任意x 1∈[-1,3],f (x 1)∈[m ,9+m ],即f (x )min=m .存在x 2∈[0,2],使f (x 1)≥g (x 2)成立,只要满足g (x )min ≤m 即可,而g (x )是单调递减函数,故g (x )min =g (2)=⎝ ⎛⎭⎪⎫122=14,得m ≥14. 【答案】 ⎣⎢⎡⎭⎪⎫14,+∞ 4.已知a >12且a ≠1,条件p :函数f (x )=log (2a -1)x 在其定义域上是减函数;条件q :函数g (x )=x +|x -a |-2的定义域为R ,如果p ∨q 为真,试求a 的取值范围. 【导学号:18490028】【解】 若p 为真,则0<2a -1<1,得12<a <1.若q 为真,则x +|x -a |-2≥0对∀x ∈R 恒成立.记f (x )=x +|x -a |-2,则f (x )=⎩⎨⎧2x -a -2,x ≥a ,a -2,x <a ,所以f (x )的最小值为a -2,即q 为真时,a -2≥0,即a ≥2.于是p ∨q 为真时,得12<a <1或a ≥2,故a 的取值范围为⎝ ⎛⎭⎪⎫12,1∪[2,+∞).。

2014-2015学年高中数学 综合检测 新人教A版选修2-2

2014-2015学年高中数学 综合检测 新人教A版选修2-2

【成才之路】2014-2015学年高中数学 综合检测 新人教A 版选修2-2时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2014·某某鱼台一中高二期中)复平面内,复数(2-i)2对应点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[答案] D[解析] ∵(2-i)2=4-4i +i 2=3-4i ,∴此复数在复平面内的对应点为(3,-4),故选D. 2.曲线y =4x -x 3在点(-1,-3)处的切线方程是( ) A .y =7x +4 B .y =x -4 C .y =7x +2 D .y =x -2[答案] D[解析] y ′|x =-1=(4-3x 2)|x =-1=1, ∴切线方程为y +3=x +1,即y =x -2.3.若函数f (x )=x 2+bx +c 的图象的顶点在第四象限,则函数f ′(x )的图象是( )[答案] A[解析] ∵f ′(x )=2x +b 为增函数,∴排除B 、D ; 又f (x )的顶点在第四象限, ∴-b2>0,∴b <0,排除C ,故选A.4.(2013·某某嘉祥一中高二期中)曲线y =x 3-3x 和y =x 围成图形的面积为( ) A .4 B .8 C .10 D .9[答案] B[解析] 由⎩⎪⎨⎪⎧y =x 3-3x ,y =x ,解得⎩⎪⎨⎪⎧x =0,y =0,或⎩⎪⎨⎪⎧x =2,y =2,或⎩⎪⎨⎪⎧x =-2,y =2.∵y =x 3-3x 与y =x 都是奇函数, ∴围成图形的面积为S =2⎠⎛02[x -(x 3-3x )]dx =2⎠⎛02(4x -x 3)dx =2·2x 2-14x4|20=8,故选B. 5.(2013·某某余姚中学高二期中)已知函数f (x )=sin x +e x+x2013,令f 1(x )=f ′(x ),f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1=f n ′(x ),则f 2014(x )=( )A .sin x +e xB .cos x +e xC .-sin x +e xD .-cos x +e x[答案] C[解析] f 1(x )=f ′(x )=cos x +e x +2013x 2012,f 2(x )=f 1′(x )=-sin x +e x+2013×2012x2011,f 3(x )=f 2′(x )=-cos x +e x+2013×2012×2011x2010,……,∴f 2014(x )=-sin x +e x.6.(2014·某某湄潭中学高二期中)函数f (x )=3x -4x 3(x ∈[0,1])的最大值是( ) A.12 B .-1 C .0 D .1[答案] D[解析] 由f ′(x )=3-12x 2=0得,x =±12,∵x ∈[0,1],∴x =12,∵当x ∈[0,12],f ′(x )>0,当x ∈[12,1]时,f ′(x )<0,∴f (x )在[0,12]上单调递增,在[12,1]上单调递减,故x =12时,f (x )取到极大值也是最大值,f (12)=3×12-4×(12)3=1,故选D.7.设x =3+4i ,则复数z =x -|x |-(1-i)在复平面上的对应点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限[答案] B[解析] ∵x =3+4i ,∴|x |=32+42=5, ∴z =3+4i -5-(1-i)=(3-5-1)+(4+1)i =-3+5i.∴复数z 在复平面上的对应点在第二象限,故应选B.8.k 棱柱有f (k )个对角面,则k +1棱柱的对角面个数f (k +1)为( ) A .f (k )+k -1 B .f (k )+k +1 C .f (k )+k D .f (k )+k -2[答案] A[解析] 增加的一条侧棱与其不相邻的k -2条侧棱形成k -2个对角面,而过与其相邻的两条侧棱的截面原来为侧面,现在也成了一个对角面,故共增加了k -1个对角面,∴f (k+1)=f (k )+k -1.故选A.9.(2014·揭阳一中高二期中)函数y =a sin x +13sin3x 在x =π3处有极值,则a 的值为( )A .-6B .6C .-2D .2[答案] D[解析] y ′=a cos x +cos3x ,由条件知,a cos π3+cosπ=0,∴a =2,故选D.10.(2014·某某市临淄区检测)下列求导运算正确的是( ) A .(2x)′=x ·2x -1B .(3e x )′=3e xC .(x 2-1x )′=2x -1x2D .(x cos x )′=cos x -x sin x cos x2[答案] B[解析] 对于A ,(2x )′=2x ln2;对于B ,(3e x )′=3e x ;对于C ,(x 2-1x )′=2x +1x2;对于D ,(x cos x )′=cos x +x sin xcos x2;综上可知选B.11.利用数学归纳法证明不等式1+12+13+…12n -1<f (n ) (n ≥2,n ∈N *)的过程中,由n =k 变到n =k +1时,左边增加了( )A .1项B .k 项C .2k -1项D .2k项[答案] D[解析] n =k +1时,左边为: 1+12+13+…+12k +1-1=⎝ ⎛⎭⎪⎫1+12+13+…+12k -1+⎝ ⎛⎭⎪⎫12k +12k +1+…+12k +2k-1, 故共增加了2k项,故选D.12.函数f (x )=x 2-2ln x 的单调减区间是( ) A .(0,1]B .[1,+∞)C .(-∞,-1]∪(0,1]D .[-1,0)∪(0,1][答案] A[解析] 函数的定义域为(0,+∞),f ′(x )=2x -2x=2x +1x -1x,由f ′(x )≤0及x >0得,0<x ≤1,故选A. [点评] 利用导数判断函数单调性的一般步骤 ①求导数f ′(x );②在函数f (x )的定义域内解不等式f ′(x )>0和f ′(x )<0; ③根据②的结果确定函数f (x )的单调区间.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上) 13.(2013·某某嘉祥一中高二期中)在等比数列{a n }中,若前n 项之积为T n ,则有T 3n=(T 2n T n)3.那么在等差数列{b n }中,若前n 项之和为S n ,用类比的方法得到的结论是________. [答案] S 3n =3(S 2n -S n )[解析] 由等比数列前n 项积,前2n 项的积,前3n 项的积类比得到等差数列前n 项的和,前2n 项的和,前3n 项的和,由等比数列中(T 2n T n)3类比得等差数列中3(S 2n -S n ),故有S 3n =3(S 2n -S n ).14.已知函数f (x )=x 3+2x 2-ax +1在区间(-1,1)上恰有一个极值点,则实数a 的取值X 围是________.[答案] [-1,7)[解析] f ′(x )=3x 2+4x -a ,其图象开口向上,由条件知f ′(-1)·f ′(1)<0,∴(-1-a )(7-a )<0,∴-1<a <7,当a =-1时,f ′(x )=3x 2+4x +1=0,在(-1,1)上恰有一根x =-13,当a =7时,f ′(x )=0在(-1,1)上无实根,∴-1≤a <7.15.(2014·天门市调研)若复数z =21+3i ,其中i 是虚数单位,则|z -|=________.[答案] 1 [解析] 因为z =21+3i =21-3i 1+3i1-3i=21-3i 4=12-32i ,所以|z -|=122+-322=1.16.(2013·某某一中高三月考)已知不等式1-3x +a <0的解集为(-1,2),则⎠⎛02(1-3x +a)dx =________. [答案] 2-3ln3 [解析] 由条件知方程1-3x +a=0的根为-1或2,∴a =1.∴⎠⎛02(1-3x +a )dx =⎠⎛02(1-3x +1)dx = |[x -3ln x +1]20=2-3ln3.三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)(2014·某某市高二期中)已知z 1、z 2为复数,i 为虚数单位,z 1·z-1+3(z 1+z -1)+5=0,z 2+3z 2-3为纯虚数,z 1、z 2在复平面内对应的点分别为P 、Q .(1)求点P 的轨迹方程; (2)求点Q 的轨迹方程; (3)写出线段PQ 长的取值X 围.[解析] (1)设z 1=x +y i ,(x 、y ∈R ),由z 1·z -1+3(z 1+z -1)+5=0得x 2+y 2+6x +5=0,整理得(x +3)2+y 2=4,∴点P 的轨迹方程为(x +3)2+y 2=4. (2)设z 2=x +y i ,(x 、y ∈R ),z 2+3z 2-3=x +3+y i x -3+y i =x 2+y 2-9-6y ix -32+y 2, ∵z 2+3z 2-3为纯虚数,∴x 2+y 2=9且y ≠0, ∴点Q 的轨迹方程为x 2+y 2=9(y ≠0). (3)PQ 长的取值X 围是[0,8). ∵两圆相交,∴PQ 长的最小值为0,又两圆圆心距为3,两圆半径分别为2和3,∴PQ 长的最大值为8,但点Q 的轨迹方程中y ≠0,∴|PQ |<8,∴线段PQ 长的取值X 围是[0,8).[点评] 第(3)问要求“写出线段PQ 长的取值X 围”可以不写解答过程.18.(本题满分12分)(2014·某某文,21)已知函数f (x )=e x -ax 2-bx -1,其中a 、b ∈R ,e =2.71828…为自然对数的底数.(1)设g (x )是函数f (x )的导函数,求函数g (x )在区间[0,1]上的最小值; (2)若f (1)=0,函数f (x )在区间(0,1)内有零点,证明:e -2<a <1. [解析] (1)由f (x )=e x-ax 2-bx -1,有g (x )=f ′(x )=e x-2ax -b . 所以g ′(x )=e x-2a .当x ∈[0,1]时,g ′(x )∈[1-2a ,e -2a ].当a ≤12时,g ′(x )≥0,所以g (x )在[0,1]上单调递增.因此g (x )在[0,1]上的最小值是g (0)=1-b ;当a ≥e2时,g ′(x )≤0,所以g (x )在[0,1]上单调递减,因此g (x )在[0,1]上的最小值是g (1)=e -2a -b ; 当12<a <e2时,令g ′(x )=0,得x =ln(2a )∈(0,1). 所以函数g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 于是,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b ; 综上所述,当a ≤12时,g (x )在[0,1]上的最小值是g (0)=1-b ;当12<a <e2时,g (x )在[0,1]上的最小值是g (ln(2a ))=2a -2a ln(2a )-b 当a ≥e2时,g (x )在[0,1]上的最小值是g (1)=e -2a -b .(2)设x 0为f (x )在区间(0,1)内的一个零点,则由f (0)=f (x 0)=0可知,f (x )在区间(0,x 0)上不可能单调递增,也不可能单调递减.则g (x )不可能恒为正,也不可能恒为负. 故g (x )在区间(0,x 0)内存在零点x 1.同理g (x )在区间(x 0,1)内存在零点x 2,所以g (x )在区间(0,1)内至少有两个零点. 由(1)知,当a ≤12时,g (x )在[0,1]上单调递增,故g (x )在(0,1)内至多有一个零点.当a ≥e2时,g (x )在[0,1]上单调递减,故g (x )在(0,1)内至多有一个零点.所以12<a <e 2.此时g (x )在区间[0,ln(2a )]上单调递减,在区间(ln(2a ),1]上单调递增. 因此x 1∈(0,ln(2a )],x 2∈(ln(2a ),1),必有g (0)=1-b >0,g (1)=e -2a -b >0.由f (1)=0有a +b =e -1<2,有g (0)=a -e +2>0,g (1)=1-a >0.解得e -2<a <1.所以,函数f (x )在区间(0,1)内有零点时,e -2<a <1.19.(本题满分12分)先观察不等式(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2(a 1、a 2、b 1、b 2∈R )的证明过程:设平面向量α=(a 1,b 1),β=(a 2,b 2),则|α|=a 21+b 21,|β|=a 22+b 22,α·β=a 1a 2+b 1b 2.∵|α·β|≤|α|·|β|, ∴|a 1a 2+b 1b 2|≤a 21+b 21·a 22+b 22, ∴(a 1a 2+b 1b 2)2≤(a 21+b 21)(a 22+b 22), 再类比证明:(a 21+b 21+c 21)(a 22+b 22+c 22)≥(a 1a 2+b 1b 2+c 1c 2)2. [分析] 把平面向量类比推广到空间向量可以证明.[解析] 设空间向量α=(a 1,b 1,c 1),β=(a 2,b 2,c 2),则|α|=a 21+b 21+c 21,|β|=a 22+b 22+c 22,α·β=a 1a 2+b 1b 2+c 1c 2,∵|α·β|≤|α|·|β|, ∴|a 1a 2+b 1b 2+c 1c 2|≤a 21+b 21+c 21·a 22+b 22+c 22,∴(a 1a 2+b 1b 2+c 1c 2)2≤(a 21+b 21+c 21)(a 22+b 22+c 22).20.(本题满分12分)设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.[解析] f ′(x )=cos x +sin x +1=2sin(x +π4)+1 (0<x <2π),令f ′(x )=0,即sin(x +π4)=-22, 解之得x =π或x =32π.x ,f ′(x )以及f (x )变化情况如下表:∴f (x )的单调增区间为(0,π)和(2π,2π),单调减区间为(π,2π).f 极大(x )=f (π)=π+2,f 极小(x )=f (32π)=3π2. 21.(本题满分12分)(2013·海淀区高二期中)已知点列A n (x n,0),n ∈N *,其中x 1=0,x 2=a (a >0),A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…A n 是线段A n -2A n -1的中点,….(1)写出x n 与x n -1、x n -2之间的关系式(n ≥3);(2)设a n =x n +1-x n ,计算a 1、a 2、a 3,由此推测数列{a n }的通项公式,并加以证明.[解析] (1)由题意,当n ≥3时,x n =12(x n -1+x n -2)(2)x 1=0,x 2=a ,x 3=12(x 2+x 1)=a 2,x 4=12(x 3+x 2)=3a4,∴a 1=x 2-x 1=a ,a 2=x 3-x 2=-a 2,a 3=x 4-x 3=a4,推测a n =a-2n -1.方法一证明:对于任意n ∈N *,a n =x n +1-x n ,a n +1=x n +2-x n +1=12(x n +1+x n )-x n +1=-12(x n +1-x n )=-12a n ,又∵a 1=a >0,∴{a n }是以a 为首项,以-12为公比的等比数列.故a n =a ·(-12)n -1=a-2n -1.方法二下面用数学归纳法证明:①当n =1时,a 1=a =a ·(-12)1-1,结论a n =a-2n -1成立.②假设当n =k (k ≥1,k ∈N )时,a n =a-2n -1成立,即a k =a ·(-12)k -1,则当n =k +1时,a k +1=x k +2-x k +1=x k +x k +12-x k +1=x k -x k +12=-12a k =(-12)·a ·(-12)k -1=a ·(-12)(k +1)-1,所以n =k +1时,a n =a-2n -1成立.由①②可知,数列{a n }的通项公式为a n =a ·(-12)n -1,n ∈N *.22.(本题满分14分)(2014·某某湄潭中学高二期中)设函数f (x )=x ln x . (1)求f (x )的单调区间;(2)求f (x )在区间[18,12]上的最大值和最小值.[解析] (1)由题意知,函数的定义域为(0,+∞). ∵f (x )=x ln x ,∴f ′(x )=ln x +1,令f ′(x )=0,得x =1e,令f ′(x )>0,得x >1e,令f ′(x )<0,得0<x <1e,∴f (x )的单调递增区间为(1e ,+∞),单调递减区间为(0,1e).(2)∵f (18)=18ln 18=38ln 12,f (12)=12ln 12, f (1e )=1e ln 1e =-1e, 又12ln 12<38ln 12, ∴求f (x )在区间[18,12]的最大值为38ln 12,最小值为-1e .一、选择题1.i 是虚数单位,复数z =2+3i-3+2i的虚部是( )A .0B .-1C .1D .2[答案] B[解析] z =2+3i-3+2i =2+3i -3-2i-3+2i-3-2i=-6-9i -4i +613=-i ,∴z 的虚部是-1. 2.设曲线y =x +1x -1在点(3,2)处的切线与直线ax +y +3=0垂直,则a =( ) A .-2 B .-12C .12D .2[答案] A[解析] y ′=-2x -12,y ′|x =3=-12, ∵(-12)·(-a )=-1,∴a =-2.3.用数学归纳法证明等式1+2+3+…+(n +3)=n +3n +42(n ∈N *)时,验证n =1,左边应取的项是( )A .1B .1+2C .1+2+3D .1+2+3+4[答案] D[解析] 当n =1时,左=1+2+…+(1+3)=1+2+…+4,故应选D.4.(2013·某某实验中学高二期中)三次函数当x =1时有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( )A .y =x 3+6x 2+9x B .y =x 3-6x 2+9x C .y =x 3-6x 2-9x D .y =x 3+6x 2-9x[答案] B[解析] 由条件设f (x )=ax 3+bx 2+cx ,则f ′(x )=3ax 2+2bx +c =3a (x -1)(x -3),∴b =-6a ,c =9a ,∴f (x )=ax 3-6ax 2+9ax ,∵f (1)=4,∴a =1. ∴f (x )=x 3-6x 2+9x ,故选B.5.在复平面内,点A 对应的复数为1+2i ,AB →=(-2,1),则点B 对应的复数的共轭复数为( )A .1+3iB .1-3iC .-1+3iD .-1-3i[答案] D[解析] 由条件知A (1,2),又AB →=(-2,1), ∴B (-1,3),∴点B 对应复数z =-1+3i , 故z -=-1-3i.6.已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线l 与直线3x -y +2=0平行,若数列{1f n}的前n 项和为S n ,则S 2013的值为( )A.20122013B .20112012 C .20092010D .20102011[解析] f ′(x )=2x +b ,由f ′(1)=2+b =3,得b =1. 则f (x )=x 2+x . 于是1f n=1n 2+n =1n n +1=1n -1n +1, S 2013=1f 1+1f 2+…+1f 2013=(1-12)+(12-13)+…+(12012-12013)=1-12013=20122013.7.(2014·某某市临淄区检测)已知函数f (x )=x 3-12x ,若f (x )在区间(2m ,m +1)上单调递减,则实数m 的取值X 围是( )A .-1≤m ≤1B .-1<m ≤1C .-1<m <1D .-1≤m <1[答案] D[解析] 因为f ′(x )=3x 2-12=3(x +2)(x -2),令f ′(x )<0⇒-2<x <2,所以函数f (x )=x 3-12x 的单调递减区间为(-2,2),要使f (x )在区间(2m ,m +1)上单调递减,则区间(2m ,m +1)是区间(-2,2)的子区间,所以⎩⎪⎨⎪⎧2m ≥-2,m +1≤2,m +1>2m .从中解得-1≤m <1,选D.8.根据给出的数塔猜测123456×9+7等于( ) 1×9+2=11 12×9+3=111 123×9+4=1111 1234×9+5=11111 12345×9+6=111111 …… A .1111110 B .1111111 C .1111112 D .1111113[答案] B[解析] 可利用归纳推理,由已知可猜测123456×9+7=1111111.9.(2012·某某文,5)观察下列事实:|x |+|y |=1的不同整数解(x ,y )的个数为4 , |x |+|y |=2的不同整数解(x ,y )的个数为8, |x |+|y |=3的不同整数解(x ,y )的个数为12,…,则|x |+|y |=20的不同整数解(x ,y )的个数为( )A .76B .80C .86D .92[解析] 本题考查了不完全归纳.由已知条件知|x |+|y |=n 的不同整数解(x ,y )个数为4n ,所以|x |+|y |=20不同整数解(x ,y )的个数为4×20=80.10.(2012·大纲全国理,1)复数-1+3i1+i =( )A .2+iB .2-iC .1+2iD .1-2i[答案] C[解析] 本小题主要考查了复数四则运算法则,可利用除法运算求解.因为-1+3i1+i =-1+3i 1-i 1+i1-i =2+4i2=1+2i ,所以选C.11.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1024C .1225D .1378[答案] C[解析] 图1中满足a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n , 以上累加得a n -a 1=2+3+…+n ,a n =1+2+3+…+n =n ·n +12,图2中满足b n=n 2,一个数若满足三角形数,其必能分解成两个相邻自然数乘积的一半; 一个数若满足正方形数,其必为某个自然数的平方. ∵1225=352=49×502,∴选C.12.(2014·某某理,11)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值X 围是( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3][答案] C[解析] ax 3≥x 2-4x -3恒成立.当x =0时式子恒成立.∴a ∈R , 当x >0时,a ≥1x -4x 2-3x3恒成立.令1x=t ,x ∈(0,1],∴t ≥1.∴a ≥t -4t 2-3t 3恒成立.令g (t )=t -4t 2-3t 3,g ′(t )=1-8t -9t 2=(t +1)(-9t +1), ∴函数g ′(t )在[1,+∞)上为减函数 而且g ′(1)=-16<0,∴g ′(t )<0在[1,+∞)上恒成立. ∴g (t )在[1,+∞)上是减函数, ∴g (t )max =g (1)=-6,∴a ≥-6; 当x <0时,a ≤1x -4x 2-3x3恒成立,∵x ∈[-2,0),∴t ≤-12,令g ′(t )=0得,t =-1,∴g (t )在(-∞,-1]上为减函数,在(-1,-12]上为增函数,∴g (t )min =g (-1)=-2,∴a ≤-2. 综上知-6≤a ≤-2. 二、填空题13.请阅读下列材料:若两个正实数a 1、a 2满足a 21+a 22=1,那么a 1+a 2≤ 2.证明:构造函数f (x )=(x -a 1)2+(x -a 2)2=2x 2-2(a 1+a 2)x +1.因为对一切实数x ,恒有f (x )≥0,所以Δ≤0,从而得4(a 1+a 2)2-8≤0,所以a 1+a 2≤ 2.类比上述结论,若n 个正实数满足a 21+a 22+…+a 2n =1,你能得到的结论为________.[答案] a 1+a 2+…+a n ≤n (n ∈N *)[解析] 构造函数f (x )=(x -a 1)2+(x -a 2)2+…+(x -a n )2=nx 2-2(a 1+a 2+…+a n )x +1,∵f (x )≥0对任意实数x 都成立, ∴Δ=4(a 1+a 2+…+a n )2-4n ≤0,∵a 1,a 2,…,a n 都是正数,∴a 1+a 2+…+a n ≤n .14.对大于或等于2的自然数m 的n 次方幂有如下分解方式: 22=1+3,32=1+3+5,42=1+3+5+7; 23=3+5,33=7+9+11,43=13+15+17+19.根据上述分解规律,若n 2=1+3+5+…+19,m 3(m ∈N *)的分解中最小的数是21,则m +n 的值为________.[答案] 15[解析] 依题意得n 2=10×1+192=100,∴n =10.易知m 3=21m +m m -12×2,整理得(m -5)(m +4)=0, 又m ∈N *,所以m =5,即53=21+23+25+27+29,所以m +n =15.15.对任意非零实数a 、b ,若a ⊗b 的运算原理如图所示,则2⊗⎠⎛0πsin x d x =________.[答案]22[解析] ∵⎠⎛0πsin x d x =-cos x|π0=2>2,∴2⊗⎠⎛0πsin x d x =2⊗2=2-12=22.16.(2013·某某红桥区高二质检)已知结论“a 1、a 2∈R +,且1a 1+1a 2≥4:若a 1、a 2、a 3∈R +,且a 1+a 2+a 3=1,则1a 1+1a 2+1a 3≥9”,请猜想若a 1、a 2、…、a n ∈R +,且a 1+a 2+…+a n =1,则1a 1+1a 2+…+1a n≥________.[答案] n 2[解析] 结论左端各项分别是和为1的各数a i 的倒数(i =1,2,…,n ),右端n =2时为4=22,n =3时为9=32,故a i ∈R +,a 1+a 2+…+a n =1时,结论为1a 1+1a 2+…+1a n≥n 2(n ≥2).三、解答题17.已知非零实数a 、b 、c 构成公差不为0的等差数列,求证:1a ,1b ,1c不可能构成等差数列.[解析] 假设1a ,1b ,1c 能构成等差数列,则得2b =1a +1c,于是得bc +ab =2ac .①而由于a ,b ,c 构成等差数列,即2b =a +c .②所以由①②两式得,(a +c )2=4ac ,即(a -c )2=0,于是得a =b =c ,这与a ,b ,c 构成公差不为0的等差数列矛盾.故假设不成立,因此1a ,1b ,1c不能构成等差数列.18.已知函数f (x )=(2-a )x -2ln x ,(a ∈R ). (1)若函数f (x )在x =1处取得极值,某某数a 的值; (2)求函数f (x )的单调区间.[解析] (1)由题可知f ′(x )=2-a -2x(x >0),令f ′(x )=0得2-a -2x =0,∴x =22-a ,又因为函数f (x )在x =1处取得极值,所以a =0.(2)①若a =2,f ′(x )=-2x<0(x >0),f (x )=-2ln x 的单调递减区间为(0,+∞);②若2-a <0,即a >2时,f ′(x )=2-a -2x在(0,+∞)上小于0,所以f (x )在(0,+∞)上单调递减;③若2-a >0,即a <2时,当x >22-a 时f ′(x )>0,f (x )单调递增,0<x <22-a时,f ′(x )<0,f (x )单调递减.综上:a ≥2时,f (x )的单调递减区间为(0,+∞);a <2时,f (x )的单调递增区间为(22-a ,+∞),单调递减区间为(0,22-a). 19.设函数f (x )=ax +xx -1(x >1),若a 是从1、2、3三个数中任取的一个数,b 是从2、3、4、5四个数中任取的一个数,求f (x )>b 恒成立的概率.[解析] 若使f (x )>b 恒成立,只需使ax +xx -1-b >0在(1,+∞)上恒成立.设g (x )=ax +xx -1-b ,则g ′(x )=a -1x -12=a x -12-1x -12,令g ′(x )=0,则a (x -1)2-1=0, 解得:x =±aa+1, ∴x ∈(1,aa+1)时,g ′(x )<0, x ∈(aa+1,+∞)时,g ′(x )>0. ∴x =aa+1时,函数g (x )取得最小值为 g (aa+1)=2a +a +1-b , ∴2a +a +1-b >0,∴当a =1时,b 的值可以是2或3, 当a =2时,b 的值可以是2或3或4或5, 当a =3时,b 的值可以是2或3或4或5.∴使f (x )>b 恒成立的取法共有10种,而数对(a ,b )的所有可能取法共有12种, ∴使f (x )>b 恒成立的概率为P =1012=56.20.若a 、b 、c 是不全相等的正数,求证:lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .[解析] 要证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c ,只需证lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ),只需证a +b 2·b +c 2·c +a2>abc .∵a ,b ,c 是不全相等的正数, ∴a +b2≥ab >0,b +c2≥bc >0,c +a2≥ac >0,且上述三式中的等号不同时成立. ∴a +b 2·b +c 2·c +a2>abc .∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .21.已知函数f (x )=12x 2-ax +(a -1)ln x .(1)若a >2,讨论函数f (x )的单调性;(2)已知a =1,g (x )=2f (x )+x 3,若数列{a n }的前n 项和为S n =g (n ),证明:1a 2+1a 3+…+1a n <13(n ≥2,n ∈N +). [解析] (1)可知f (x )的定义域为(0,+∞).有f ′(x )=x -a +a -1x =x 2-ax +a -1x=x -1[x -a -1]x,因为a >2,所以a -1>1.故当1<x <a -1时f ′(x )<0;当0<x <1或x >a -1时f ′(x )>0.∴函数f (x )在区间(1,a -1)上单调递减,在区间(0,1)和(a -1,+∞)上单调增加. (2)由a =1知g (x )=x 3+x 2-2x ,所以S n =n 3+n 2-2n .可得a n =⎩⎪⎨⎪⎧3n 2-n -2,n ≥2,0,n =1.∴a n =3n 2-n -2(n ≥2). 所以1a n =13n +2n -1(n ≥2).因为13n +2n -1<13nn -1=13(1n -1-1n), 所以1a 2+1a 3+…+1a n <13[(1-12)+(12-13)+…+(1n -1-1n )]=13(1-1n )=13-13n <13, 综上,不等式得证.22.(2014·揭阳一中高二期中)已知函数f (x )=ln x -12ax 2-2x (a <0).(1)若函数f (x )在定义域内单调递增,求a 的取值X 围;(2)若a =-12且关于x 的方程f (x )=-12x +b 在[1,4]上恰有两个不相等的实数根,某某数b 的取值X 围;(3)设各项为正的数列{a n }满足:a 1=1,a n +1=ln a n +a n +2,n ∈N *,求证:a n ≤2n-1.[解析] (1)f ′(x )=-ax 2+2x -1x(x >0).依题意f ′(x )≥0在x >0时恒成立,即ax 2+2x -1≤0在x >0时恒成立, 则a ≤1-2x x 2=(1x-1)2-1在x >0时恒成立,即a ≤((1x-1)2-1)min (x >0),当x =1时,(1x-1)2-1取最小值-1,∴a 的取值X 围是(-∞,-1].(2)a =-12,f (x )=-12x +b ⇔14x 2-32x +ln x -b =0.设g (x )=14x 2-32x +ln x -b (x >0),则g ′(x )=x -2x -12x.g (x ),g ′(x )随x 的变化如下表:x (0,1) 1 (1,2) 2 (2,4) g ′(x ) +0 -0 +g (x )极大值极小值∴g (x )极小值=g (2)=ln2-b -2,g (x )极大值=g (1)=-b -54,又g (4)=2ln2-b -2,∵方程g (x )=0在[1,4]上恰有两个不相等的实数根.则⎩⎪⎨⎪⎧g 1≥0,g 2<0,g 4≥0.得ln2-2<b ≤-54.(3)设h (x )=ln x -x +1,x ∈[1,+∞),则h ′(x )=1x-1≤0,∴h (x )在[1,+∞)上为减函数.∴h (x )max =h (1)=0,故当x ≥1时有ln x ≤x -1. ①当n =1时,a 1=1≤1成立;②假设n =k 时,a k ≤2k-1,则当n =k +1时, ∵2k-1≥1,∴ln(2k-1)≤(2k-1)-1=2k-2, ∴a k +1=ln a k +a k +2≤ln(2k-1)+(2k-1)+2 ≤(2k-2)+(2k-1)+2=2k +1-1,所以当n =k +1时结论也成立,由①②得,对∀n∈N*有a n≤2n-1成立.。

2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.4.2 含有一个量词的命题的否定

2014-2015学年高中数学(人教版选修2-1)配套课件第一章 1.4.2 含有一个量词的命题的否定

(3)∀a,b∈R,方程ax=b都有唯一解;
(4)可以被5整除的整数,末位是0. 解析:(1)三个给定产品中至少有一个是正品. (2)数列{1,2,3,4,5}中至少有一项不是偶数. (3)∃a,b∈R,使方程ax=b的解不唯一. (4)存在被5整除的整数,末位不是0.
栏 目 链 接
题型二
例2
特称命题的否定
解析:(1) ﹁p:∀x>1,x2-2x-3≠0.(假) (2) ﹁p:若an=-2n+1,则∀n∈N,Sn≥0.(假)
(3) ﹁p:所有偶数都不是质数.(假)
(4) ﹁p:∀x∈R,有x≤2.(假) (5) ﹁p:∀x∈R,x2≥0.(真)
题型三 例3
全称命题、特称命题的综合应用 (2013· 广东汕头二模)若命题“ ∀x∈R,x2+(a )
写出下列特称命题的否定,并判断其否定的真假:
(1)有些实数的绝对值是正数; (2)某些平行四边形是菱形; (3)∃ x0∈R,x0+1<0;
2
栏 目 链 接
(4)∃ x0,y∈Z,使得 2x0+y=3.
解析:(1)命题的否定是:“不存在一个实数,它 的绝对值是正数”.也即“所有实数的绝对值都不是正 数”.由于|-2|=2.因此命题的否定为假命题.
2.“末位数字是 0 或 5 的整数能被 5 整除”的否定
0或5的整数,不能被 5整除 形式是否定形式:存在末位数是 ______________________________ .
3.“末位数字是 0 或 5 的整数能被 5 整除”的否命
栏 目 链 接
否命题:末位数不是0且不是5的整数,不能被 5整除 题是________________________________ .
栏 目 链 接

【全程复习方略】2014-2015学年高中数学 第三章 空间向量与立体几何单元质量评估课时作业 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 第三章 空间向量与立体几何单元质量评估课时作业 新人教A版选修2-1

"【全程复习方略】2014-2015学年高中数学第三章空间向量与立体几何单元质量评估课时作业新人教A版选修2-1 "(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中不正确的是( )A.平面α的法向量垂直于与平面α共面的所有向量B.一个平面的所有法向量互相平行C.如果两个平面的法向量垂直,那么这两个平面也垂直D.如果a,b与平面α共面且n⊥a,n⊥b,那么n就是平面α的一个法向量【解析】选D.只有当a,b不共线且a∥α,b∥α时,D才正确.2.同时垂直于a=(2,2,1),b=(4,5,3)的单位向量是( )A.B.C.D.或【解析】选D.设所求向量为c=(x,y,z),由c·a=0及c·b=0及|c|=1得检验知选D.3.(2014·金华高二检测)已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c共面,则实数λ等于( )A. B. C. D.【解析】选D.易得c=t a+μb=(2t-μ,-t+4μ,3t-2μ),所以解得故选D.4.(2014·银川高二检测)已知矩形ABCD,PA⊥平面ABCD,则以下等式中可能不成立的是( )A.·=0B.·=0C.·=0D.·=0【解析】选B.选项A,⇒DA⊥平面PAB⇒DA⊥PB⇒·=0;由A可知·=0,C正确;选项D,PA⊥平面ABCD⇒PA⊥CD⇒·=0;选项B,若·=0,则BD⊥PC,又BD⊥PA,所以BD⊥平面PAC,故BD⊥AC,但在矩形ABCD中不一定有BD⊥AC,故B不一定成立.5.已知a=(cosα,1,sinα),b=(sinα,1,cosα),且a∥b,则向量a+b与a-b的夹角是( )A.90°B.60°C.30°D.0°【解析】选A.因为|a|2=2,|b|2=2,(a+b)·(a-b)=|a|2-|b|2=0,所以(a+b)⊥(a-b),故选A.【变式训练】已知A(2,-5,1),B(2,-2,4),C(1,-4,1),则与的夹角为( )A.30°B.45°C.60°D.90°【解析】选 C.=(0,3,3),=(-1,1,0).设<,>=θ,则cosθ===,所以θ=60°.6.(2014·长春高二检测)已知向量e1,e2,e3是两两垂直的单位向量,且a=3e1+2e2-e3,b=e1+2e3,则(6a)·1()2b 等于( )A.15B.3C.-3D.5【解析】选B.(6a)·1()2b=3a·b=3(3e1+2e2-e3)·(e1+2e3)=9|e1|2-6|e3|2=3.7.已知正方体ABCD-A′B′C′D′中,点F是侧面CDD′C′的中心,若=+x+y,则x-y等于( )A.0B.1C.D.-【解析】选A.如图所示,=+,所以=x+y,所以=x+y,因为=+,=,所以x=y=,x-y=0.8.(2014·安庆高二检测)如图,将边长为1的正方形ABCD沿对角线BD折成直二面角,若点P满足=-+,则||2的值为( )A. B.2 C. D.【解析】选D.过点C作CE垂直于BD,垂足为E,连接AE,则得AC=1,故三角形ABC为正三角形.||2==++-·+·-·=×1+×1+()2-×1×1×cos∠ABC=-=.9.已知A(4,1,3),B(2,-5,1),C是线段AB上一点,且=,则C点的坐标为( )A. B.C. D.【解析】选C.由题意知,2=,设C(x,y,z),则2(x-4,y-1,z-3)=(2-x,-5-y,1-z),即解得即C.10.已知△ABC的顶点A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD的长等于( )A.3B.4C.5D.6【解析】选C.设D(x,y,z),则=(x-1,y+1,z-2),=(x-5,y+6,z-2), =(0,4,-3),因为∥,且⊥,所以解得所以||=5.【一题多解】设=λ,D(x,y,z),则(x-1,y+1,z-2)=λ(0,4,-3),所以x=1,y=4λ-1,z=2-3λ.所以=(-4,4λ+5,-3λ),又=(0,4,-3),⊥,所以4(4λ+5)-3(-3λ)=0,所以λ=-,所以=,所以||==5.11.(2014·绵阳高二检测)如图所示,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E是棱AB的中点,则点E 到平面ACD1的距离为( )A. B. C. D.【解析】选C如图,以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴建立空间直角坐标系,则D1(0,0,1),E(1,1,0),A(1,0,0),C(0,2,0).从而=(1,1,-1),=(-1,2,0),=(-1,0,1),设平面ACD1的法向量为n=(a,b,c),则即得令a=2,则n=(2,1,2).所以点E到平面ACD1的距离为d===.12.(2014·荆州高二检测)如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F且EF=,则下列结论中错误的是( )A.AC⊥BEB.EF∥平面ABCDC.三棱锥A-BEF的体积为定值D.异面直线AE,BF所成的角为定值【解析】选D.因为AC⊥平面BB1D1D,又BE⊂平面BB1D1D.所以AC⊥BE,故A正确.因为B1D1∥平面ABCD,又E,F在直线D1B1上运动,所以EF∥平面ABCD,故B正确.C中由于点B到直线B1D1的距离不变,故△BEF的面积为定值,又点A到平面BEF的距离为,故V A-BEF为定值.①当点E在D1处,点F为D1B1的中点时,建立空间直角坐标系, 如图所示,可得A(1,1,0),B(0,1,0),E(1,0,1),F,所以=(0,-1,1),=,所以·=.又||=,||=,所以cos<,>===.所以此时异面直线AE与BF成30°角.②当点E为D1B1的中点,点F在B1处时,此时E,F(0,1,1).所以=,=(0,0,1),所以·=1,||==,所以cos<,>===≠,故选D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知正方体ABCD-A′B′C′D′的棱长为a,则<,>= .【解析】=,因为△A′BD为正三角形,所以<,>=120°,即<,>=120°.答案:120°14.已知正四棱台ABCD-A1B1C1D1中,上底面A1B1C1D1边长为1,下底面ABCD边长为2,侧棱与底面所成的角为60°,则异面直线AD1与B1C所成角的余弦值为.【解析】设上、下底面中心分别为O1,O,则OO1⊥平面ABCD,以O为原点,直线BD,AC,OO1分别为x轴、y轴、z轴建立空间直角坐标系.因为AB=2,A1B1=1,所以AC=BD=2,A1C1=B1D1=,因为平面BDD1B1⊥平面ABCD,所以∠B1BO为侧棱与底面所成的角,所以∠B1BO=60°,设棱台高为h,则tan60°=,所以h=,所以A(0,-,0),D1,B1,C(0,,0),所以=,=,所以cos<,>==,故异面直线AD1与B1C所成角的余弦值为.答案:【变式训练】如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC 所成角的余弦值是.【解析】如图,建立空间直角坐标系,则A(4,0,0),C(0,4,0),D1(0,0,4),E(0,4,2),=(-4,4,0),=(0,4,-2).cos<,>==.所以异面直线D1E与AC所成角的余弦值为.答案:15.在三棱柱ABC-A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD 与平面AA1C1C所成的角为α,则sinα的值是.【解题指南】建立空间直角坐标系,求出平面AA1C1C的一个法向量n和,计算cos<n,>即可求解sin α.【解析】如图,建立空间直角坐标系,易求点D,平面AA1C1C的一个法向量n=(1,0,0),所以cos<n,>==,即sinα=.答案:16.给出命题:①在□ABCD中,+=;②在△ABC中,若·>0,则△ABC是锐角三角形;③在梯形ABCD中,E,F分别是两腰BC,DA的中点,则=(+);④在空间四边形ABCD中,E,F分别是边BC,DA的中点,则=(+).以上命题中,正确命题的序号是. 【解析】①满足向量运算的平行四边形法则,①正确;·=||·||·cosA>0⇒∠A<90°,但∠B,∠C无法确定,所以△ABC是否是锐角三角形无法确定,②错误;③符合梯形中位线的性质,正确;④如图,=+,+=++=+2=2(+)=2,则=(+),正确.答案:①③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图,正方体ABCD-A′B′C′D′中,点E是上底面A′B′C′D′的中心,用向量,,表示向量,.【解析】=-=--+.=+=+=+=+(-)=-++.18.(12分)(2014·福州高二检测)如图所示,已知PA⊥平面ABCD,ABCD为矩形,PA=AD,M,N分别为AB,PC的中点.求证:(1)MN∥平面PAD.(2)平面PMC⊥平面PDC.【证明】如图所示,以A为坐标原点,AB,AD,AP所在的直线分别为x,y,z轴建立空间直角坐标系Axyz.设PA=AD=a,AB=b.(1)P(0,0,a),A(0,0,0),D(0,a,0),C(b,a,0),B(b,0,0).因为M,N分别为AB,PC的中点,所以M,N.所以=,=(0,0,a),=(0,a,0),所以=+.又因为MN⊄平面PAD,所以MN∥平面PAD.(2)由(1)可知:P(0,0,a),C(b,a,0),M,D(0,a,0).所以=(b,a,-a),=,=(0,a,-a).设平面PMC的法向量为n1=(x1,y1,z1),则所以令z1=b,则n1=(2a,-b,b).设平面PDC的一个法向量为n2=(x2,y2,z2),则所以令z2=1,则n2=(0,1,1).因为n1·n2=0-b+b=0,所以n1⊥n2.所以平面PMC⊥平面PDC.【知识拓展】用向量证明线面平行的主要方法(1)证明直线的方向向量与平面的法向量垂直.(2)在平面内找到一个向量与直线的方向向量是共线向量.(3)利用共面向量定理,在平面内找到两不共线向量把直线的方向向量线性表示出来.19.(12分)如图,已知平行六面体ABCD-A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD=60°.当的值等于多少时,能使A1C⊥平面C1BD?【解析】不妨设=x,CC1=1,A1C⊥平面C1BD,则A1C⊥C1B,A1C⊥C1D,而=+,=++=++,由·=0,得(++)·(+)=-+·+·=0,注意到·+·=-,可得方程1-x2+=0,解得x=1或x=-(舍).因此,当=1时,能使A1C⊥平面C1BD.20.(12分)(2013·上海高考)如图,在长方体ABCD-A′B′C′D′中,AB=2,AD=1,AA′=1,证明直线BC′平行于平面D′AC,并求直线BC′到平面D′AC的距离.【解析】如图,建立空间直角坐标系,可得有关点的坐标为A(1,0,1),B(1,2,1), C(0,2,1),C′(0,2,0),D′(0,0,0).则=(1,0,1),=(0,2,1),设平面D′AC的法向量n=(u,v,w),由n⊥,n⊥,所以n·=0,n·=0,即解得u=2v,w=-2v,取v=1,得平面D′AC的一个法向量n=(2,1,-2).因为=(-1,0,-1),所以n·=0,所以n⊥.又BC′不在平面D′AC内,所以直线BC′与平面D′AC平行.由=(1,0,0),得点B到平面D′AC的距离d===,所以直线BC′到平面D′AC的距离为.21.(12分)(2014·广东高考)四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E.(1)证明:CF⊥平面ADF.(2)求二面角D-AF-E的余弦值.【解题指南】(1)采用几何法较为方便,证AD⊥平面PCD⇒CF⊥AD,又CF⊥AF⇒CF⊥平面ADF.(2)采用向量法较为方便,以D为原点建立空间直角坐标系,设DC=2,计算出DE,EF的值,得到A,C,E,F的坐标,注意到为平面ADF的一个法向量.【解析】(1)因为四边形ABCD为正方形,所以AD⊥DC.又PD⊥平面ABCD,AD⊂平面ABCD,所以PD⊥AD,DC∩PD=D,所以AD⊥平面PCD.又CF⊂平面PCD,所以CF⊥AD,而AF⊥PC,即AF⊥FC,又AD∩AF=A,所以CF⊥平面ADF.(2)以D为原点,DP,DC,DA分别为x,y,z轴建立空间直角坐标系,设DC=2,由(1)知PC⊥DF,即∠CDF=∠DPC=30°,有FC=DC=1,DF=FC=,DE=DF=,EF=DE=,则D(0,0,0),E,F,A(0,0,2),C(0,2,0),=,=,=,设平面AEF的法向量为n=(x,y,z),由得取x=4,有y=0,z=,n=(4,0,),又平面ADF的一个法向量=,所以cos<n,>===-,所以二面角D-AF-E的余弦值为.【变式训练】(2014·北京高二检测)如图,四边形ABCD是正方形,EA⊥平面ABCD,EA∥PD,AD=PD=2EA=2,F,G,H 分别为PB,EB,PC的中点.(1)求证:FG∥平面PED.(2)求平面FGH与平面PBC所成锐二面角的大小.(3)在线段PC上是否存在一点M,使直线FM与直线PA所成的角为60°?若存在,求出线段PM的长;若不存在,请说明理由.【解析】(1)因为F,G分别为PB,BE的中点,所以FG∥P E.又FG⊄平面PED,PE⊂平面PED,所以FG∥平面PED.(2)因为EA⊥平面ABCD,EA∥PD,所以PD⊥平面ABCD,所以PD⊥AD,PD⊥CD.又因为四边形ABCD是正方形,所以AD⊥CD.如图,建立空间直角坐标系,因为AD=PD=2EA=2,所以D,P,A,C,B,E(2,0,1).因为F,G,H分别为PB,EB,PC的中点,所以F,G,H(0,1,1).所以=,=.设n1=(x1,y1,z1)为平面FGH的一个法向量,则即再令y1=1,得n1=(0,1,0).=(2,2,-2),=(0,2,-2).设n2=(x2,y2,z2)为平面PBC的一个法向量,则即令z2=1,得n2=(0,1,1).所以所以平面FGH与平面PBC所成锐二面角的大小为.(3)假设在线段PC上存在一点M,使直线FM与直线PA所成角为60°.依题意可设=λ,其中0≤λ≤1.由=(0,2,-2),则=(0,2λ,-2λ).又因为=+,=(-1,-1,1),所以=(-1,2λ-1,1-2λ).因为直线FM与直线PA所成角为60°,=(2,0,-2),所以=,即=,解得λ=.所以=,=.所以在线段PC上存在一点M,使直线FM与直线PA所成角为60°,此时PM的长度为.22.(12分)四棱锥P-ABCD中,底面ABCD是一个平行四边形,PA⊥底面ABCD,=(2,-1,-4),=(4,2,0),=(-1,2,-1).(1)求四棱锥P-ABCD的体积.(2)对于向量a=(x1,y1,z1),b=(x2,y2,z2),c=(x3,y3,z3),定义一种运算:(a×b)·c=x1y2z3+x2y3z1+x3y1z2-x1y3z2-x2y1z3-x3y2z1.试计算(×)·的绝对值的值;说明其与四棱锥P-ABCD体积的关系,并由此猜想向量这一运算(×)·的绝对值的几何意义.【解析】(1)设<,>=θ,则cosθ==.所以sinθ=.所以V=S□ABCD||=||||sinθ||=16.(2)=|-4-32+0-0-4-8|=48,它是四棱锥P-ABCD体积的3倍.猜想:在几何上可表示以AB,AD,AP为棱的平行六面体的体积(或以AB,AD,AP为棱的直四棱柱的体积).【技法点拨】向量法在数形结合思想中的应用向量是有效沟通“数”与“形”的桥梁.在学习中我们一定要充分理解向量概念及向量运算的几何意义,从而有效利用向量工具解决实际问题.如对空间直线的向量表示,应明确空间直线是由空间一点及直线的方向向量惟一确定.。

(人教A版)高中数学选修2-1(全册)同步练习汇总

(人教A版)高中数学选修2-1(全册)同步练习汇总

(人教A版)高中数学选修2-1(全册)同步练习汇总课堂效果落实1.下列语句中是命题的是()A.周期函数的和是周期函数吗B.sin45°=1C.x2+2x-1>0D.梯形是平面图形吗解析:A、D是疑问句, 不是命题, C不能判断真假, 故B为正确答案.答案:B2.[2014·大连高二检测]若M、N是两个集合, 则下列命题中真命题是()A.如果M⊆N, 那么M∩N=MB.如果M∩N=N, 那么M⊆NC.如果M⊆N, 那么M∪N=MD.如果M∪N=N, 那么N⊆M解析:用集合的定义理解.答案:A3.在下列4个命题中, 是真命题的序号为()①3≥3;②100或50是10的倍数;③有两个角是锐角的三角形是锐角三角形;④等腰三角形至少有两个内角相等.A.①B.①②C.①②③D.①②④解析:对于③, 举一反例, 若A=15°, B=15°, 则C为150°, 三角形为钝角三角形.答案:D4.[2014·辽宁高二检测]下列命题:①若xy=1, 则x、y互为倒数;②对角线垂直的平行四边形是正方形;③平行四边形是梯形;④若ac2>bc2, 则a>b.其中真命题的序号是________.解析:①④是真命题, ②四条边相等的四边形也可以是菱形, ③平行四边形不是梯形.答案:①④5.[2014·武汉高二测试]判断下列语句是不是命题, 如果是命题, 指出是真命题还是假命题.(1)任何负数都大于零;(2)△ABC与△A1B1C1是全等三角形;(3)x2+x>0;(4)∅A;(5)6是方程(x-5)(x-6)=0的解;(6)方程x2-2x+5=0无解.解:(1)负数都是小于零的, 因此“任何负数都大于零”是不正确的;它能构成命题, 而且这个命题是个假命题.(2)两个三角形为全等三角形是有条件的, 本题无法判定△ABC 与△A1B1C1是否为全等三角形, 所以它不是命题.(3)因为x是未知数, 无法判断x2+x是否大于零, 所以“x2+x>0”这一语句不是命题.(4)空集是任何非空集合的真子集, 集合A是不是非空集合我们无法判断, 所以无法判断“∅A”是否成立, 因此, 它不是命题.(5)6确实是所给方程的解, 所以它是命题, 且是真命题.(6)由于给定方程x2-2x+5=0, 我们就可以用其判别式来判断它是否有解.由Δ=4-4×5=-16<0知, 方程x2-2x+5=0无解, 是命题, 且是真命题.04课后课时精练一、选择题1.“红豆生南国, 春来发几枝?愿君多采撷, 此物最相思.”这是唐代诗人王维的《相思》诗, 在这4句诗中, 可作为命题的是()A. 红豆生南国B. 春来发几枝C. 愿君多采撷D. 此物最相思解析:“红豆生南国”是陈述句, 意思是“红豆生长在中国南方”, 这在唐代是事实, 故本语句是命题, 且是真命题;“春来发几枝”是疑问句, “愿君多采撷”是祈使句, “此物最相思”是感叹句, 都不是命题.答案:A2.[2013·安徽高考]在下列命题中, 不是..公理的是()A. 平行于同一个平面的两个平面相互平行B. 过不在同一条直线上的三点, 有且只有一个平面C. 如果一条直线上的两点在一个平面内, 那么这条直线上所有的点都在此平面内D. 如果两个不重合的平面有一个公共点, 那么它们有且只有一条过该点的公共直线解析:本题考查了立体几何中的公理与定理, 意在要考生注意回归课本, 明白最基本的公理与定理.注意公理是不用证明的, 定理是要求证明的.选项A是面面平行的性质定理, 是由公理推证出来的, 而公理是不需要证明的.答案:A3.下列命题中()①a·b=a·c且a≠0时, 必有b=c②如a∥b时, 必存在唯一实数λ使a=λb③a, b, c互不共线时, a-b必与c不共线④a与b共线且c与b也共线时, 则a与c必共线其中真命题的个数有()A. 0个B. 1个C. 2个D. 3个解析:对于①, 由a·b=a·c且a≠0, 得a·(b-c)=0, 未必有b=c;对于②, 若b=0时, 不成立;对于③, 如图△ABC中, E, F分别为AB, AC的中点,AB →=a , AC →=b , 则CB →=AB →-AC →.又因为EF →=12BC →.即c =-12(a -b ), 故③不正确.④若b =0时, a 与c 不一定共线, 故选A.答案:A4.[2014·辽宁高考]已知m , n 表示两条不同直线, α表示平面.下列说法正确的是( )A. 若m ∥α, n ∥α, 则m ∥nB. 若m ⊥α, n ⊂α, 则m ⊥nC. 若m ⊥α, m ⊥n , 则n ∥αD. 若m ∥α, m ⊥n , 则n ⊥α解析:本题主要考查空间线面位置关系的判断, 意在考查考生的逻辑推理能力.对于选项A, 若m ∥α, n ∥α, 则m 与n 可能相交、平行或异面, A 错误;显然选项B 正确;对于选项C, 若m ⊥α, m ⊥n , 则n ⊂α或n ∥α, C 错误;对于选项D, 若m ∥α, m ⊥n , 则n ∥α或n ⊂α或n 与α相交, D 错误.故选B.答案:B5.[2014·海南高二检测]设U为全集, 下列命题是真命题的有()①若A∩B=∅, 则(∁U A)∪(∁U B)=U;②若A∪B=U, 则(∁U A)∩(∁B)=∅;③若A∪B=∅, 则A=B=∅.UA.0个B.1个C.2个D.3个解析:由Venn图容易判断, ①②③均为真命题.答案:D6.设l1、l2表示两条直线, α表示平面.若有:①l1⊥l2;②l1⊥α;③l2⊂α, 则以其中两个为条件, 另一个为结论, 可以构造的所有命题中, 正确命题的个数为()A.0 B.1C.2 D.3解析:由题意得三个命题, 即②③⇒①、①③⇒②和①②⇒③.由②③⇒①正确, ①③⇒②错误, ①②⇒③错误, 故选B.答案:B二、填空题7.下列语句是命题的有________.①地球是太阳的一个行星;②数列是函数吗?③x, y都是无理数, 则x+y是无理数;④若直线l不在平面α内, 则直线l与平面α平行;⑤60x+9>4;⑥求证3是无理数.解析:根据命题的定义进行判断.因为②是疑问句, 所以②不是命题;因为⑤中自变量x的值不确定, 所以无法判断其真假;因为⑥是祈使句, 所以不是命题.故填①③④.答案:①③④8.命题“一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根”, 条件p:________________, 结论q:________________, 是________________(填“真”或“假”)命题.解析:根据命题的结构形式填空.答案:方程ax2+bx+c=0(a≠0)是一元二次方程此方程有两个不相等的实数根假9.把下列不完整的命题补充完整, 并使之成为真命题:若函数f(x)=log3x的图象与g(x)的图象关于原点对称, 则g(x)=________.解析:设g(x)上任意一点坐标为P(x, y), 则点P关于原点的对称点坐标为P1(-x, -y), 点P1在函数f(x)=log3x的图象上, 将对称点P1坐标直接代入f(x),即得:g(x)=-log3(-x).答案:-log3(-x)三、解答题10.判断下列语句是否为命题.(1)若a⊥b, 则a·b=0;(2)2是无限循环小数;(3)三角形的三条中线交于一点;(4)x2-4x+4≥0(x∈R);(5)非典型肺炎是怎样传染的?(6)2014年北京的高考题真难!答案:(1)是(2)是(3)是(4)是(5)不是(6)不是11.把下列命题写成“若p, 则q”的形式, 并判断其真假:(1)等腰三角形的两个底角相等.(2)当x=2或x=4时, x2-6x+8=0;(3)正方形是矩形又是菱形;(4)方程x 2-x +1=0有两个实数根.解:(1)若一个三角形是等腰三角形, 则两个底角相等, 真命题.(2)若x =2或x =4, 则x 2-6x +8=0, 真命题.(3)若一个四边形是正方形, 则它既是矩形, 又是菱形, 为真命题.(4)若一个方程为x 2-x +1=0, 则这个方程有两个实数根, 为假命题.12.[2014·南昌高二检测]已知命题p :|x 2-x |≥6, q :x ∈Z , 若p 假q 真, 求x 的值.解:因为p 假q 真, 所以可得⎩⎪⎨⎪⎧ |x 2-x |<6,x ∈Z , 所以⎩⎪⎨⎪⎧ x 2-x <6,x 2-x >-6,x ∈Z ,即⎩⎪⎨⎪⎧ -2<x <3,x ∈R ,x ∈Z ,故x 的值为-1,0,1,2.03课堂效果落实1.下列命题:①今天有人请假;②中国所有的江河都流入太平洋;③中国公民都有受教育的权力;④每一个中学生都要接受爱国主义教育;⑤有人既能写小说, 也能搞发明创造⑥任何一个数除0都等于0.其中是全称命题的有( )A.1个B.2个C.3个D.不少于4个解析:②、③、④、⑥都含有全称量词.答案:D2.下列全称命题中真命题的个数为()①末位是0的整数, 可以被2整除;②角平分线上的点到这个角的两边的距离相等;③正四面体中两侧面的夹角相等.A.1 B.2C.3 D.0解析:①②③均为全称命题且均为真命题, 故选C.答案:C3.[2014·温州高二检测]下列命题不是“存在x0∈R, x20>3”的表述方法的是()A.有一个x0∈R, 使得x20>3成立B.对有些x0∈R, 使得x20>3成立C.任选一个x∈R, 使得x2>3成立D.至少有一个x0∈R, 使得x20>3成立解析:C答案已经是全称命题了.答案:C4.命题“有些负数满足不等式(1+x)(1-9x2)>0”用“∃”写成特称命题为__________________.解析:“有些”即存在.答案:∃x0∈R, x0<0, (1+x0)(1-9x20)>05.判断下列命题是全称命题还是特称命题?并判断其真假.(1)存在一个实数, 使等式x2+x+8=0成立;(2)每个二次函数的图象都与x 轴相交;(3)若对所有的正实数, 不等式m ≤x +1x 都成立, 则m ≤2; (4)如果对任意的正整数n , 数列{a n }的前n 项和S n =an 2+bn (a , b 为常数), 那么数列{a n }为等差数列.解:(1)特称命题.∵x 2+x +8=(x +12)2+314>0,∴命题为假命题. (2)全称命题, 假命题.如存在y =x 2+x +1与x 轴不相交. (3)全称命题. ∵x 是正实数, ∴x +1x ≥2x ·1x =2(当且仅当x =1时“=”成立).即x +1x 的最小值是2, 而m ≤x +1x , 从而m ≤2. 所以这个全称命题是真命题. (4)全称命题.∵S n =an 2+bn , ∴a 1=a +b .当n ≥2时, a n =S n -S n -1=an 2+bn -a (n -1)2-b (n -1)=2na +b -a ,又n =1时, a 1=a +b 也满足上式, 所以a n =2an +b -a (n ∈N *).从而数列{a n }是等差数列, 即这个全称命题也是真命题.04课后课时精练一、选择题1.给出下列命题:①存在实数x0>1, 使x20>1;②全等的三角形必相似;③有些相似三角形全等;④至少有一个实数a, 使关于x的方程ax2-ax+1=0的根为负数.其中特称命题的个数是()A.1B.2C.3 D.4解析:只有②是全称命题.答案:C2.“存在集合A, 使∅A”, 对这个命题, 下面说法中正确的是()A.全称命题、真命题B.全称命题、假命题C.特称命题、真命题D.特称命题、假命题解析:当A≠∅时, ∅A, 是特称命题, 且为真命题.答案:C3.下列命题中是全称命题并且是真命题的是()A.每个二次函数的图象都开口向上B.对任意非正数c, 若a≤b+c, 则a≤bC.存在一条直线与两个相交平面都垂直D.存在一个实数x0使不等式x20-3x0+6<0成立解析:C、D是特称命题, A是假命题.答案:B4.特称命题“存在实数x0使x20+1<0”可写成()A.若x∈R, 则x2+1<0B.∀x∈R, x2+1<0C.∃x0∈R, x20+1<0D.以上都不正确解析:特称命题“存在一个x0∈R, 使p(x0)成立”简记为“∃x0∈R, 使p(x0)成立”.答案:C5.[2014·大连高二检测]下列命题中假命题的个数为()①∀x∈R,2x-1>0 ②∀x∈N*, (x-1)2>0③∃x0∈R, lg x0>1 ④∃x0∈R, tan x0=2⑤∃x0∈R, sin2x0+sin x0+1=0A.1 B.2C.3 D.4解析:本题考查全称命题和特称命题的真假判断.①中命题是全称命题, 易知2x-1>0恒成立, 故是真命题;②中命题是全称命题, 当x=1时, (x-1)2=0, 故是假命题;③中命题是特称命题, 当x=100时, lg x=2, 故是真命题;④中命题是特称命题, 依据正切函数定义, 可知是真命题.⑤(sin x0+12)2+34≥34>0成立, 可知为假命题.答案:B6.若对于∀x∈R, x2≥a+2|x|恒成立, 则实数a的取值范围是()A.a<-1 B.a≤-1C.a>-1 D.a≥-1解析:对于∀x∈R, x2≥a+2|x|恒成立,即a≤x2-2|x|恒成立.令f(x)=x2-2|x|, x∈R,则f(-x)=f(x).当x ≥0时, f (x )=x 2-2x =(x -1)2-1≥-1, 故a ≤-1. 答案:B 二、填空题7.“任意一个不大于0的数的立方不大于0”用“∃”或“∀”符号表示为__________________________.答案:∀x ≤0, x 3≤08.[2014·西安高二检测]若∃x ∈R , 使x +1x =m 成立, 则实数m 的取值范围是________.解析:依题意, 关于x 的方程x +1x =m 有实数解, 由基本不等式得x +1x ≥2或x +1x ≤-2, ∴m ≥2或m ≤-2. 答案:(-∞, -2]∪[2, +∞)9.下列命题中, 是全称命题或特称命题的是________. ①正方形的四条边相等;②所有有两个角是45°的三角形是等腰直角三角形;③正数的平方根不等于0;④至少有一个正整数是偶数;⑤所有正数都是实数吗?解析:④为特称命题, ①②③为全称命题, 而⑤不是命题. 答案:①②③④ 三、解答题10.判断下列命题是否是全称命题或特称命题, 若是, 用符号表示, 并判断其真假.(1)任何一个平行四边形的对边都平行; (2)存在一条直线, 其斜率不存在;(3)对所有的实数a , b , 方程ax +b =0都有唯一解;(4)存在实数x0, 使得1x20-x0+1=2.解:(1)是全称命题, 是真命题;(2)是特称命题, 用符号表示为“∃直线l, l的斜率不存在”, 是真命题;(3)是全称命题, 用符号表示为“∀a, b∈R, 方程ax+b=0都有唯一解”, 是假命题.(4)是特称命题, 用符号表示为“∃x0∈R,1x20-x0+1=2”, 是假命题.11. [2014·唐山高二检测]已知函数f(x)=x2-2x+5.(1)是否存在实数m, 使不等式m+f(x)>0对于任意x∈R恒成立?并说明理由;(2)若存在实数x, 使不等式m-f(x)>0成立, 求实数m的取值范围.解:(1)不等式m+f(x)>0可化为m>-f(x), 即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立, 只需m>-4即可.故存在实数m使不等式m+f(x)>0对于任意x∈R恒成立, 此时m>-4.(2)不等式m-f(x)>0可化为m>f(x).若存在实数x使不等式m>f(x)成立, 只需m>f(x)min.又f(x)=(x-1)2+4, ∴f(x)min=4,∴m>4.故所求实数m的取值范围是(4, +∞).12.(1)若全称命题“任意x∈[-1, +∞), x2-2ax+2≥0恒成立”为真命题, 求a的取值范围;(2)若特称命题“存在x 0∈R , 使log 2(ax 20+x 0+2)<0”为真命题, 求a 的取值范围.解:(1)当x ∈[-1, +∞)时, x 2-2ax +2≥0恒成立, 等价于二次函数y =x 2-2ax +2的图象在x 轴的上方, 只需满足Δ<0或⎩⎪⎨⎪⎧Δ≥0,a ≤-1,f (-1)≥0,即4a 2-8<0或⎩⎪⎨⎪⎧4a 2-8≥0,a ≤-1,2a +3≥0,所以-2<a <2或-32≤a ≤-2,所以a 的取值范围是[-32, 2).(2)log 2(ax 20+x 0+2)<0⇔0<ax 20+x 0+2<1, 即存在x 0∈R , 使0<ax 2+x 0+2<1成立.当a =0时, -2<x 0<-1满足题意, 即存在实数x 0满足题意;当a ≠0时, ⎩⎪⎨⎪⎧ a >0,4a -1<0,或⎩⎪⎨⎪⎧a <0,8a -1<0,即0<a <14或a <0. 综上所述, a <14, 即所求a 的取值范围是(-∞, 14).03课堂效果落实1.命题“x =±1是方程|x |=1的解”中, 使用逻辑联结词的情况是( )A .没有使用逻辑联结词B .使用了逻辑联结词“或”C .使用了逻辑联结词“且”D .使用了逻辑联结词“或”与“且” 答案:B2.以下判断正确的是()A.命题p是真命题时, 命题“p∧q”一定是真命题B.命题“p∧q”为真命题时, 命题p一定是真命题C.命题“p∧q”为假命题时, 命题p一定是假命题D.命题p是假命题时, 命题“p∧q”不一定是假命题解析:若“p∧q”为真, 则p、q二者皆真, 若“p∧q”为假, 则p、q中至少有一个为假, 故选B.答案:B3.已知命题p:∅⊆{0}, q:{1}∈{1,2}.由它们构成的“p或q”“p 且q”形式的命题中真命题有________个.解析:p为真命题, q为假命题, “p或q”为真命题, “p且q”为假命题.答案:14.分别用“p∧q”“p∨q”填空.(1)命题“6是自然数且是偶数”是________形式.(2)命题“5小于或等于7”是________形式.(3)命题“正数或0的平方根是实数”是________形式.答案:(1)p∧q(2)p∨q(3)p∨q5.已知命题p:0不是自然数, q:π是无理数, 写出命题“p∨q”, “p∧q”, 并判断其真假.解:p∧q:0不是自然数且π是无理数.假命题;p∨q:0不是自然数或π是无理数.真命题.04课后课时精练一、选择题1.“xy ≠0”是指( )A .x ≠0且y ≠0B .x ≠0或y ≠0C .x , y 至少一个不为0D .x , y 不都是0解析:xy ≠0当且仅当x ≠0且y ≠0. 答案:A2.已知命题p :2+2=5, 命题q :3>2, 则下列判断正确的是( ) A .“p 或q ”为假 B .“p 或q ”为真C .“p 且q ”为真, “p 或q ”为假D .以上均不对解析:显然p 假q 真, 故“p 或q ”为真, “p 且q ”为假, 故选B.答案:B3.p :点P 在直线y =2x -3上, q :点P 在抛物线y =-x 2上, 则使“P ∧q ”为真命题的一个点P (x , y )是( )A .(0, -3)B .(1,2)C .(1, -1)D .(-1,1)解析:点P (x , y )满足⎩⎪⎨⎪⎧y =2x -3,y =-x 2.可验证各选项中, 只有C 正确. 答案:C4.下列命题中既是p ∧q 形式的命题, 又是真命题的是( ) A .10或15是5的倍数B .方程x 2-3x -4=0的两根是4和-1C .集合A 是A ∩B 的子集或是A ∪B 的子集D .有两个角为45°的三角形是等腰直角三角形解析:“有两个角是45°的三角形是等腰三角形, 而且是直角三角形”, 是“p且q”的形式且为真.答案:D5.若命题p:∃x∈R, x2+2x+5<0, 命题q;∀a, b∈R, a2+b2≥2ab, 则下列结论正确的是()A.“p∨q”为假B.“p∨q”为真C.“p∧q”为真D.以上都不对解析:p是假命题, q是真命题, 故p∨q为真.答案:B6.[2014·南宁高二检测]下列命题, 其中假命题的个数为()①5>4或4>5;②9≥3;③命题“若a>b, 则a+c>b+c”;④命题“菱形的两条对角线互相垂直”A.0个B.1个C.2个D.3个解析:①“5>4”为真, 故“5>4或4>5”为真命题;②“9≥3”表示为“9>3(真)或9=3”, 故“9≥3”为真命题;③若“a >b, 则a+c>b+c”也是真命题;④也是真命题.答案:A二、填空题7.若p:2是8的约数, q:2是12的约数.则“p∨q”为________;“p∧q”为________.(填具体的语句内容).答案:2是8的约数, 或者是12的约数'2既是8的约数, 又是12的约数8.[2014·郑州高二检测]已知p(x):x2+2x-m>0, 如果p(1)是假命题, p (2)是真命题, 则实数m 的取值范围是________.解析:∵p (1)是假命题, p (2)是真命题,∴⎩⎪⎨⎪⎧3-m ≤0,8-m >0,解得3≤m <8. 答案:[3,8)9.对于函数①f (x )=|x +2|;②f (x )=(x -2)2;③f (x )=cos(x -2).有命题p :f (x +2)是偶函数;命题q :f (x )在(-∞, 2)上是减函数, 在(2, +∞)上是增函数, 能使p ∧q 为真命题的所有函数的序号是________.解析:对于①, f (x +2)=|x +4|不是偶函数, 故p 为假命题.对于②, f (x +2)=x 2是偶函数, 则p 为真命题:f (x )=(x -2)2在(-∞, 2)上是减函数, 在(2, +∞)上是增函数, 则q 为真命题, 故“p ∧q ”为真命题.对于③, f (x )=cos(x -2)显然不是(2, +∞)上的增函数, 故q 为假命题.故填②.答案:② 三、解答题10.分别指出由下列各组命题构成的“p ∨q ”“p ∧q ”形式的复合命题的真假.(1)P :3>3 q :3=3; (2)p :∅{0} q :0∈∅;(3)p :A ⊆A q :A ∩A =A ;(4)p :函数y =x 2+3x +4的图象与x 轴有公共点; q :方程x 2+3x -4=0没有实根.解:(1)∵p 假q 真, ∴“p ∨q ”为真, “p ∧q ”为假; (2)∵p 真q 假, ∴“p ∨q ”为真, “p ∧q ”为假; (3)∵p 真q 真, ∴“p ∨q ”为真, “p ∧q ”为真;(4)∵p 假q 假, ∴“p ∨q ”为假, “p ∧q ”为假.11.[2014·沈阳高二检测]对命题p :“1是集合{x |x 2<a }中的元素”, q :“2是集合{x |x 2<a }中的元素”, 则a 为何值时, “p 或q ”是真命题?a 为何值时, “p 且q ”是真命题?解:由1是集合{x |x 2<a }中的元素, 可得a >1, 由2是集合{x |x 2<a }中的元素, 可得a >4, 即使得p , q 为真命题的a 的取值集合分别为P ={a |a >1}, T ={a |a >4}.当p , q 至少一个为真命题时, “p 或q ”为真命题, 则使“p 或q ”为真命题的a 的取值范围是P ∪T ={a |a >1};当p , q 都为真命题时, “p 且q ”才是真命题, 则使“p 且q ”为真命题的a 的取值范围是P ∩T ={a |a >4}.12.已知P :函数y =x 2+mx +1在(-1, +∞)上单调递增, q :函数y =4x 2+4(m -2)x +1大于零恒成立.若p 或q 为真, p 且q 为假, 求m 的取值范围.解:若函数y =x 2+mx +1在(-1, +∞)上单调递增, 则-m 2≤-1, ∴m ≥2, 即p :m ≥2;若函数y =4x 2+4(m -2)x +1恒大于零, 则Δ=16(m -2)2-16<0, 解得1<m <3, 即q :1<m <3.因为“p 或q ”为真, “p 且q ”为假, 所以p 、q 一真一假,当p 真q 假时, 由⎩⎪⎨⎪⎧m ≥2m ≥3或m ≤1, 得m ≥3,当p 假q 真时, 由⎩⎨⎧m <21<m <3, 得1<m <2.综上, m的取值范围是{m|m≥3或1<m<2}.03课堂效果落实1. [2014·福建高考]命题“∀x∈[0, +∞), x3+x≥0”的否定是()A. ∀x∈(-∞, 0), x3+x<0B. ∀x∈(-∞, 0), x3+x≥0C. ∃x0∈[0, +∞), x30+x0<0D. ∃x0∈[0, +∞), x30+x0≥0解析:本题考查含有量词的命题的否定, 意在考查考生的逻辑推理能力.把全称量词“∀”改为存在量词“∃”, 并把结论加以否定, 故选C.答案:C2.全称命题“所有能被5整除的整数都是奇数”的否定是() A.所有能被5整除的整数都不是奇数B.所有奇数都不能被5整除C.存在一个能被5整除的整数不是奇数D.存在一个奇数, 不能被5整除解析:全称命题的否定是特称命题, 而A, B是全称命题, 所以A, B错.因为“所有能被5整除的整数”的否定是“存在一个能被5整除的整数”, 所以D错, C正确, 故选C.答案:C3.如果命题“p或q”与命题“非p”都是真命题, 那么() A.命题p不一定是假命题B.命题q一定是真命题C .命题q 不一定是真命题D .p 与q 的真假相同解析:∵“非p ”为真命题, ∴p 为假命题.又∵p 或q 为真命题, ∴q 为真命题.故选B.答案:B4.若命题p :不等式ax +b >0的解集为{x |x >-b a }, 命题q :关于x 的不等式(x -a )(x -b )<0的解集为{x |a <x <b }, 则“p ∧q ”“p ∨q ”“綈p ”形式的复合命题中的假命题的个数是________.解析:因命题p 、q 均为假命题, 所以“p ∨q ”“p ∧q ”为假命题, “綈p ”为真命题.答案:25.写出下列命题的否定, 并判断其真假:(1)三角形的内角和为180°;(2)∃x 0∈R , x 20+1=0;(3)∀x ∈R , x 2-3x +2=0.(4)至少有两个实数x 0, 使x 30+1=0.(5)∃x 0, y 0∈N , 如果x 0+|y 0|=0, 则x 0=0且y 0=0.解:(1)此命题为全称命题, 其否定为:存在一个三角形, 它的内角和不等于180°, 是假命题.(2)此命题为特称命题, 其否定为:∀x ∈R , x 2+1≠0, 是真命题.(3)此命题为全称命题, 其否定为:∃x 0∈R , x 20-3x 0+2≠0, 是真命题.(4)此命题为特称命题, 其否定为:至多有一个实数x 0, 使x 30+1≠0, 是假命题.(5)此命题为特称命题, 其否定为:∀x, y∈N, 如果x+|y|=0, 则x=0或y=0, 是假命题.04课后课时精练一、选择题1.“至多有三个”的否定为()A.至少有三个B.至少有四个C.有三个D.有四个解析:“至多有三个”包括“0个、1个、2个、3个”四种情况, 其反面为“4个、5个……”即至少四个.答案:B2.[2014·湖北高考]命题“∀x∈R, x2≠x”的否定是()A. ∀x∉R, x2≠xB. ∀x∈R, x2=xC. ∃x∉R, x2≠xD. ∃x∈R, x2=x解析:本题考查全称命题的否定, 意在考查考生对基本概念的掌握情况.全称命题的否定是特称命题:∃x∈R, x2=x, 选D.答案:D3.[2014·西安高二检测]如果命题“綈(p∨q)”为假命题, 则()A.p、q均为真命题B.p、q均为假命题C.p、q中至少有一个为真命题D.p、q中至多有一个为真命题解析:因为命题“綈(p∨q)”为假命题, 所以p∨q为真命题, 所以p、q一真一假或都是真命题.答案:C4.[2014·天津高考]已知命题p:∀x>0, 总有(x+1)e x>1, 则綈p 为()A. ∃x0≤0, 使得(x0+1)e x0≤1B. ∃x0>0, 使得(x0+1)e x0≤1C. ∀x>0, 总有(x+1)e x≤1D. ∀x≤0, 总有(x+1)e x≤1解析:命题p为全称命题, 所以綈p为∃x0>0, 使得(x0+1)e x0≤1.故选B.答案:B5.[2014·重庆高考]已知命题p:对任意x∈R, 总有|x|≥0;q:x =1是方程x+2=0的根.则下列命题为真命题的是()A. p∧綈qB. 綈p∧qC. 綈p∧綈qD. p∧q解析:由题意知, 命题p为真命题, 命题q为假命题, 故綈q为真命题, 所以p∧綈q为真命题.答案:A6.已知全集S=R, A⊆S, B⊆S, 若命题p:2∈(A∪B), 则命题“綈p”是()A. 2∉AB. 2∈∁S BC. 2∉A∩BD. 2∈(∁S A)∩(∁S B)解析:∵p=2∈(A∪B), ∴2∈A或2∈B,∴綈p:2∉A且2∉B, 即2∈∁S A∩∁S B.答案:D二、填空题7. 已知命题p:“∀x∈[1,2], x2-a≥0”, 命题q:“∃x0∈R, x20+2ax0+2-a=0”, 若命题“p且q”是真命题, 则实数a的取值范围是________.解析:命题p:“∀x∈[1,2], x2-a≥0”为真, 则a≤x2, x∈[1,2]恒成立, ∴a≤1;命题q:“∃x0∈R, x20+2ax0+2-a=0”为真, 则“4a2-4(2-a)≥0, 即a2+a-2≥0”, 解得a≤-2或a≥1.若命题“p且q”是真命题, 则实数a的取值范围是{a|a≤-2或a=1}.答案:{a|a≤-2或a=1}8. 已知命题p:∃x∈R, 使sin x=52;命题q:∀x∈R, 都有x2+x+1>0.给出下列结论:①命题“p∧q”是真命题;②命题“p∧綈q”是假命题;③命题“綈p∨q”是真命题;④命题“綈p∨綈q”是假命题, 其中正确的是________.解析:因为对任意实数x, |sin x|≤1, 而sin x=52>1, 所以p为假;因为x2+x+1=0的判别式Δ<0, 所以q为真.因而②③正确.答案:②③9.[2014·青岛高二检测]若命题“∃x0∈R, x20+(a-1)x0+1<0”是假命题, 则实数a的取值范围为________.解析:依题意可得“∀x∈R, x2+(a-1)x+1≥0”为真命题, 所以Δ=(a-1)2-4≤0, 所以-1≤a≤3.答案:[-1,3]三、解答题10.写出下列含有一个量词的命题p的否定綈p, 并判断它们的真假:(1)p:关于x的方程ax=b都有实数根;(2)p:有些正整数没有1和它本身以外的约数;(3)对任意实数x1, x2, 若x1<x2, 则tan x1<tan x2;(4)∃T0∈R, 使|sin(x+T0)|=|sin x|.解:(1)綈p:有些关于x的方程ax=b无实数根, 如0x=1, 所以p为假命题, 綈p为真命题.(2)綈p:任意正整数都有1和它本身以外的约数, 如2只有1和它本身这两个约数, 所以p为真命题, 綈p为假命题.(3)綈p:存在实数x1, x2, 若x1<x2, 则tan x1≥tan x2.原命题中若x1=0, x2=π, 有tan x1=tan x2, 故为假命题, 所以綈p 为真命题.(4)綈p:∀T∈R, 有|sin(x+T)|=|sin x|.原命题为真命题, 如T0=2kπ(k∈Z), 所以綈p为假命题.11.已知命题p:∀m∈[-1,1], 不等式a2-5a-3≥m2+8;命题q:∃x, 使不等式x2+ax+2<0.若p或q是真命题, 綈q是真命题, 求a的取值范围.解:根据p或q是真命题, 綈q是真命题, 得p是真命题, q是假命题.∵m ∈[-1,1], ∴m 2+8∈[22, 3].因为∀m ∈[-1,1], 不等式a 2-5a -3≥m 2+8,所以a 2-5a -3≥3, ∴a ≥6或a ≤-1.故命题p 为真命题时, a ≥6或a ≤-1.又命题q :∃x , 使不等式x 2+ax +2<0,∴Δ=a 2-8>0, ∴a >22或a <-22,从而命题q 为假命题时, -22≤a ≤22,所以命题p 为真命题, q 为假命题时, a 的取值范围为-22≤a ≤-1.12.[2014·衡水高二测试]已知命题p :“∀x ∈R , ∃m 0∈R 使4x +2x ·m 0+1=0”, 若命题綈p 是假命题, 求实数m 0的取值范围.解:该题可利用綈p 假, 则p 为真, 求原命题为真时m 0的取值范围.令t =2x >0, 则方程4x +2x ·m 0+1=0变为t 2+m 0·t +1=0有正解, 假设方程有两个正根t 1, t 2.∵t 1·t 2=1>0, t 1、t 2同号,∴t 1+t 2>0, 故有⎩⎪⎨⎪⎧Δ=m 20-4≥0,-m 0>0, 即⎩⎪⎨⎪⎧m 0≤-2或m 0≥2,m 0<0, ∴m 0≤-2, 即实数m 0的取值范围是(-∞, -2].03课堂效果落实1.[2014·长春高二检测]x >3的一个充分不必要条件是( )A. x >0B. x <0C. x>5D. x<5解析:x>5⇒x>3,x>3D⇒/x>5.答案:C2.“x2+(y-2)2=0”是“x(y-2)=0”的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件解析:x2+(y-2)2=0, 即x=0且y=2, ∴x(y-2)=0.反之, x(y-2)=0, 即x=0或y=2, x2+(y-2)2=0不一定成立.答案:B3.对任意实数a、b、c, 给出下列命题:①“x<-1”是“x2-1>0”的充分条件;②“a+5是无理数”是“a是无理数”的充要条件;③“a>b”是“a2>b2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是()A.1B.2C.3 D.4解析:①中, x<-1⇒x2-1>0;x2-1>0D⇒/x<-1, 故①为真命题.②中, a与a+5同为无理数或同为有理数, 故②为真命题.③中, 显然a>bD⇒/a2>b2, 故③为假命题.④中, a<5D⇒/a<3, 而a<3⇒a<5, 故④为真命题.答案:C4.[2014·福州高二测试]若“x2-2x-8>0”是x<m的必要不充分条件, 则m的最大值为________.解析:不等式解集为(-∞, -2)∪(4, +∞), 题目等价于(-∞, m)是其真子集, 故有m≤-2, 即m的最大值为-2.答案:-25.设命题p:x>1或x<-3, q:5x-6>x2, 则綈p是綈q的什么条件?解:∵p:x>1或x<-3,∴綈p:-3≤x≤1.又∵q:5x-6>x2即2<x<3, ∴綈q:x≤2或x≥3,∴綈p⇒綈q, 但綈q⇒/綈p,∴綈p是綈q的充分不必要条件.04课后课时精练一、选择题1.[2013·福建高考]已知集合A={1, a}, B={1,2,3}, 则“a=3”是“A⊆B”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件解析:当a=3时, A={1,3}, A⊆B;反之, 当A⊆B时, a=2或3, 所以“a=3”是“A⊆B”的充分而不必要条件, 选A.答案:A2. [2014·湖北高考]设U为全集.A, B是集合, 则“存在集合C使得A⊆C, B⊆∁U C”是“A∩B=∅”的()A. 充分而不必要的条件B. 必要而不充分的条件C. 充要条件D. 既不充分也不必要的条件解析:由韦恩图易知充分性成立.反之, A ∩B =∅时, 不妨取C =∁U B , 此时A ⊆C .必要性成立.故选C.答案:C3. [2013·浙江高考]已知函数f (x )=A cos(ωx +φ)(A >0, ω>0, φ∈R ), 则“f (x )是奇函数”是“φ=π2”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件解析:f (x )是奇函数时, φ=π2+k π(k ∈Z );φ=π2时, f (x )=A cos(ωx +π2)=-A sin ωx , 为奇函数.所以“f (x )是奇函数”是“φ=π2”的必要不充分条件, 选B.答案:B4.已知不等式|x -m |<1成立的充分不必要条件是13<x <12, 则实数m 的取值范围是( )A. [-43, 12] B. [-12, 43] C. (-∞, -12)D. [43, +∞)解析:由题易知不等式|x -m |<1的解集为{m |m -1<x <m +1}, 从而有{m |m -1<x <m +1}(13, 12),∴⎩⎪⎨⎪⎧m +1≥12m -1<13或⎩⎪⎨⎪⎧m +1>12m -1≤13解得-12≤m ≤43, 故选B. 答案:B5.[2014·广东高考]在△ABC 中, 角A , B , C 所对应的边分别为a , b , c , 则“a ≤b ”是“sin A ≤sin B ”的( )A. 充分必要条件B. 充分非必要条件C. 必要非充分条件D. 非充分非必要条件解析:设R 为△ABC 外接圆的半径.由正弦定理可知, 若a ≤b , 则2R sin A ≤2R sin B ⇒sin A ≤sin B , 故“a ≤b ”是“sin A ≤sin B ”的充分条件;若sin A ≤sin B , 则a 2R ≤b 2R ⇒a ≤b , 故“a ≤b ”是“sin A ≤sin B ”的必要条件.综上所述, “a ≤b ”是“sin A ≤sin B ”的充要条件.故答案为A.答案:A6. [2014·唐山模拟]已知命题p :“a >b ”是“2a >2b ”的充要条件;q :∃x ∈R , |x +1|≤x , 则( )A .(綈p )∨q 为真命题B .p ∧(綈q )为假命题C .p ∧q 为真命题D .p ∨q 为真命题解析:由于函数y =2x 是单调递增函数, ∴a >b 时, 2a >2b , 反之2a >2b 时, a >b , 故p 是真命题, 而不存在实数x , 使|x +1|≤x , 故q 是假命题.∴p ∨q 为真命题.答案:D 二、填空题7. 下列不等式:①x<1;②0<x<1;③-1<x<0;④-2<x<1.其中, 可以为x2<1的一个充分条件的所有序号为________.解析:由于x2<1即-1<x<1, ①显然不能使-1<x<1一定成立, ②③满足题意.④中当x=-1.5时, x2显然大于1, ∴④不行.答案:②③8.设p、r都是q的充分条件, s是q的充分必要条件, t是s的必要条件, t是r的充分条件, 那么p是t的________条件, r是t的________条件.解析:由题意有:s⇔q⇐p⇓⇑t⇒r答案:充分不必要充要9.有以下四组命题:(1)p:(x-2)(x-3)=0, q:x-2=0;(2)p:同位角相等;q:两直线平行;(3)p:x<-3;q:x2>9;(4)p:0<a<1;q:y=a x为减函数.其中p是q的充分不必要条件的是_______, p是q的必要不充分条件是________, p是q的充要条件的是________.解析:(1)x-2=0⇒(x-2)(x-3)=0, 但(x-2)(x-3)=0D⇒/x-2=0, 所以p是q的必要不充分条件.(2)同位角相等⇔两直线平行, 所以p是q的充要条件,(3)x<-3⇒x2>9, 但x2>9D⇒/x<-3,所以p是q的充分不必要条件.(4)0<a<1⇔y=a x是减函数, 所以p是q的充要条件.答案:(3) (1) (2)(4) 三、解答题10.下列各题中, p 是q 的什么条件? (1)p :lg x 2=0, q :x =1;(2)p :b =c , q :a ·b =a ·c (a , b , c ≠0); (3)p :x ≥1且y ≥1, q :x +y ≥2; (4)p :x , y 不全为0, q :x +y ≠0.解:(1)当lg x 2=0时, x 2=1, 即x =±1, 则p ⇒/q , q ⇒p , 所以p 是q 的必要不充分条件.(2)易知p ⇒q .而a ·b =a ·c (a , b , c ≠0), 即a ·(b -c )=0, 可得b =c 或a ⊥(b -c ), 即q ⇒/p , 所以p 是q 的充分不必要条件.(3)∵p ⇒q , 而q ⇒/ p , ∴p 是q 的充分不必要条件.(4)綈p :x =0且y =0, 綈q :x +y =0, ∵綈p ⇒綈q , 而綈q ⇒/ 綈p , ∴p ⇐q 且p ⇒/ q , ∴p 是q 的必要不充分条件.11.[2014·江苏高二检测]已知集合A ={y |y =x 2-32x +1, x ∈[34, 2]}, B ={x |x +m 2≥1};命题p :x ∈A , 命题q :x ∈B , 并且命题p 是命题q 的充分条件, 求实数m 的取值范围.解:化简集合A ,由y =x 2-32x +1=(x -34)2+716,∵x ∈[34, 2], ∴y min =716, y max =2. ∴y ∈[716, 2], ∴A ={y |716≤y ≤2}. 化简集合B , 由x +m 2≥1, ∴x ≥1-m 2, B ={x |x ≥1-m 2}.∵命题p 是命题q 的充分条件, ∴A ⊆B . ∴1-m 2≤716, ∴m ≥34或m ≤-34.∴实数m 的取值范围是(-∞, -34]∪[34, +∞).12.证明:函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a=1.证明:先证充分性:若a =1, 则函数化为f (x )=2x -12x +1.∵f (x )的定义域为R , 且f (-x )=2-x -12-x +1=12x -112x +1=1-2x 1+2x =-2x -12x+1=-f (x ).∴函数f (x )是奇函数.再证必要性:①若函数f (x )是奇函数, 则f (-x )=-f (x ). ∴a ·2-x +a -22-x +1=-a ·2x +a -22x +1,∴a +(a -2)·2x 2x +1=-a ·2x +a -22x +1,∴a +(a -2)·2x =-a ·2x -a +2, ∴2(a -1)(2x +1)=0, ∴a =1.综上所述:函数f (x )=a ·2x +a -22x +1(x ∈R )是奇函数的充要条件是a=1.03课堂效果落实。

人教a版高中数学选修2-1全册同步练习及单元检测含答案

人教a版高中数学选修2-1全册同步练习及单元检测含答案

⼈教a版⾼中数学选修2-1全册同步练习及单元检测含答案⼈教版⾼中数学选修2~1 全册章节同步检测试题⽬录1.1.1课时同步练习1.2课时同步练习1.3课时同步练习1.4.1、2课时同步练习1.4.3课时同步练习第1章单元过关试卷同步练习2.1.1课时同步练习2.1.2课时同步练习2.2.1课时同步练习2.2.2(第1课时)同步练习2.2.2(第2课时)同步练习2.3.1课时同步练习2.3.2(第1课时)同步练习2.3.2(第2课时)同步练习2.4.1课时同步练习2.4.2(第1课时)同步练习2.4.2(第2课时)同步练习第2章单元过关试卷同步练习3.1.1课时同步练习3.1.2课时同步练习3.1.3课时同步练习3.1.4课时同步练习3.1.5课时同步练习3.2第3课时同步练习3.2第4课时同步练习3.2(第1课时)同步练习3.2(第2课时)同步练习第3章单元过关试卷同步练习模块质量检测A卷同步练习模块质量检测B卷同步练习第1章 1.1.1⼀、选择题(每⼩题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③⼤边所对的⾓⼤于⼩边所对的⾓;④2是⽆理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直⾓相等”的条件和结论分别是“直⾓”和“相等”B.语句“最⾼⽓温30 ℃时我就开空调”不是命题C.命题“对⾓线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,⽅程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个⾓是直⾓,则这两个⾓相等”;B所给语句是命题;C的反例可以是“⽤边长为3的等边三⾓形与底边为3,腰为2的等腰三⾓形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正⽅形}是{x|x是平⾏四边形}的⼦集吗?④3⼩于2;⑤矩形的对⾓线相等;⑥9的平⽅根是3或-3;⑦2不是质数;⑧2既是⾃然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平⾯,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选⼀个来判断,即可得出结果,①③为真命题.故选B.答案: B⼆、填空题(每⼩题5分,共10分)5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ;②函数y =x 3在R 上既是奇函数⼜是增函数;③函数y =f (x )的图象与直线x =a ⾄多有⼀个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ?2x +π4的图象.其中正确命题的序号是________.解析:①∠A >∠B ?a >b ?sin A >sin B .②③易知正确.④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ?2x +π2的图象.答案:①②③6.命题“⼀元⼆次⽅程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案:⼀元⼆次⽅程ax 2+bx +c =0(a ≠0) 此⽅程有两个不相等的实数根假三、解答题(每⼩题10分,共20分)7.指出下列命题的条件p 和结论q :(1)若x +y 是有理数,则x ,y 都是有理数;(2)如果⼀个函数的图象是⼀条直线,那么这个函数为⼀次函数.解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数.(2)条件p :⼀个函数的图象是⼀条直线,结论q :这个函数为⼀次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0解析:命题p 是真命题,则x 2-2x -2≥1,∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4.∴x ≥4或x ≤-1.尖⼦⽣题库☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满⾜的条件.⽅程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1ax 2,求a 满⾜的条件.解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时,⽅程有解x =-1b . 当a ≠0时,⽅程为⼀元⼆次⽅程,有解的条件为Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,⽅程ax 2+bx +1=0有解.(2)∵命题当x 1a x 2为假命题,∴应有当x 1即a x 2-x 1x 1x 2≤0. ∵x 1∴x 2-x 1>0,x 1x 2>0,∴a ≤0.第1章 1.2⼀、选择题(每⼩题5分,共20分)1.“|x |=|y |”是“x =y ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: |x |=|y |?x =y 或x =-y ,但x =y ?|x |=|y |.故|x |=|y |是x =y 的必要不充分条件.答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成⽴的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当x =2k π+π4时,tan x =1,⽽tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成⽴的充分不必要条件.故选A. 答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( )A .充分⽽不必要条件B .必要⽽不充分条件C .充分必要条件D .既不充分也不必要条件解析:∵x ≥2且y ≥2,∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;⽽x 2+y 2≥4不⼀定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成⽴,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分⼜不必要条件解析:由题意得:故D 是A 的必要不充分条件答案: B⼆、填空题(每⼩题5分,共10分)5.下列命题中是假命题的是________.(填序号)(1)x >2且y >3是x +y >5的充要条件(2)A ∩B ≠?是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形解析: (1)因x >2且y >3?x +y >5, x +y >5?/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件.(2)因A ∩B ≠??/ A B, A B ?A ∩B ≠?.故A ∩B ≠?是A B 的必要不充分条件.(3)因b 2-4ac <0?/ ax 2+bx +c <0的解集为R , ax 2+bx +c <0的解集为R ?a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件.(4)三⾓形的三边满⾜勾股定理的充要条件是此三⾓形为直⾓三⾓形.答案: (1)(2)(3)6.设集合A =x |x x -1<0,B ={x |0x |x x -1<0={x |0∴“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要三、解答题(每⼩题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件,则p ?q 但q ?/p .∵p :12≤x ≤1,q :a ≤x ≤a +1. ∴a +1≥1且a ≤12,即0≤a ≤12.∴满⾜条件的a 的取值范围为0,12. 8.求证:0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.证明:充分性:∵0,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0,则ax 2-ax +1-a >0对⼀切实数x 都成⽴.⽽当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴.必要性:∵ax 2-ax +1-a >0对⼀切实数x 都成⽴,∴a =0或 a >0,Δ=a 2-4a 1-a <0.解得0≤a <45. 故0≤a <45是不等式ax 2-ax +1-a >0对⼀切实数x 都成⽴的充要条件.尖⼦⽣题库☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析:先化简B ,B ={x |(x -2)[x -(3a +1)]≤0},①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件,所以A ?B ,从⽽有 a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3.或 a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3⼀、选择题(每⼩题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( )A .p 为真命题,p 且q 为假命题B .p 为假命题,q 为假命题C .q 为假命题,p 或q 为真命题D .p 且q 为假命题,p 或q 为真命题解析:∵p 为真命题,q 为假命题,∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题;③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题.A .①③B .②④C .②③D .①④解析:∵綈p ∨綈q 是假命题∴綈(綈p ∨綈q )是真命题即p ∧q 是真命题答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题.若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件.答案: A4.已知命题p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是() A .q 1,q 3 B .q 2,q 3C .q 1,q 4D .q 2,q 4解析:∵y =2x 在R 上为增函数,y =2-x =? ????12x在R 上为减函数,∴y =-2-x =-? ????12x在R 上为增函数,∴y =2x -2-x 在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q1:p1∨p2是真命题,因此排除B和D,q2:p1∧p2是假命题,q3:綈p1是假命题,(綈p1)∨p2是假命题,故q3是假命题,排除A.故选C.答案: C⼆、填空题(每⼩题5分,共10分)5.“a≥5且b≥3”的否定是____________;“a≥5或b≤3”的否定是____________.答案:a<5或b<3 a<5且b>36.在下列命题中:①不等式|x+2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A?A∪B.其中,真命题为________.解析:①此命题为“⾮p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的⼀个解,所以p是真命题,所以⾮p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“⾮p”的形式,其中p:A?A∪B.因为p为真命题,所以“⾮p”为假命题,故是假命题.所以填②.答案:②三、解答题(每⼩题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8?{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:⽅程x2-x+1=0有实根;(2)p :函数y =tan x 是周期函数;(3)p :??A ;(4)p :不等式x 2+3x +5<0的解集是?.解析:题号判断p 的真假綈p 的形式判断綈p 的真假 (1)假⽅程x 2-x +1=0⽆实数根真 (2)真函数y =tan x 不是周期函数假 (3)真 ? A 假 (4)真不等式x 2+3x +5<0的解集不是? 假尖⼦⽣题库☆☆☆9.(10分)设命题p :实数x 满⾜x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满⾜ x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0.⼜a >0,所以a当a =1时,1即p 为真命题时实数x 的取值范围是1由 x 2-x -6≤0,x 2+2x -8>0. 解得-2≤x ≤3,x <-4或x >2.即2所以q 为真时实数x 的取值范围是2若p ∧q 为真,则 1所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ?綈q 且綈q ?/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B .所以03,即1所以实数a 的取值范围是(1,2].第1章 1.4.1、2⼀、选择题(每⼩题5分,共20分)1.下列命题中的假命题是( )A .?x ∈R ,lg x =0B .?x ∈R ,tan x =1C .?x ∈R ,x 2>0D .?x ∈R,2x>0 解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题. C 中当x =0时,x 2=0不⼤于0,是假命题.D 中?x ∈R,2x>0是真命题.答案: C2.下列命题中,真命题是( )A .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数D .?m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数解析:∵当m =0时,f (x )=x 2(x ∈R ).∴f (x )是偶函数⼜∵当m =1时,f (x )=x 2+x (x ∈R )∴f (x )既不是奇函数也不是偶函数.∴A 对,B 、C 、D 错.故选A.答案: A3.下列4个命题: p 1:?x ∈(0,+∞),? ????12xx ; p 2:?x ∈(0,1),log 12x >log 13x ;p 3:?x ∈(0,+∞),? ????12x >log 12x ; p 4:?x ∈? ????0,13,? ????12xx . 其中的真命题是( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4解析:对于命题p 1,当x ∈(0,+∞)时,总有? ????12x >? ??13x 成⽴.所以p 1是假命题,排除A 、B ;对于命题p 3,在平⾯直⾓坐标系中作出函数y =? ??12x 与函数 y =log 12x 的图象,可知在(0,+∞)上,函数y =? ????12x 的图象并不是始终在函数y =log 12x 图象的上⽅,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :?x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( )A .a ≤-3或a >2B .a ≥2C .a >-2D .-2即(a +2)x 2+4x +a -1≥0恒成⽴,所以有: a +2>0,16-4a +2a -1≤0 a >-2,a 2+a -6≥0?a ≥2.答案: B⼆、填空题(每⼩题5分,共10分)5.命题“有些负数满⾜不等式(1+x )(1-9x )>0”⽤“?”或“?”可表述为________.答案: ?x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :?x 0∈R ,tan x 0=3;命题q :?x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析:当x 0=π3时,tan x 0=3,∴命题p 为真命题; x 2-x +1=? ????x -122+34>0恒成⽴,∴命题q 为真命题,∴“p 且q ”为真命题.答案:真三、解答题(每⼩题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假:(1)若a >0,且a ≠1,则对任意实数x ,a x>0.(2)对任意实数x 1,x 2,若x 1(3)?T0∈R,使|sin(x+T0)|=|sin x|.(4)?x0∈R,使x20+1<0.解析:(1)(2)是全称命题,(3)(4)是特称命题.(1)∵a x>0(a>0且a≠1)恒成⽴,∴命题(1)是真命题.(2)存在x1=0,x2=π,x1但tan 0=tan π,∴命题(2)是假命题.(3)y=|sin x|是周期函数,π就是它的⼀个周期,∴命题(3)是真命题.(4)对任意x0∈R,x20+1>0.∴命题(4)是假命题.8.选择合适的量词(?、?),加在p(x)的前⾯,使其成为⼀个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是⽆理数,则x2是⽆理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表⽰)解析:(1)?x∈R,x>2.(2)?x∈R,x2≥0;?x∈R,x2≥0都是真命题.(3)?x∈Z,x是偶数.(4)存在实数x,若x是⽆理数,则x2是⽆理数.(如42)(5)?a,b,c∈R,有a2+b2=c2.尖⼦⽣题库☆☆☆9.(10分)若?x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a 的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,⼆次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成⽴,即4m2+4am+1≥0恒成⽴.⼜4m2+4am+1≥0是⼀个关于m的⼆次不等式,恒成⽴的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章 1.4.3⼀、选择题(每⼩题5分,共20分)1.命题:对任意x ∈R ,x 3-x 2+1≤0的否定是( )A .不存在x 0∈R ,x 30-x 20+1≤0B .存在x 0∈R ,x 30-x 20+1≥0C .存在x 0∈R ,x 30-x 20+1>0D .对任意x ∈R ,x 3-x 2+1>0解析:由全称命题的否定可知,命题的否定为“存在x 0∈R ,x 30-x 20+1>0”.故选C.答案: C2.命题p :?m 0∈R ,使⽅程x 2+m 0x +1=0有实数根,则“綈p ”形式的命题是( )A .?m 0∈R ,使得⽅程x 2+m 0x +1=0⽆实根B .对?m ∈R ,⽅程x 2+mx +1=0⽆实根C .对?m ∈R ,⽅程x 2+mx +1=0有实根D .⾄多有⼀个实数m ,使得⽅程x 2+mx +1=0有实根解析:由特称命题的否定可知,命题的否定为“对?m ∈R ,⽅程x 2+mx +1=0⽆实根”.故选B.答案: B3.“?x 0?M ,p (x 0)”的否定是( )A .?x ∈M ,綈p (x )B .?x ?M ,p (x )C .?x ?M ,綈p (x )D .?x ∈M ,p (x )答案: C 4.已知命题p :?x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1列结论:①命题“p ∧q ”是真命题;②命题“p ∧?q ”是假命题;③命题“?p ∨q ”是真命题;④命题“?p ∨?q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析:当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1∴p ∧q 为真,p ∧?q 为假,?p ∨q 为真,?p ∨?q 为假.答案: D⼆、填空题(每⼩题5分,共10分)5.命题p :?x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析:∵x2+2x+5=(x+1)2+4≥0恒成⽴,所以命题p是假命题.答案:特称命题假?x∈R,x2+2x+5≥0真6.(1)命题“对任何x∈R,|x-2|+|x-4|>3”的否定是________.(2)命题“存在x∈R,使得x2+2x+5=0”的否定是________.答案:(1)?x0∈R,|x0-2|+|x0-4|≤3(2)?x∈R,x2+2x+5≠0三、解答题(每⼩题10分)7.写出下列命题的否定并判断其真假.(1)所有正⽅形都是矩形;(2)?α,β∈R,sin(α+β)≠sin α+sin β;(3)?θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正⽅形不是矩形,假命题.(2)命题的否定:?α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:?θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在⼀个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,并说明理由.(2)若存在⼀个实数x0,使不等式m-f(x0)>0成⽴,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成⽴,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成⽴,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖⼦⽣题库☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)?a,b∈R,若a=b,则a2=ab;(2)若a·c=b·c,则a=b;(3)若b2=ac,则a,b,c是等⽐数列.。

【全程复习方略】2014-2015学年高中数学 3.1.4空间向量的正交分解及其坐标表示课时作业 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 3.1.4空间向量的正交分解及其坐标表示课时作业 新人教A版选修2-1

空间向量的正交分解及其坐标表示(30分钟50分)一、选择题(每小题3分,共18分)1.已知{a,b,c}是空间的一个基底,则可以与向量p=a+b,q=a-b构成基底的向量是( )A.aB.bC.a+2bD.a+2c【解析】选D.能与p,q构成基底,则与p,q不共面.因为a=,b=,a+2b=p-q,所以A,B,C都不合题意.因为{a,b,c}为基底,所以a+2c与p,q不共面,可构成基底.2.(2014·济宁高二检测)设O-ABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1.若=x+y+z,则(x,y,z)为( )A. B.C. D.【解析】选A.因为==(+)=+×=+[(-)+(-)]=++,而=x+y+z,所以x=,y=,z=.3.(2014·成都高二检测)若向量,,的起点M和终点A,B,C互不重合且无三点共线,则能使向量,,成为空间一个基底的关系是( )A.=++B.=+C.=++D.=2-【解析】选 C.对于选项A,由结论=x+y+z(x+y+z=1)⇔M,A,B,C四点共面知,,,共面;对于B,D选项,易知,,共面,故只有选项C中,,不共面.4.(2014·兰州高二检测)已知点A在基底{a,b,c}下的坐标为(8,6,4),其中a=i+j,b=j+k,c=k+i,则点A在基底{i,j,k}下的坐标为( )A.(12,14,10)B.(10,12,14)C.(14,10,12)D.(4,2,3)【解析】选A.8a+6b+4c=8(i+j)+6(j+k)+4(k+i)=12i+14j+10k,所以点A在基底{i,j,k}下的坐标为(12,14,10).5.(2014·西安高二检测)已知空间四边形OABC,M,N分别是OA,BC的中点,且=a,=b,=c,用a,b,c 表示向量为( )A.a+b+cB.a-b+cC.-a+b+cD.-a+b-c【解析】选C.如图所示,连接ON,AN,则=(+)=(b+c),=(+)=(-2+)=(-2a+b+c)=-a+b+c,所以=(+)=-a+b+c.【变式训练】如图所示,空间四边形OABC中,G是△ABC的重心,D为BC的中点,H为OD的中点.设=a,=b,=c,试用向量a,b,c表示向量.【解析】=-.因为==(+)=(b+c),=+=+=+(-)=+×(+)=a+(b+c),所以=(b+c)-a-(b+c)=-a+b+c,即=-a+b+c.6.已知{e1,e2,e3}为空间的一个基底,若a=e1+e2+e3,b=e1+e2-e3,c=e1-e2+e3, d=e1+2e2+3e3,d=αa+βb+γc,则α,β,γ分别为( )A.,-1,-B.1,2,3C.1,1,1D.1,-1,1【解析】选 A.因为d=α(e1+e2+e3)+β(e1+e2-e3)+γ(e1-e2+e3)=(α+β+γ)e1+(α+β-γ)e2+(α-β+γ)e3=e1+2e2+3e3,所以解得【拓展延伸】用基底表示向量的三个关注点(1)若a,b,c不共面,则对空间任一向量p=x a+y b+z c,(x,y,z)是惟一的.(2)用基底表示向量,可从要表示的向量入手,运用向量线性运算的法则,结合图形逐步向基向量转化.(3)求a在单位正交基底下的坐标,关键先依据条件结合图形建立空间直角坐标系,将a表示为a=x e1+y e2+z e3.二、填空题(每小题4分,共12分)7.(2014·南昌高二检测)设{i,j,k}是空间向量的一个单位正交基底,a=2i-4j+5k,b=i+2j-3k,则向量a,b 的坐标分别是.【解析】a的坐标为(2,-4,5),b的坐标为(1,2,-3).答案:(2,-4,5),(1,2,-3)8.如图,在正方体ABCD-A1B1C1D1中,用,,作为基向量,则= .【解析】2=2+2+2=(+)+(+)+(+)=++,所以=(++).答案:(++)9.(2014·长春高二检测)如图所示,直三棱柱ABC-A1B1C1中,AB⊥AC,D,E分别为AA1,B1C的中点,若记=a,=b,=c,则= (用a,b,c表示).【解析】=+=+(+)=+(+-)=c+(a+b-c)=a+b.答案:a+b【一题多解】在三角形B1DC中,因为E为B1C的中点,利用平行四边形法则有=(+),=+=+=+=c+a,=+=+=-c+b.所以三、解答题(每小题10分,共20分)10.(2014·安庆高二检测)如图,在棱长为2的正方体ABCD-A1B1C1D1中,以底面正方形ABCD的中心为坐标原点O,分别以射线OB,OC,AA1的方向为x轴、y轴、z轴的正方向,建立空间直角坐标系.试写出正方体顶点A1,B1,C1,D1的坐标.【解析】设i,j,k分别是与x轴、y轴、z轴的正方向方向相同的单位坐标向量.因为底面正方形的中心为O,边长为2,所以OB=.由于点B在x轴的正半轴上,所以=i,即点B的坐标为(,0,0).同理可得C(0,,0),D(-,0,0),A(0,-,0).又=+=i+2k,所以=(,0,2).即点B1的坐标为(,0,2).同理可得C1(0,,2),D1(-,0,2),A1(0,-,2).11.如图所示,在平行六面体ABCD-A′B′C′D′中,=a,=b,=c,P是CA′的中点,M是CD′的中点,N是C′D′的中点,点Q在CA′上,且CQ∶QA′=4∶1,用基底{a,b,c}表示以下向量:(1).(2).(3).(4).【解题指南】利用空间图形中的平面图形如三角形、平行四边形建立目标向量与已知向量间的关系. 【解析】连接AC,AD′.(1)=(+)=(++)=(a+b+c).(2)=(+)=(+2+)=(a+2b+c).(3)=(+)=[(++)+(+)]=(+2+2)=a+b+c.(4)=+=+(-)=+=++=a+b+c.【变式训练】(2014·牡丹江高二检测)如图,已知正方体ABCD-A′B′C′D′,点E是上底面A′B′C′D′的中心,分别取向量,,为基向量,若(1)=x+y+z,试确定x,y,z的值.(2)=x+y+z,试确定x,y,z的值.【解析】(1)因为=+=++=-++,又=x+y+z,所以x=1,y=-1,z=1.(2)因为=+=+=+(+)=++=++,又=x+y+z,所以x=,y=,z=1.(30分钟50分)一、选择题(每小题4分,共16分)1.(2014·南宁高二检测)有以下命题:①如果向量a,b与任何向量不能构成空间向量的一个基底,那么a,b的关系是不共线;②O,A,B,C为空间四点,且向量,,不构成空间的一个基底,则点O,A,B,C一定共面;③已知向量a,b,c是空间的一个基底,则向量a+b,a-b,c也是空间的一个基底.其中正确的命题是( )A.①②B.①③C.②③D.①②③【解析】选C.①如果向量a,b与任何向量不能构成空间向量的一个基底,那么a,b的关系是共线的;如果a,b有一个向量为零向量,共线但不能构成空间向量的一组基底,所以①不正确.②O,A,B,C为空间四点,且向量,,不构成空间的一个基底,那么点O,A,B,C一定共面,这是正确的.③已知向量a,b,c是空间的一个基底,则向量a+b,a-b,c也是空间的一个基底;因为三个向量非零且不共线,正确.故选C.2.(2014·广州高二检测)在三棱锥S-ABC中,G为△ABC的重心,则有( )A.=(++)B.=(++)C.=(++)D.=++【解析】选B.=+=+(+)=+(-)+(-) =(++).3.如图,在三棱柱ABC-A1B1C1中,M为A1C1的中点,若=a,=c,=b,则下列向量与相等的是( )A.-a+b+cB.a+b+cC.-a-b+cD.a-b+c【解析】选A.=+=+(+)=+(+)=(-a+b)+c=-a+b+c.4.(2014·泰安高二检测)已知向量{a,b,c}是空间的一基底,向量{a+b,a-b,c}是空间的另一基底,一向量p 在基底{a,b,c}下的坐标为(1,2,3),则向量p在基底{a+b,a-b,c}下的坐标为( )A. B.C. D.【解析】选 B.设p在基底{a+b,a-b,c}下的坐标为(x,y,z),则p=a+2b+3c=x(a+b)+y(a-b)+z c=(x+y)a+(x-y)b+z c,所以解得故p在基底{a+b,a-b,c}下的坐标为.【举一反三】若把题目中的“基底{a,b,c}”与“基底{a+b,a-b,c}”互换,结果如何?【解析】设p在基底{a,b,c}下的坐标为(x,y,z),由向量p在基底{a+b,a-b,c}下的坐标为(1,2,3),得p=(a+b)+2(a-b)+3c=3a-b+3c=x a+y b+z c,所以故p在基底{a,b,c}下的坐标为(3,-1,3).二、填空题(每小题5分,共10分)5.(2014·福州高二检测)在平行六面体ABCD-A1B1C1D1中,若=x+2y+3z,则x+y+z=.【解析】如图所示,有=++=++(-1).又因为=x+2y+3z,所以解得所以x+y+z=1+-=.答案:6.设a,b,c是三个不共面的向量,现从①a+b;②a-b;③a+c;④b+c;⑤a+b-c中选出一个,使其与a,b构成空间向量的一个基底,则可以选择的向量有 .【解题指南】判断a,b,c可否作为空间的一个基底,即判断a,b,c是否共面,若不共面则可以作为基底,否则不能作为基底,实际判断时,假设a=λb+μc,运用空间向量基本定理建立λ,μ的方程组,若有解则共面,否则不共面.【解析】a+b,a-b均与a,b共面.事实上以a,b为邻边作平行四边形OACB,令=a,=b,=a+b,=a-b,而共面向量不可以作为空间向量的基底.答案:③④⑤三、解答题(每小题12分,共24分)7.已知正方体ABCD-A1B1C1D1的棱长为1,点E,F分别在线段A1D,AC上,且EF⊥A1D,EF⊥AC,以点D为坐标原点,DA,DC,DD1分别作为x轴,y轴,z轴建立空间直角坐标系(如图所示).(1)试求向量的坐标.(2)求证:EF∥BD1.【解题指南】确定此空间向量的单位正交基底,并用单位正交基底表示向量,,从而使问题得解.【解析】(1)因为正方体ABCD-A1B1C1D1的棱长为1,根据题意知{,,}为单位正交基底,设=i,=j,=k,所以向量可用单位正交基底{i,j,k}表示,因为=++,与共线,与共线,所以设=λ,=μ,则=λ++μ=λ(+)++μ(-)=(λ+μ)+(1-μ)+λ=(λ+μ)i+(1-μ)j+λk,因为EF⊥A1D,EF⊥AC,即⊥,⊥,所以·=0,·=0,又=-i-k,=-i+j,所以,整理得即解得所以=i +j -k所以的坐标是(,,-).(2)因为=+=-i-j+k,所以=-,即与共线,又EF与BD1无公共点,所以EF∥BD1.8.(2013·吉林高二检测)已知{i,j,k}是空间的一个基底,设a1=2i-j+k, a2=i+3j-2k,a3=-2i+j-3k,a4=3i+2j+5k.试问是否存在实数λ,μ,υ,使a4=λa1+μa2+υa3成立?如果存在,求出λ,μ,υ的值,如果不存在,请给出证明.【解析】假设存在实数λ,μ,υ使a4=λa1+μa2+υa3成立,则有3i+2j+5k=λ(2i-j+k)+μ(i+3j-2k)+υ(-2i+j-3k)=(2λ+μ-2υ)i+(-λ+3μ+υ)j+(λ-2μ-3υ)k.因为{i,j,k}是一个基底,所以i,j,k不共面,所以解得故存在λ=-2,μ=1,υ=-3使结论成立.- 11 -。

人教版A版高中数学选修2-1课后习题解答

人教版A版高中数学选修2-1课后习题解答

高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。

【全程复习方略】2014-2015学年高中数学 3.1.2空间向量的数乘运算课时作业 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 3.1.2空间向量的数乘运算课时作业 新人教A版选修2-1

空间向量的数乘运算(30分钟50分)一、选择题(每小题3分,共18分)1.在平行六面体ABCD-A1B1C1D1中,向量,,是( )A.有相同起点的向量B.等长向量C.共面向量D.不共面向量【解析】选C.由题意知,==-,所以向量,,是共面向量.2.(2014·沈阳高二检测)下列命题中正确的是( )A.若a∥b,b∥c,则a与c所在直线平行B.向量a,b,c共面即它们所在直线共面C.空间任意两个向量共面D.若a∥b,则存在惟一的实数λ,使a=λb【解析】选C.对A.若a∥b,b∥c,则a与c所在直线平行,错误.当b=0时不成立;B.向量a,b,c共面即它们所在直线共面,错误,因为空间平行的向量也是共面的;C.空间任意两个向量共面,正确;D.若a∥b,则存在惟一的实数λ,使a=λb,错误,当b=0时不成立.【变式训练】与共线是直线AB∥CD的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.若与共线,则∥,此时AB与CD可能平行也可能为同一直线;而若AB∥CD,则必有与共线.3.(2014·西安高二检测)对空间任一点O和不共线三点A,B,C,能得到P,A,B,C四点共面的是( )A.=++B.=++C.=-++D.以上都不对【解析】选B.因为=++,所以3=++,所以-=(-)+(-),所以=+,所以=--,所以P,A,B,C共面.【变式训练】对于空间任意一点O和不共线的三点A,B,C有6=+2+3,则( )A.四点O,A,B,C必共面B.四点P,A,B,C必共面C.四点O,P,B,C必共面D.五点O,P,A,B,C必共面【解析】选B.由6=+2+3,得(-)=2(-)+3(-),即=2+3.由共面向量定理,知P,A,B,C四点共面.4.已知两非零向量e1,e2不共线,设a=λe1+μe2(λ,μ∈R且λ,μ≠0),则( ) A.a∥e1 B.a∥e2C.a与e1,e2共面D.以上三种情况均有可能【解析】选C.若a∥e1,则存在实数t使得a=t e1,所以t e1=λe1+μe2,所以(t-λ)e1=μe2,则e1与e2共线,不符合题意.同理,a与e2也不平行.由向量共面的充要条件知C正确.5.(2014·南宁高二检测)已知O,A,B是平面上的三个点,直线AB上有一点C,满足2+=0,则等于( )A.2-B.-+2C.-D.-+【解析】选A.由已知得2(-)+(-)=0,所以=2-.6.如图所示,在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点.若=a,=b,=c,则下列向量中与相等的向量是( )A.-a+b+cB.a+b+cC.a-b+cD.-a-b+c【解析】选A.=+=+(-)=+-=-a+b+c.二、填空题(每小题4分,共12分)7.已知e1,e2是不共线向量,a=3e1+4e2,b=-3e1+8e2,则a与b是否共线(填是或否).【解析】设a=λb,即3e1+4e2=λ(-3e1+8e2)=-3λe1+8λe2,所以⇒所以不存在λ,使a=λb,即a与b不共线.答案:否8.(2014·福州高二检测)如图,在正方体ABCD-A1B1C1D1中,M,N分别为AB,B1C的中点.用,,表示向量,则= .【解析】=++=++(+)=++(-+)=++.答案:++9.如图所示,在四棱锥O-ABCD中,底面ABCD为平行四边形,=a,=b,=c,若=x a+y b+z c,则x+y+z= .【解析】在△OBD中,=+=+-=+-=+--(-)=+-=a-b+c,故x+y+z=1.答案:1三、解答题(每小题10分,共20分)10.在平行六面体ABCD-A1B1C1D1中,=,=2.设=a,=b,=c,试用a,b,c表示.【解题指南】先利用三角形法则进行向量的加减运算,将表示成其他向量,然后进一步用a,b,c表示.【解析】如图所示,连接AN,则=-=+-=+-(+)=+(-)-(+)=c+(b-c)-(a+b)=-a+b+c.【拓展延伸】数形结合法表示向量用已知向量表示未知向量,体现了向量的数乘运算.解题时要结合具体图形,利用三角形法则、平行四边形法则,将目标向量逐渐转化为已知向量.本题也可以先将表示为=++.11.(2014·武汉高二检测)已知A,B,C三点不共线,对平面ABC外的任意一点O,若点M满足=++.(1)判断,,三个向量是否共面.(2)判断点M是否在平面ABC内.【解析】(1)由已知,得++=3,所以-=(-)+(-),所以=+=--.所以向量,,共面.(2)由(1)知向量,,共面,三个向量的基线又过同一点M,所以四点M,A,B,C共面,所以点M在平面ABC内.【变式训练】直线AB,CD为两异面直线,M,N分别为线段AC,BD的中点,求证:向量,,共面. 【证明】如图,在封闭图形ABNM中,=++, ①在封闭图形CDNM中,=++, ②又因为M,N分别为线段AC,BD的中点,所以+=0,+=0,①+②得2=+,即=+,所以向量,,共面.(30分钟50分)一、选择题(每小题4分,共16分)1.(2014·泰安高二检测)如图所示,已知A,B,C三点不共线,P为平面ABC内一定点,O为平面ABC外任一点,则下列能表示向量的为( )A.+2+2B.-3-2C.+3-2D.+2-3【解析】选 C.根据A,B,C,P四点共面的充要条件可知=x+y.由图知x=3,y=-2,所以=+3-2.2.(2014·济南高二检测)下列命题:①若A,B,C,D是空间任意四点,则有+++=0;②|a|-|b|=|a+b|是a,b共线的充要条件;③若a,b共线,则a与b所在直线平行;④对空间任意一点P与不共线的三点A,B,C,若=x+y+z(x,y,z∈R),则P,A,B,C四点共面.其中不正确命题的个数是( ) A.1 B.2 C.3 D.4【解析】选C.①若A,B,C,D是空间任意四点,则有+++=0正确;②|a|-|b|=|a+b|是a,b共线的充要条件,错误;③若a,b共线,则a与b所在直线平行,错误,有可能是共线、平行或者其中有零向量;④对空间任意一点P与不共线的三点A,B,C,若=x+y+z(x,y,z∈R)且x+y+z=1,则P,A,B,C 四点共面.【变式训练】在下列条件中,使M与A,B,C一定共面的是( )A.=3-2-B.+++=0C.++=0D.=-+【解析】选C.因为++=0,所以=--,所以M与A,B,C必共面.3.(2013·温州高二检测)空间四边形ABCD,连接AC,BD,设M,G分别是BC,CD的中点,则-+等于( )A. B.3 C.3 D.2【解析】选B.-+=-(-)=-=+=+2=3.4.(2014·石家庄高二检测)已知点M在平面ABC内,并且对空间任意一点O,有=x++,则x的值为( )A.1B.0C.3D.【解析】选D.因为=x++,且M,A,B,C四点共面,所以x++=1,x=.二、填空题(每小题5分,共10分)5.已知i与j不共线,则存在两个非零常数m,n,使k=m i+n j是i,j,k共面的条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”中的一个).【解析】若i不平行于j,则k与i,j共面⇔存在惟一的一对实数x,y使k=x i+y j.答案:充要6.有下列命题:①若∥,则A,B,C,D四点共线;②若∥,则A,B,C三点共线;③若e1,e2为不共线的非零向量,a=4e1-e2,b=-e1+e2,则a∥b;④若向量e1,e2,e3是三个不共面的向量,且满足等式k1e1+k2e2+k3e3=0,则k1=k2=k3=0.其中是真命题的序号是(把所有真命题的序号都填上).【解析】根据共线向量的定义,若∥,则AB∥CD或A,B,C,D四点共线,故①错;∥且,有公共点A,所以②正确;由于a=4e1-e2=-4b,所以a∥b,故③正确;易知④也正确.答案:②③④三、解答题(每小题12分,共24分)7.设A,B,C及A1,B1,C1分别是异面直线l1,l2上的三点,而M,N,P,Q分别是线段AA1,BA1,BB1,CC1的中点.求证:M,N,P,Q四点共面.【证明】如图,过B1作l3∥l1取点C2∈l3且BC=B1C2.因为=,=,所以=2,=2.因为A,B,C及A1,B1,C1分别共线,所以=λ=2λ,=μ=2μ.于是=+=+=+(-)=(+)=(2λ+2μ)=λ+μ.因此,,共面.故M,N,P,Q四点共面.8.已知斜三棱柱ABC-A′B′C′,设=a,=b,=c.在面对角线AC′上和棱BC上分别取点M和N,使=k,=k(0≤k≤1).求证:(1)与向量a和c共面.(2)MN∥面A′AB.【证明】(1)显然=k=k b+k c,且=+=a+k=a+k(-a+b)=(1-k)a+k b,=-=(1-k)a+k b-k b-k c=(1-k)a-k c.因此,与向量a和c共面.(2)由(1)知与向量a,c共面,a,c在面A′AB内,而不在面A′AB内,所以MN∥面A′AB.。

人教A版高中数学高二版选修1-1 1.4.2含一个量词的命题的否定教案

人教A版高中数学高二版选修1-1  1.4.2含一个量词的命题的否定教案

1.4.2 含一个量词的命题的否定教学目标分析:知识目标:(1)掌握对含有一个量词的命题进行否定的方法,要正确掌握量词否定的各种形式;(2)明确全称命题的否定是存在命题,存在命题的否定是全称命题.过程与方法:使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.情感目标:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.重难点分析:重点:全称量词与存在量词命题间的转化;难点:隐蔽性否定命题的确定;互动探究:一、课堂探究:1、复习引入:(1)判断下列命题是否为全称命题:①有一个实数α,tan α无意义;②任何一条直线都有斜率;(2)判断以下命题的真假: ①21,04x R x x ∀∈-+≥;②2,3x Q x ∃∈=数学命题中出现“全部”、“所有”、“一切”、“任何”、“任意”、“每一个”等与“存在着”、“有”、“有些”、“某个”、“至少有一个”等的词语,在逻辑中分别称为全称量词与存在性量词(用符号分别记为“ ∀”与“∃”来表示);由这样的量词构成的命题分别称为全称命题与特称命题。

在全称命题与特称命题的逻辑关系中,,p q p q ∨∧都容易判断,但它们的否定形式是我们困惑的症结所在。

探究一、写出下列命题的否定:(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)2,210x R x x ∀∈-+≥.这些命题和它们的否定在形式上有什么变化?2、含有一个量词的全称命题的否定:一般地,对于一个含有一个量词的全称命题的否定有下面的结论:全称命题p :,()x M p x ∀∈,它的否定p ⌝:00,()x M p x ∃∈⌝说明:全称命题的否定是特称命题.探究二、写出下列命题的否定:(1)有些实数的绝对值是正数;(2)某些平行四边形是菱形;(3)200,10x R x ∃∈+<. 这些命题和它们的否定在形式上有什么变化?3、含有一个量词的特称命题的否定:一般地,对于一个含有一个量词的特称命题的否定有下面的结论:特称命题p :00,()x M p x ∃∈,它的否定p ⌝:,()x M p x ∀∈⌝.说明:特称命题的否定是全称命题.4、关键量词的否定:(1)p :所有能被3整除的数都是奇数;(2)p :每一个平行四边形的四个顶点共圆;(3)p :对任意x Z ∈,2x 的个位数字不等于3.(4)p :所有的正方形都是矩形.变式:命题“对任意的32,10x R x x ∈-+≤”的否定是( ).A. 不存在32,10x R x x ∈-+≤B. 存在32,10x R x x ∈-+≤C. 存在32,10x R x x ∈-+>D. 对任意的32,10x R x x ∈-+>例2、写出下列特称命题的否定:(1)p :2000,220x R x x ∃∈++≤; (2)p :有的三角形是等边三角形;(3)p :有一个素数含有三个正因数.(4)p :至少有一个实数x ,使310x +=.变式:对下列命题的否定说法错误的是( ).A. p :能被3整除的数是奇数;p ⌝:存在一个能被3整除的数不是奇数B. p :每个四边形的四个顶点共圆;p ⌝:存在一个四边形的四个顶点不共圆C. p :有的三角形为正三角形;p ⌝:所有的三角形不都是正三角形D. p :2,220x R x x ∃∈++≤;p ⌝:2,220x R x x ∀∈++>小结:全称命题的否定变成特称命题.例3、命题“所有能被2整除的整数都是偶数”的否定是( ).A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的整数是偶数D .存在一个能被2整除的整数不是偶数答案:原命题是全称命题,则其否定是特称命题,故选D.变式:下列命题正确的个数是( ).①“在三角形ABC 中,若sin sin A B >,则A B >”的否命题是真命题;②命题:23p x y ≠≠或,命题:5q x y +≠,则p 是q 的必要不充分条件;③“32,10x R x x ∀∈-+≤”的否定是“32,10x R x x ∃∈-+>”.A.0B.1C.2D.3答案:D.二、课堂练习:教材第26页练习第1、2题1、写出下列命题的否定:(1),n Z n Q ∀∈∈;(2)任意素数都是奇数;(3)每个指数函数都是单调函数.2、写出下列命题的否定:(1) 有些三角形是直角三角形;(2)有些梯形是等腰梯形;(3)存在一个实数,它的绝对值不是正数.反思:全称命题的否定变成特称命题.反思总结:1、 本节课你学到了哪些知识点?2、 本节课你学到了哪些思想方法?3、 本节课有哪些注意事项?课外作业:(一)教材第26页习题1.4 A 组第3题,B 组第1题1、写出下列命题的否定:(1)32,x N x x ∀∈>;(2) 所有可以被5整除的整数,末位数字都是0;(3) 2000,10x R x x ∃∈-+≤; (4) 存在一个四边形,它的对角线互相垂直.2、判断下列命题的真假,写出下列命题的否定:(1)每条直线在y 轴上都有截矩;(2)每个二次函数都与x 轴相交;(3)存在一个三角形,它的内角和小于180︒;(4)存在一个四边形没有外接圆.(二)补充3、命题“对任意的x R ∈,3210x x -+≤”的否定是( )A .不存在x R ∈,3210x x -+≤B .存在x R ∈,3210x x -+≤C .存在x R ∈,3210x x -+>D .对任意的x R ∈,3210x x -+>答案:C4、命题“若12<x ,则11<<-x ”的逆否命题是( )A .若12≥x ,则1≥x 或1-≤x B.若11<<-x ,则12<xC.若1>x 或1-<x ,则12>xD.若1≥x 或1-≤x ,则12≥x答案:D5、已知命题:p x ∀∈R ,sin 1x ≤,则( )A.:p x R ⌝∃∈,sin 1x ≥B.:p x R ⌝∀∈,sin 1x ≥C.:p x R ⌝∃∈,sin 1x >D.:p x R ⌝∀∈,sin 1x >6、写出下列命题的否定:(1)若24x >,则2x >;(2)若0,m ≥则20x x m +-=有实数根;(3)可以被5整除的整数,末位是0;(4)被8整除的数能被4整除;(5)若一个四边形是正方形,则它的四条边相等.7、已知:,sin cos p x R x x m ⌝∃∈+≤为真命题,2:,10q x R x mx ∀∈++>为真命题,求实数m 的取值范围.2m ≤<.课后反思:。

2014-2015学年高中数学(人教A版,选修2-1)作业:1 单元检测(B卷)

2014-2015学年高中数学(人教A版,选修2-1)作业:1 单元检测(B卷)

第一章 常用逻辑用语(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数f (x )=x |x +a |+b 是奇函数的充要条件是( )A .ab =0B .a +b =0C .a =bD .a 2+b 2=02.若“a ≥b ⇒c >d ”和“a <b ⇒e ≤f ”都是真命题,其逆命题都是假命题,则“c ≤d ”是“e ≤f ”的( )A .必要非充分条件B .充分非必要条件C .充分必要条件D .既非充分也非必要条件3.在下列结论中,正确的是( )①“p ∧q ”为真是“p ∨q ”为真的充分不必要条件;②“p ∧q ”为假是“p ∨q ”为真的充分不必要条件;③“p ∨q ”为真是“綈p ”为假的必要不充分条件;④“綈p ”为真是“p ∧q ”为假的必要不充分条件.A .①②B .①③C .②④D .③④4.“a ≠1或b ≠2”是“a +b ≠3”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要5.若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假6.条件p :x >1,y >1,条件q :x +y >2,xy >1,则条件p 是条件q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件7.2x 2-5x -3<0的一个必要不充分条件是( )A .-12<x <3B .-12<x <0 C .-3<x <12D .-1<x <6 8.“x =2k π+π4(k ∈Z )”是“tan x =1”成立的( ) A .充分不必要条件 B .必要不充分条件C .充分条件D .既不充分也不必要条件9.下列命题中的假命题是( )A .∃x ∈R ,lg x =0B .∃x ∈R ,tan x =1C .∀x ∈R ,x 3>0D .∀x ∈R,2x >010.设原命题:若a +b ≥2,则a ,b 中至少有一个不小于1,则原命题与其逆命题的真假情况是( )A .原命题真,逆命题假B .原命题假,逆命题真C .原命题与逆命题均为真命题D.原命题与逆命题均为假命题11.下列命题中为全称命题的是()A.圆内接三角形中有等腰三角形B.存在一个实数与它的相反数的和不为0C.矩形都有外接圆D.过直线外一点有一条直线和已知直线平行12.以下判断正确的是()A.命题“负数的平方是正数”不是全称命题B.命题“∀x∈N,x3>x”的否定是“∃x∈N,x3>x”C.“a=1”是“函数f(x)=sin 2ax的最小正周期为π”的必要不充分条件2二、填空题(本大题共4小题,每小题5分,共20分)13.下列命题中________为真命题.(填序号)①“A∩B=A”成立的必要条件是“A B”;②“若x2+y2=0,则x,y全为0”的否命题;③“全等三角形是相似三角形”的逆命题;④“圆内接四边形对角互补”的逆否命题.14.命题“正数的绝对值等于它本身”的逆命题是________________________,这是________(填“真”或“假”)命题.15.若“∀x∈R,x2-2x-m>0”是真命题,则实数m的取值范围是____________.16.给出下列四个命题:①∀x∈R,x2+2>0;②∀x∈N,x4≥1;③∃x∈Z,x3<1;④∃x∈Q,x2=3.其中正确命题的序号为________.三、解答题(本大题共6小题,共70分)17.(10分)分别写出下列命题的逆命题,否命题,逆否命题,并判断其真假.(1)矩形的对角线相等且互相平分;(2)正偶数不是质数.18.(12分)写出由下述各命题构成的“p或q”,“p且q”,“非p”形式的命题,并指出所构成的这些命题的真假.(1)p:连续的三个整数的乘积能被2整除,q:连续的三个整数的乘积能被3整除;(2)p:对角线互相垂直的四边形是菱形,q:对角线互相平分的四边形是菱形.19.(12分)已知ab≠0,求证:a+b=1的充要条件是a3+b3+ab-a2-b2=0.20.(12分)已知二次函数f(x)=ax2+x.对于∀x∈[0,1],|f(x)|≤1成立,试求实数a的取值范围.21.(12分)下列三个不等式:①25242axx+-->1;②(a-3)x2+(a-2)x-1>0;③a>x2+1x2.若其中至多有两个不等式的解集为空集,求实数a的取值范围.22.(12分)已知命题p:x1和x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:不等式ax2+2x-1>0有解;若命题p是真命题,命题q是假命题,求a的取值范围.第一章常用逻辑用语(B)1.D [若a 2+b 2=0,即a =b =0时,f (-x )=(-x )·|-x +0|+0=-x |x |=-f (x ),∴a 2+b 2=0是f (x )为奇函数的充分条件.又若f (x )为奇函数即f (-x )=-x |(-x )+a |+b =-(x |x +a |+b ),则必有a =b =0,即a 2+b 2=0,∴a 2+b 2=0是f (x )为奇函数的必要条件.]2.B [由a ≥b ⇒c >d 可得c ≤d ⇒a <b ,又a <b ⇒e ≤f ,所以c ≤d ⇒e ≤f ;而e ≤f ⇒c ≤d 显然不成立,故“c ≤d ”是“e ≤f ”的充分非必要条件.]3.B4.B [∵a =1且b =2⇒a +b =3,∴a +b ≠3⇒a ≠1或b ≠2.]5.B [由“非p ”为真可得p 为假,若同时“p 或q ”为真,则可得q 必须为真.]6.A [由我们学习过的不等式的理论可得p ⇒q ,但x =100,y =0.1满足q :x +y >2,xy >1,但不满足q ,故选项为A.]7.D8.A [tan ⎝⎛⎭⎫2k π+π4=tan π4=1,所以充分; 但反之不成立,如tan 5π4=1.] 9.C10.A [举例:a =1.2,b =0.3,则a +b =1.5<2,∴逆命题为假.]11.C12.D [∵“负数的平方是正数”即为∀x <0,则x 2>0,是全称命题,∴A 不正确; 又∵对全称命题“∀x ∈N ,x 3>x ”的否定为“∃x ∈N ,x 3≤x ”,∴B 不正确;又∵f (x )=sin 2ax ,当最小正周期T =π时,有2π|2a |=π,∴|a |=1⇒ a =1. 故“a =1”是“函数f (x )=sin 2ax 的最小正周期为π”的充分不必要条件.]13.②④解析 ①A ∩B =A ⇒A ⊆B 但不能得出A B ,∴①不正确;②否命题为:“若x 2+y 2≠0,则x ,y 不全为0”,是真命题;③逆命题为:“若两个三角形是相似三角形,则这两个三角形全等”,是假命题; ④原命题为真,而逆否命题与原命题是两个等价命题,∴逆否命题也为真命题.14.如果一个数的绝对值等于它本身,那么这个数一定是正数 假15.(-∞,-1)解析 由Δ=(-2)2-4×(-m )<0,得m <-1.16.①③17.解 (1)逆命题:若一个四边形的对角线相等且互相平分,则它是矩形(真命题). 否命题:若一个四边形不是矩形,则它的对角线不相等或不互相平分(真命题). 逆否命题:若一个四边形的对角线不相等或不互相平分,则它不是矩形(真命题).(2)逆命题:如果一个正数不是质数,那么这个正数是正偶数(假命题).否命题:如果一个正数不是偶数,那么这个数是质数(假命题).逆否命题:如果一个正数是质数,那么这个数不是偶数(假命题).18.解 (1)p 或q :连续的三个整数的乘积能被2或能被3整除.p 且q :连续的三个整数的乘积能被2且能被3整除.非p :存在连续的三个整数的乘积不能被2整除.∵连续的三整数中有一个(或两个)是偶数,而另一个是3的倍数,∴p 真,q 真,∴p 或q 与p 且q 均为真,而非p 为假.(2)p 或q :对角线互相垂直的四边形是菱形或对角线互相平分的四边形是菱形. p 且q :对角线互相垂直的四边形是菱形且对角线互相平分的四边形是菱形. 非p :存在对角线互相垂直的四边形不是菱形.∵p 假q 假,∴p 或q 与p 且q 均为假,而非p 为真.19.证明 充分性:∵a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)=(a +b -1)(a 2-ab +b 2),∴(a +b -1)(a 2-ab +b 2)=0.又ab ≠0,即a ≠0且b ≠0,∴a 2-ab +b 2=⎝⎛⎭⎫a -b 22+34b 2>0. ∴a +b -1=0,∴a +b =1.必要性:∵a +b =1,即a +b -1=0,∴a 3+b 3+ab -a 2-b 2=(a +b -1)(a 2-ab +b 2)=0.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0.20.解 |f (x )|≤1⇔-1≤f (x )≤1⇔-1≤ax 2+x ≤1,x ∈[0,1].①当x =0时,a ≠0,①式显然成立;当x ∈(0,1]时,①式化为-1x 2-1x ≤a ≤1x 2-1x在x ∈(0,1]上恒成立. 设t =1x,则t ∈[1,+∞), 则有-t 2-t ≤a ≤t 2-t ,所以只需⎩⎪⎨⎪⎧a ≥(-t 2-t )max =-2a ≤(t 2-t )min =0⇒-2≤a ≤0, 又a ≠0,故-2≤a <0.综上,所求实数a 的取值范围是[-2,0). 21.解 对于①,25242ax x +-->1,即-x 2+ax -254>0,故x 2-ax +254<0,Δ=a 2-25,所以不等式的解集为空集,实数a 的取值范围是-5≤a ≤5.对于②,当a =3时,不等式的解集为{x |x >1},不是空集;当a ≠3时,要使不等式(a -3)x 2+(a -2)x -1>0的解集为空集.则⎩⎪⎨⎪⎧a -3<0,(a -2)2+4(a -3)≤0,解得-22≤a ≤2 2. 对于③,因为x 2+1x 2≥2x 2·1x 2=2, 当且仅当x 2=1,即x =±1时取等号.所以,不等式a >x 2+1x2的解集为空集时,a ≤2. 因此,当三个不等式的解集都为空集时,-22≤a ≤2.所以要使三个不等式至多有两个不等式的解集为空集,则实数a 的取值范围是{a |a <-22或a >2}.22.解 ∵x 1,x 2是方程x 2-mx -2=0的两个实根,则x 1+x 2=m 且x 1x 2=-2,∴|x 1-x 2|=(x 1+x 2)2-4x 1x 2=m 2+8,当m ∈[-1,1]时,|x 1-x 2|max =3,由不等式a 2-5a -3≥|x 1-x 2|对任意实数m ∈[-1,1]恒成立可得:a 2-5a -3≥3, ∴a ≥6或a ≤-1.所以命题p 为真命题时,a ≥6或a ≤-1.命题q :不等式ax 2+2x -1>0有解,当a >0时,显然有解;当a =0时,2x -1>0有解;当a <0时,∵ax 2+2x -1>0有解,∴Δ=4+4a >0,∴-1<a <0,从而命题q:不等式ax2+2x-1>0有解时a>-1.又命题q为假命题,∴a≤-1.综上得,若p为真命题且q为假命题则a≤-1.。

2014-2015学年人教A版选修2-1高中数学《1.3简单的逻辑联结词》课时提升作业(含答案解析)

2014-2015学年人教A版选修2-1高中数学《1.3简单的逻辑联结词》课时提升作业(含答案解析)

课时提升作业(六)简单的逻辑联结词(30分钟50分)一、选择题(每小题3分,共18分)1.(2014·重庆高考)已知命题p:对任意x∈R,总有≥0;q:x=1是方程x+2=0的根.则下列命题为真命题的是( )A.p∧qB.p∧qC.p∧qD.p∧q【解题指南】先判断出命题p,q的真假,再利用逻辑联结词进行相关判断.【解析】选A.易知命题p为真命题,q为假命题,故p∧q为真命题,p∧q为假命题,p∧q为假命题,p∧q为假命题.2.(2014·驻马店高二检测)若p∨q是假命题,则( )A.p是真命题,q是假命题B.p,q均为假命题C.p,q至少有一个是假命题D.p,q至少有一个是真命题【解析】选B.只有当p,q均为假命题时,p∨q才是假命题,故选B.3.(2014·广州高二检测)已知命题p:a2+b2<0(a,b∈R);命题q:(a-2)2+|b-3|≥0(a,b∈R),下列结论正确的是( )A.“p∨q”为真B.“p∧q”为真C.“p”为假D.“q”为真【解析】选A.显然p假q真,故“p∨q”为真,“p∧q”为假,“p”为真,“q”为假,故选A.4.命题p:“若a<b,则2a<2b”的否命题及命题p的否定为( )A.否命题:若a≥b,则2a≥2b,否定:若a<b,则2a≥2bB.否命题:若a<b,则2a≥2b,否定:若a≥b,则2a≥2bC.否命题:若2a<2b,则a<b,否定:若2a<2b,则a≥b.D.否命题:若a>b,则2a>2b,否定:若a<b,则2a>2b.【解析】选A.命题“若a<b,则2a<2b”的否命题为“若a≥b,则2a≥2b”,命题p 的否定为“若a<b,则2a≥2b”.5.在下列结论中,正确的结论为( )①“p∧q”为真是“p∨q”为真的充分不必要条件;②“p∧q”为假是“p∨q”为真的充分不必要条件;③“p∨q”为真是“p”为假的必要不充分条件;④“p”为真是“p∧q”为假的必要不充分条件.A.①②B.①③C.②④D.③④【解析】选B.充分理解含逻辑联结词的命题真假的判断方法,对于①,当p∧q为真时,p与q均为真,p∨q为真,但当p∨q为真时,p与q至少有一个为真,但p∧q不一定为真,故是充分不必要条件.对于②,p∧q为假,即p与q中至少有一个为假,则p∨q真假不确定,而当p∨q 为真时,即p与q中至少有一个为真,则p∧q真假不确定,故既不是充分条件也不是必要条件.对于③,p∨q为真,则p与q至少有一个为真,但p真假不确定,但当p为假,即p 为真时,p∨q一定为真,故是必要不充分条件.对于④p为真,即p为假,则p∧q为假,但当p∧q为假,即p与q至少有一个为假时,p真假不确定,故是充分不必要条件.6.命题p:“方程x2+2x+a=0有实数根”;命题q:“函数f(x)=(a2-a)x是增函数”,若“p∧q”为假命题,且“p∨q”为真命题,则实数a的取值范围是( )A.a>0B.a≥0C.a>1D.a≥1【解题指南】先分别求出命题p,q为真的充要条件,再分别求出p,q为假的充要条件,利用分类讨论思想求解.【解析】选B.命题p:“方程x2+2x+a=0有实数根”的充要条件为Δ=4-4a≥0,即a≤1,则p为真时,a>1;命题q:“函数f(x)=(a2-a)x是增函数”的充要条件为a2-a>0,即a<0或a>1, 则“q”为真命题时,0≤a≤1.由“p∧q”为假命题,“p∨q”为真命题,得p,q一真一假:若p真q假,则0≤a≤1;若p假q真,则a>1.所以实数a的取值范围是a≥0.【举一反三】若本题变为“q”为假命题且“p∨(q)”为真命题,其余条件不变,则实数a的取值范围是.【解析】由“q”为假命题且“p∨(q)”为真命题,得p真q真,所以实数a的取值范围是a<0.答案:a<0二、填空题(每小题4分,共12分)7.(2014·郑州高二检测)设有两个命题:p:|x|+|x-1|≥m的解集为R;q:函数f(x)=-(7-3m)x是减函数,若p∨q为真命题,p∧q为假命题,实数m的取值范围是.【解析】若p为真命题,则根据绝对值的几何意义可知m≤1.若q为真命题,则7-3m>1,所以m<2,若p真q假,则m∈.若p假q真,则1<m<2. 综上所述,1<m<2.答案:1<m<28.已知全集为R,命题p:0∈N,q:{0}⊆ðQ,则下述判断:①p∧q为真;②p∨q为R真;③p为真;④q为假,其中正确的序号为.【解析】由于N表示自然数集,ðQ表示无理数集,于是p:0∈N为真,q:{0}⊆RðQR为假,所以p∧q为假,①错误;p∨q为真,②正确;p为假,③错误;q为真,④错误.答案:②9.(2014·杭州高二检测)p:<0,q:x2-4x-5<0,若p且q为假命题,则x的取值范围是___________.【解析】p:x<3;q:-1<x<5.因为p且q为假命题,所以p,q中至少有一个为假,所以x≥3或x≤-1.答案:(-≦,-1]∪[3,+≦).三、解答题(每小题10分,共20分)10.分别指出由下列各组命题构成的“p∨q”“p∧q”及“p”形式,并判断真假:(1)p:2n-1(n∈Z)是奇数,q:2n-1(n∈Z)是偶数.(2)p:a2+b2<0(a∈R,b∈R),q:a2+b2≥0.(3)p:集合中的元素是确定的,q:集合中的元素是无序的.【解析】(1)p∨q,2n-1(n∈Z)是奇数或是偶数;(真)p∧q:2n-1(n∈Z)既是奇数又是偶数;(假)p:2n-1(n∈Z)不是奇数.(假)(2)p∨q:a2+b2<0,或a2+b2≥0;(真)p∧q:a2+b2<0,且a2+b2≥0;(假)p:a2+b2≥0.(真)(3)p∨q:集合中的元素是确定的或是无序的;(真)p∧q:集合中的元素是确定的且是无序的;(真)p集合中的元素是不确定的.(假).11.(2014·惠州高二检测)设命题p:实数x满足x2-4ax+3a2<0,其中a>0;命题q:实数x满足x2-5x+6≤0.(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若p是q成立的必要不充分条件,求实数a的取值范围.【解题指南】先根据题意化简给出的两个命题:p:a<x<3a,q:2≤x≤3,(1)当a=1时,确定p:1<x<3,再由p∧q为真,可知p,q均为真,故所求实数x的取值范围就是命题p,q所表示的集合的交集.(2)由条件可知,q是p的充分不必要条件,故命题q所表示的集合是命题p所表示的集合的真子集,然后借用数轴求解即可.【解析】(1)由x2-4ax+3a2<0得(x-3a)·(x-a)<0,又a>0,所以a<x<3a,当a=1时,1<x<3,即p为真命题时,实数x的取值范围是1<x<3,由x2-5x+6≤0得2≤x≤3,所以q为真时实数x的取值范围是2≤x≤3.若p∧q为真,则2≤x<3,所以实数x的取值范围是[2,3).(2)设A={x|a<x<3a},B={x|2≤x≤3},由题意可知q是p的充分不必要条件,则B A,所以⇒1<a<2,所以实数a的取值范围是(1,2).(30分钟50分)一、选择题(每小题4分,共16分)1.(2013·湖北高考)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p是“甲降落在指定范围”,q是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A.(p)∨(q)B.p∨(q)C.(p)∧(q)D.p∨q【解题指南】本题考查了逻辑联结词的应用.【解析】选A.至少有一位学员没有降落在指定范围指的是甲没有降落在指定范围或乙没有降落在指定范围,故选A.2.(2014·聊城高二检测)设命题p:函数y=在(-∞,0)∪(0,+∞)上是减函数;命题q:函数y=的图象关于原点对称,则下列判断正确的是( )A.p真B.q假C.p∧q真D.p∨q假【解析】选B.命题p为假命题,命题q为真命题,故选B.【变式训练】给出两个命题:p:函数y=x2-x-1有两个不同的零点;q:若<1,则x>1,那么在下列四个命题中,真命题是( )A.(p)∨qB.p∧qC.(p)∧(q)D.(p)∨(q)【解析】选D.对于p,函数对应的方程x2-x-1=0的判别式Δ=(-1)2-4×(-1)=5>0. 可知函数有两个不同的零点,故p为真.当x<0时,不等式<1恒成立;当x>0时,不等式的解为x>1.故不等式<1的解为x<0或x>1.故命题q为假命题.所以只有(p)∨(q)为真,故选D.3.已知命题(p∧q)∧(p∨q)为真命题,则( )A.p,q都为真B.p真,q假C.p假,q真D.p,q都为假【解析】选B.因为(p∧q)∧(p∨q)为真命题,所以(p∧q)为真命题,(p∨q)也为真命题,因为(p∧q)为真命题,所以p和q都是真命题,所以p真,q假.此时(p∨q)也为真命题,符合题意.【误区警示】解答本题易出现如下错误现象:(1)不知从何处入手,找不到问题突破口.(2)层次不清,推理混乱.(3)步骤不衔接,前后矛盾.(4)对逻辑联结词理解不准,出现知识性错误.4.(2014·长春高二检测)已知:p:|x-1|≥2,q:x∈Z,若p∧q,q同时为假命题,则满足条件的x的集合为( )A.{x|x≤-1或x≥3,x∉Z}B.{x|-1≤x≤3,x∉Z}C.{x|x<-1或x∈Z}D.{x|-1<x<3,x∈Z}【解析】选D.p:x≥3或x≤-1,q:x∈Z,由p∧q,q同时为假命题知,p假q真, 所以满足-1<x<3且x∈Z,故满足条件的集合为{x|-1<x<3,x∈Z}.二、填空题(每小题5分,共10分)5.(2014·广州高二检测)命题p:2∉{1,3},q:2∉{x|x2-4=0},则命题p∧q是命题,命题p∨q是命题.【解析】命题p:2∉{1,3}是真命题.因为{x|x2-4=0}={-2,2},所以命题q:2∉{x|x2-4=0}是假命题,所以命题p∧q是假命题,命题p∨q是真命题.答案:假真6.已知命题p:x=π是y=|sinx|的一条对称轴,q:2π是y=|sinx|的最小正周期.下列命题:①p∨q;②p∧q;③p;④q.其中真命题的序号是.【解析】因为π是y=|sinx|的最小正周期,所以q为假.又因为p为真,所以p∨q为真,p∧q为假,p为假,q为真.答案:①④三、解答题(每小题12分,共24分)7.(2014·九江高二检测)已知命题p:不等式x2+kx+1≥0对于一切x∈R恒成立,命题q:已知方程x2+(2k-1)x+k2=0有两个大于1的实数根,若p且q为假,p或q 为真.求实数k的取值范围.【解析】当p为真命题时,Δ=k2-4≤0,所以,-2≤k≤2.当q为真命题时,令f(x)=x2+(2k-1)x+k2,方程有两个大于1的实数根⇔即所以k<-2.要使p且q为假,p或q为真,则p真q假,或者是p假q真.当p真q假时,-2≤k≤2,当p假q真时,k<-2.综上:k≤2.8.设命题p:方程2x2+x+a=0的两根x1,x2满足x1<1<x2,命题q:函数y=log2(ax-1)在区间[1,2]内单调递增.(1)若p为真命题,求实数a的取值范围.(2)试问:p∧q是否有可能为真命题?若有可能,求出a的取值范围;若不可能,请说明理由.【解析】(1)若p为真命题,令f(x)=2x2+x+a,则f(1)<0,即3+a<0,所以a<-3.(2)假设p∧q是真命题,则p,q均为真命题,由(1)知p真时a<-3.当q为真命题时,需即a>1.显然p,q均为真命题时需此时a不存在,故不存在a的值使p∧q为真命题.。

【全程复习方略】2014-2015学年高中数学 3.2.4空间向量与空间距离课时作业 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 3.2.4空间向量与空间距离课时作业 新人教A版选修2-1

空间向量与空间距离(30分钟50分)一、选择题(每小题3分,共18分)1.(2014·济宁高二检测)如图所示,在空间直角坐标系中,有一棱长为a的正方体ABCO-A′B′C′D′,A′C 的中点E与AB的中点F的距离为( )A. aB. aC.aD. a【解析】选B.由图易知A(a,0,0),B(a,a,0),C(0,a,0),A′(a,0,a),所以F,E.所以|EF|=== a.2.已知直线l过点A(1,-1,2),和l垂直的一个向量为n=(-3,0,4),则P(3,5,0)到l的距离为( )A.5B.14C.D.【解析】选C.因为=(-2,-6,2).所以·n=(-2,-6,2)·(-3,0,4)=14,|n|==5.所以点P到直线l的距离为=.3.已知向量n=(2,0,1)为平面α的法向量,点A(-1,2,1)在α内,则P(1,2,-2)到α的距离为( )A. B. C.2 D.【解析】选A.因为=(-2,0,3),所以点P到平面α的距离为d===.4.(2014·安顺高二检测)正四面体ABCD的棱长为1,G是△ABC的中心,M在线段DG上,且∠AMB=90°,则GM 的长为( )A. B. C. D.【解析】选D.设=a,=b,=c,=+λ=-a+(a+b+c)=a+b+c,=+=(a-b)+a+b+c=a+b+c.由·=0,a·b=b·c=a·c=,可解得λ=.||=||=.【一题多解】取AB的中点N,由正四面体的对称性可知△AMB为等腰三角形,所以MN=AB=.又G为△ABC 的中心,所以NG=,故MG==.5.(2014·南宁高二检测)已知正方体ABCD-A1B1C1D1的棱长是1,则直线DA1与AC间的距离为( )A. B. C. D.【解析】选 C.建立以A为原点,以AB,AD,AA1为x,y,z轴的空间直角坐标系,则得A(0,0,0),C(1,1,0),D(0,1,0),A1(0,0,1),=(1,1,0),=(0,-1,1),设线段MN为两直线DA1与AC的公垂线段,且设=(x,y,z),则⊥,⊥,得x+y=0,-y+z=0,令y=t,则=(-t,t,t),另可设M(m,m,0),N(0,a,b),=(-m,a-m,b)N(0,2t,t),2t+t=1,t=,=,==.6.(2014·邯郸高二检测)正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为BB1的中点,则|MN|的长为( )A. aB. aC. aD. a【解析】选A.设=a,=b,=c,则|a|=|b|=|c|=a,a·b=b·c=c·a=0,由条件知,=-=(+)-=(++)-(++)=(2a-c)-(-c+a+b)=a-b-c,||2==(2a-b-c)2=(4|a|2+|b|2+|c|2-4a·b-2a·c+b·c)=,所以||= a.【变式训练】正四面体ABCD棱长为2,E,F分别为BC,AD的中点,则EF的长为.【解析】||2==(++)2=+++2(·+·+·)=12+22+12+2[1×2×cos 120°+0+2×1×cos 120°]=2,所以||=,所以EF的长为.答案:二、填空题(每小题4分,共12分)7.(2014·延安高二检测)在长方体ABCD-A1B1C1D1中,如果AB=BC=1,AA1=2,那么A到直线A1C的距离为.【解析】建立如图所示空间坐标系A1xyz,则A1(0,0,0),A(0,0,2),C(1,1,2),=(1,1,2),=(0,0,2),又cos∠AA1C===.设A到直线A1C的距离为d,则d=||sin∠AA1C=2×=.答案:8.棱长为1的正方体ABCD-A1B1C1D1中,E,F分别是BC,CD的中点,则BD到平面EFD1B1的距离为 . 【解析】以D为原点,直线DA,DC,DD1分别为x轴,y轴,z轴建立空间直角坐标系,易求平面EFD1B1的法向量n=,又=,所以d==.答案:9.(2014·石家庄高二检测)在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别为棱A1B1,BB1的中点,则异面直线AM与CN的距离为.【解析】以A为原点,直线AB,AD,AA1分别为x轴,y轴,z轴建立空间直角坐标系,易知=,=,设n=(x,y,z),且n⊥,n⊥,所以n·=x+z=0,n·=-y+z=0,所以x=-2z,y=z.取z=2,则n=(-4,1,2),所以AM与CN的距离d==.答案:三、解答题(每小题10分,共20分)10.(2014·黄山高二检测)如图,在长方体ABCD-A1B1C1D1中,AB=AD=2,AA1=4,点M在A1C1上,|MC1|=2|A1M|,N 为D1C的中点,求M,N两点间的距离.【解题指南】建立空间直角坐标系表示出点M,N的坐标,利用空间两点的距离公式求出距离.【解析】建立如图所示空间直角坐标系,据题意有|A1C1|=2,因为|MC1|=2|A1M|,所以|A1M|=.所以M.又C(2,2,0),D1(0,2,4),N为CD1的中点,所以N(1,2,2),所以|MN|==.11.三棱柱ABC-A1B1C1是各条棱长均为a的正三棱柱,D是侧棱CC1的中点.(1)求证:平面AB1D⊥平面ABB1A1.(2)求点C到平面AB1D的距离.【解析】(1)如图所示,取AB1中点M,则=++,又=++.所以2=+=+.2·=(+)·=0,2·=(+)·(-)=||2-||2=0, 所以DM⊥AA1,DM⊥AB.所以DM⊥平面ABB1A1.因为DM⊂平面AB1D,所以平面AB1D⊥平面ABB1A1.(2)因为A1B⊥DM,A1B⊥AB1.所以A1B⊥平面AB1D.所以是平面AB1D的一个法向量.所以点C到平面AB1D的距离为d===== a.(30分钟50分)一、选择题(每小题4分,共16分)1.(2013·济南高二检测)已知点A(1,2,1),B(-1,3,4),D(1,1,1),若=2,则空间P,D两点间的距离为( )A. B. C. D.【解题指南】先利用=2的关系求出P点坐标,再求两点间的距离.【解析】选D.设P(x,y,z),因为=2,所以(x-1,y-2,z-1)=2(-1-x,3-y,4-z),所以所以所以P(-,,3),=(,-,-2),所以||=.2.(2014·衡水高二检测)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB=,||=1,点E是棱PB的中点.直线AB与平面ECD的距离为( )A.1B.C.D.【解析】选B.如图,以A为坐标原点,射线AB,AD,AP分别为x轴、y轴、z轴的正半轴,建立空间直角坐标系Axyz.则B(,0,0),P(0,0,),E.由||=1,得D(0,1,0),C(,1,0),从而=(,0,0),=,=,设平面DEC的法向量n=(x,y,z),则n·=0,n·=0.故所以x=0,z=y.可取y=1,则n=(0,1,).故点A到平面ECD的距离d===,又直线A B∥平面ECD,所以直线AB到平面ECD的距离为.【变式训练】在底面是直角梯形的四棱锥P-ABCD中,侧棱PA⊥底面ABCD,BC∥AD,∠ABC=90°,PA=AB=BC=2,AD=1,则AD到平面PBC的距离为( )A. B.3 C.2 D.【解析】选D.由已知AB,AD,AP两两垂直.所以以A为坐标原点,AB,AD,AP分别为x轴、y轴、z轴建立空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,2,0),P(0,0,2),=(2,0,-2).=(0,2,0),设平面PBC的法向量为n=(a,b,c),则所以n=(1,0,1),又=(2,0,0),所以d==.3.(2014·昆明高二检测)ABCD为正方形,P为平面ABCD外一点,PD⊥AD,PD=AD=2,二面角P-AD-C的大小为60°,则P到AB的距离是( )A.2B.C.2D.【解析】选D.如图建立直角坐标系,易知∠PDC为二面角P-AD-C的平面角,PD=AD=2,得P(0,1,),A(2,0,0),B(2,2,0),=(-2,1,),=(0,2,0),设点P到AB的距离为d,则d=||sin∠PAB,cos∠PAB===,sin∠PAB===,所以d=×=.4.(2014·西安高二检测)如图,正方体ABCD-A1B1C1D1的棱长为1,O是底面A1B1C1D1的中心,则O到平面ABC1D1的距离是( )A. B. C. D.【解析】选 B.以D为坐标原点,以DA,DC,DD1所在直线分别为x,y,z轴建立空间直角坐标系,则有D1(0,0,1),D(0,0,0),A(1,0,0),B(1,1,0),A1(1,0,1), C1(0,1,1).因O为A1C1的中点,所以O,=,设平面ABC1D1的法向量为n=(x,y,z),则有即取n=(1,0,1),所以O到平面ABC1D1的距离为:d===.二、填空题(每小题5分,共10分)5.如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为.【解析】以C为坐标原点,CA,CB,CC1所在的直线分别为x轴,y轴,z轴建立空间直角坐标系,则C(0,0,0),A(1,0,0),B1(0,2,2),C1(0,0,2).设AD=a,则D点坐标为(1,0,a),=(1,0,a),=(0,2,2),设平面B1CD的一个法向量为m=(x,y,z).则⇒令z=-1,得m=(a,1,-1),又平面C1DC的一个法向量为n=(0,1,0),则由cos60°=得=,即a=,故AD=.答案:6.(2014·南京高二检测)等腰Rt△ABC斜边BC上的高AD=1,以AD为折痕将△ABD与△ACD折成互相垂直的两个平面后,某学生得出以下结论:①BD⊥AC;②∠BAC=60°;③异面直线AB与CD之间的距离为;④点D到平面ABC的距离为;⑤直线AC与平面ABD所成的角为45°.其中正确结论的序号是.【解析】因为AD⊥BD,AD⊥CD,平面ABD⊥平面ACD,所以∠BDC=90°,所以BD⊥平面ACD,所以BD⊥AC,所以①正确;又知AD=BD=CD=1,所以△ABC为正三角形,∠BAC=60°,所以②正确;以D为原点,DB,DC,DA分别为x轴、y轴、z轴建立空间直角坐标系,易知A(0,0,1),B(1,0,0),C(0,1,0),所以=(1,0,-1),=(0,1,-1),=(0,1,0),设n=(x,y,z),由n·=0,n·=0得x-z=0,y=0,令z=1得n=(1,0,1),所以异面直线AB与DC之间的距离d==,故③正确;因为△ABC边长为,所以S△ABC=,由V A-BDC=V D-ABC得×(×1×1)×1=××h,所以h=,故④正确;因为CD⊥平面ABD,所以∠CAD为直线AC与平面ABD所成的角,易知∠CAD=45°,故⑤正确.答案:①②③④⑤三、解答题(每小题12分,共24分)7.(2014·泰安高二检测)如图,已知正方体ABCD-A1B1C1D1的棱长为2,点M,N分别为A1A和B1B的中点.(1)求异面直线CM与D1N所成角的余弦值.(2)求点D1到平面MDC的距离.【解析】(1)分别以DA,DC,DD1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系.则M(2,0,1),C(0,2,0),N(2,2,1),D1(0,0,2).所以=(-2,2,-1),=(2,2,-1),cos<,>==,所以异面直线CM与D1N所成角的余弦值为.(2)=(2,0,1),=(0,2,0),=(0,0,2).设面DMC的法向量为n=(x,y,z),则⇒n=(1,0,-2),所以点D1到平面MDC的距离h===.【变式训练】(2014·安庆高二检测)如图所示的多面体是由底面为ABCD的长方体被截面AEC1F所截得到的,其中AB=4,BC=2,CC1=3,BE=1,AEC1F为平行四边形.(1)求BF的长.(2)求点C到平面AEC1F的距离.【解析】(1)建立如图所示的空间直角坐标系,则D(0,0,0),B(2,4,0),A(2,0,0),C(0,4,0),E(2,4,1),C1(0,4,3),设F(0,0,z).因为四边形AEC1F为平行四边形,所以由=得,(-2,0,z)=(-2,0,2),所以z=2.所以F(0,0,2).所以=(-2,-4,2).于是||=2.即BF的长为2.(2)设n1为平面AEC1F的法向量,显然n1不垂直于平面ADF,故可设n1=(x,y,1),所以所以即所以又=(0,0,3),设与n1的夹角为α,则cosα===. 所以C到平面AEC1F的距离为d=||·cosα=3×=.【拓展延伸】用向量法求点面距离的方法与步骤8.(2014·石家庄高二检测)已知正方形ABCD的边长为1,PD⊥平面ABCD,且PD=1,E,F分别为AB,BC的中点.(1)求点D到平面PEF的距离.(2)求直线AC到平面PEF的距离.【解析】(1)建立以D为坐标原点,DA,DC,DP分别为x轴,y轴,z轴的空间直角坐标系,如图所示.则P(0,0,1),A(1,0,0),C(0,1,0),E(1,,0),F(,1,0),=,=,设平面PEF的法向量n=(x,y,z),则n·=0且n·=0,所以令x=2,则y=2,z=3,所以n=(2,2,3),所以点D到平面PEF的距离为d===,因此,点D到平面PEF的距离为.(2)因为=,所以点A到平面PEF的距离为d===,所以AC到平面PEF的距离为.【变式训练】如图所示,已知边长为4的正三角形ABC中,E,F分别为BC和AC的中点,PA⊥平面ABC,且PA=2,设平面α过PF且与AE平行,求AE与平面α间的距离.【解析】设,,的单位向量分别为e1,e2,e3,选取{e1,e2,e3}作为空间向量的一组基底,易知e1·e2=e2·e3=e3·e1=0,=2e1,=2e2,=2e3,=+=+=+(+)=-2e1+e2+e3,设n=x e1+y e2+e3是平面α的一个法向量,则n⊥,n⊥,所以⇒⇒所以n=e1+e3.所以直线AE与平面α间的距离为。

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.2 1.2.1 基本初等函数的导数公式

2014-2015学年高中数学(人教版选修2-2)配套课件第一章 1.2 1.2.1 基本初等函数的导数公式

在求导过程中出现指数或系数的运算失误.
跟 踪 训 练
解析:(1)y′=(x12)′=12x11;
1 4 -4 -5 (2)y′=x4′=(x )′=-4x =- 5; x
栏 目 链 接
3 3 2 3 (3)y′= x ′=(x )′= x- = . 5 5 5 5 2 5 x
3
5
跟 踪 训 练
栏 目 链 接
答案:D
自 测 自 评
2.曲线 y=-x3+3x2 在点(1,2)处的切线方程为( A.y=3x-1 C.y=3x+5 B.y=-3x+5 D.y=2x
)
栏 目 链 接
答案:A
自 测 自 评
3.下列结论中正确的个数为( )
1 2 ①y=ln 2,则 y′=0;②y= 2,则 y′|x=3=- ; x 27 1 ③y=2 ,则 y′=2 ln 2;④y=log2x,则 y′= . xln 2
栏 目 链 接
跟 踪 训 练
1 3. 若曲线 y=x- 在点 2 围成的三角形的面积为 18,则 a=( A.64 B.32
处的切线与两坐标轴 ) D.8
栏 目 链 接
C.16
分析:本试题主要考查求导法则、导数的几何意义、切线的 求法和三角形的面积公式,考查考生的计算能力.
跟 踪 训 练
解析: y′= 是 y- = , ∴k = ,切线方程
cos x y′=______
-sin x y′=______
栏 目 链 接
y′=______ axln a y′=______ ex
1 y′=______ xln a
1 y′=______ x
自 测 自 评
1.下列各式正确的是( 1 A.(logax)′=x C.(3x)′=3x

人教A版高中数学高二选修2-1试题 1.4.1全称量词与存在量词

人教A版高中数学高二选修2-1试题 1.4.1全称量词与存在量词

第一章 1.4第1课时一、选择题1.下列命题中全称命题的个数为()①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A.0B.1C.2D.3[答案] C[解析]①②是全称命题,③是特称命题.2.下列特称命题中真命题的个数是()①∃x∈R,x≤0;②至少有一个角,它既不是锐角,也不是钝角;③∃x∈{x|x是整数},x2是整数.A.0 B.1C.2 D.3[答案] D[解析]①②③都是真命题.3.下列命题中,是真命题且是全称命题的是()A.对任意的a,b∈R,都有a2+b2-2a-2b+2<0B.菱形的两条对角线相等C.∃x∈R,x2=xD.对数函数在定义域上是单调函数[答案] D[解析]A中含有全称量词“任意的”,因为a2+b2-2a-2b+2=(a-1)2+(b-1)2≥0;故是假命题.B、D在叙述上没有全称量词,但实际上是指“所有的”,菱形的对角线不一定相等,所以B是假命题,C是特称命题,故选D.4.下列命题中,真命题是()A.∃x∈R,2x>1 B.∃x∈R,x2-x+1≤0C.∀x∈R,lg x>0 D.∀x∈N*,(x-2)2>0[答案] A[解析]对于选项B,x2-x+1>0,错误;对于选项C,当x=110时,lg110=-1<0,错误;对于选项D ,当x =2时,(x -2)2=0,错误.故选A.5.下列命题中,真命题是( )A .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数B .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数C .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数D .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数 [答案] A[解析] 显然当m =0时,f (x )=x 2为偶函数,故选A. 6.下列命题中,既是真命题又是特称命题的是( ) A .存在一个角α,使得tan(90°-α)=tan α B .存在实数x 0,使得sin x 0=π2C .对一切α,sin(180°-α)=sin αD .sin(α-β)=sin αcos β-cos αsin β [答案] A[解析] ∵α=45°时,tan(90°-45°)=tan45°,∴A 为真命题,且为特称命题,故选A.B 中对∀x ∈R ,有sin x ≤1<π2;C 、D 都是全称命题.二、填空题7.(2014·高州四中质量检测)已知函数f (x )=x 2+mx +1,若命题“∃x 0>0,f (x 0)<0”为真,则m 的取值范围是________.[答案] (-∞,-2)[解析] 由条件知⎩⎪⎨⎪⎧-m 2>0,m 2-4>0,∴m <-2.8.四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x ∈Q ,x 2=2;③∃x ∈R ,x 2+1=0;④∃x ∈R,4x 2>2x -1+3x 2.其中真命题的个数为________.[答案] 0[解析] x 2-3x +2>0,Δ=(-3)2-4×2>0,∴当x >2或x <1时,x 2-3x +2>0才成立,∴①为假命题.当且仅当x =±2时,x 2=2,∴不存在x ∈Q ,使得x 2=2,∴②为假命题, 对∀x ∈R ,x 2+1≠0,∴③为假命题,4x 2-(2x -1+3x 2)=x 2-2x +1=(x -1)2≥0, 即当x =1时,4x 2=2x -1+3x 2成立, ∴④为假命题. ∴①②③④均为假命题.9.在R 上定义运算⊙:x ⊙y =x (1-y ).若对任意x ∈R ,不等式(x -a )⊙(x +a )<1恒成立,则实数a 的取值范围是________.[答案] (-12,32)[解析] 由x ⊙y =x (1-y ),得(x -a )⊙(x +a )=(x -a )(1-x -a )=-(x -a )[x -(1-a )]<1, 整理得x 2-x -a 2+a +1>0恒成立,则Δ=1-4(-a 2+a +1)=4a 2-4a -3<0,解得-12<a <32.三、解答题10.判断下列命题是否为全称命题或特称命题,若是,用符号表示,并判断其真假. (1)对任意实数α,有sin 2α+cos 2α=1; (2)存在一条直线,其斜率不存在;(3)对所有的实数a ,b ,方程ax +b =0都有唯一解; (4)存在实数x 0,使得1x 20-x 0+1=2.[解析] (1)是全称命题,用符号表示为“∀α∈R ,sin 2x +cos 2α=1”,是真命题. (2)是特称命题,用符号表示为“∃直线l ,l 的斜率不存在”,是真命题.(3)是全称命题,用符号表示为“∀a ,b ∈R ,方程ax +b =0都有唯一解”,是假命题. (4)是特称命题,用符号表示为“∃x 0∈R ,1x 20-x 0+1=2”,是假命题.一、选择题11.(2014·新课标Ⅰ理,9)不等式组⎩⎪⎨⎪⎧x +y ≥1x -2y ≤4的解集记为D .有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3,p 4:∃(x ,y )∈D ,x +2y ≤-1. 其中真命题是( )A .p 2,p 3B .p 1,p 4C .p 1,p 2D .p 1,p 3[答案] C[解析] 不等式组⎩⎪⎨⎪⎧x +y ≥1x -2y ≤4表示的平面区域如图所示.由⎩⎪⎨⎪⎧x +y =1,x -2y =4,得交点A (2,-1), ∵目标函数u =x +2y 的斜率k =-12,-1<-12<4,∴当直线x +2y =u 过A 时,u 取最小值0. 故选项p 1,p 2正确,所以选C.12.已知a ,b 是两个互相垂直的单位向量,且c·a =c·b =1,则对任意的正实数t ,|c +t a +1tb |的最小值是( )A .2B .2 2C .4D .4 2[答案] A[解析] ∵|a |=|b |=1,a ·b =0,a ·c =b ·c =1,∴c ·(a -b )=0,由a ·c =|a |·|c |·cos45°=22|c |=1得|c |=2,∵U =(|c +t a +1t b |)2=|c |2+t 2|a |2+1t 2|b |2+2t a ·c +2t b ·c +2a ·b =2+t 2+1t 2+2t +2t =(t +1t )2+2(t +1t ),令x =t +1t ,∵t >0,∴x ≥2,∴U =x 2+2x (x ≥2),∴当x =2时,U 取最小值4,∴选A.13.(2013·唐山高二检测)下列命题中,真命题是( ) A .∀x ∈R ,x 2≥xB .命题“若x =1,则x 2=1”的逆命题C .∃x 0∈R ,x 20≥x 0D.命题“若x≠y,则sin x≠sin y”的逆否命题[答案] C[解析]∵x2-x≥0的解为x≤0或x≥1,∴存在x0∈{x|x≤0或x≥1},使x20≥x0,故C 为真命题.14.下列命题中的假命题是()A.存在实数α和β,使cos(α+β)=cosαcosβ+sinαsinβB.不存在无穷多个α和β,使cos(α+β)=cosαcosβ+sinαsinβC.对任意α和β,使cos(α+β)=cosαcosβ-sinαsinβD.不存在这样的α和β,使cos(α+β)≠cosαcosβ-sinαsinβ[答案] B[解析]cos(α+β)=cosα·cosβ-sinα·sinβ,显然C、D为真;sinα·sinβ=0时,A为真;B为假.故选B.二、填空题15.下列特称命题是真命题的序号是________.①有些不相似的三角形面积相等;②存在一实数x0,使x20+x0+1<0;③存在实数a,使函数y=ax+b的值随x的增大而增大;④有一个实数的倒数是它本身.[答案]①③④[解析]①为真命题,只要找出等底等高的两个三角形,面积就相等,但不一定相似;②中对任意x∈R,x2+x+1=(x+12+34>0,所以不存在实数x0,使x20+x0+1<0,故②为假2)命题;③中当实数a大于0时,结论成立,为真命题;④中如1的倒数是它本身,为真命题,故选①③④.16.下列语句:①能被7整除的数都是奇数;②|x-1|<2;③存在实数a使方程x2-ax +1=0成立;④等腰梯形对角线相等且不互相平分.其中是全称命题且为真命题的序号是________.[答案]④[解析]①是全称命题,但为假命题,②不是命题,③是特称命题.三、解答题17.判断下列命题的真假:(1)若a>0,且a≠1,则对任意实数x,a x>0;(2)∃T 0∈R ,使|sin(x +T 0)|=|sin x |; (3)∃x 0∈R ,x 20+1<0.[解析] 命题(1)为全称命题,根据指数函数的性质可知,该命题为真命题. 命题(2)是特称命题,存在T 0=π,使|sin(x +T 0)|=|sin x |,故该命题为真命题. 命题(3)是特称命题,因为对任意的x ∈R ,都有x 2+1>0,故该命题为假命题. 18.若x ∈[-2,2],不等式x 2+ax +3≥a 恒成立,求a 的取值范围.[解析] 设f (x )=x 2+ax +3-a ,则问题转化为当x ∈[-2,2]时,[f (x )]min ≥0即可. ①当-a 2<-2,即a >4时,f (x )在[-2,2]上单调递增,f (x )min =f (-2)=7-3a ≥0,解得a ≤73,又a >4,所以a 不存在.②当-2≤-a2≤2,即-4≤a ≤4时,f (x )min =f (-a 2)=12-4a -a24≥0,解得-6≤a ≤2.又-4≤a ≤4,所以-4≤a ≤2.③当-a2>2,即a <-4时,f (x )在[-2,2]上单调递减,f (x )min =f (2)=7+a ≥0,解得a ≥-7,又a <-4,所以-7≤a <4.综上所述,a 的取值范围是{a |-7≤a ≤2}.。

【全程复习方略】2014-2015学年高中数学 第二章 圆锥曲线与方程阶段复习课课件 新人教A版选修2-1

【全程复习方略】2014-2015学年高中数学 第二章 圆锥曲线与方程阶段复习课课件 新人教A版选修2-1

【方法技巧】 1.圆锥曲线的主要性质 圆锥曲线的主要性质包括范围、对称性、焦点、顶点、长短轴 (椭圆)、实虚轴(双曲线)、渐近线(双曲线)、离心率和准线 (抛物线).
2.“三法”应对离心率 (1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲 线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2) 以及 e c ,已知其中的任意两个参数,可以求其他的参数,这
【自主解答】(1)|PF1|+|PF2|=2a= 2 2, 所以 a 2,e c 2 , 所以 c 2 2 1,
a 2 2
所以b2=a2-c2=2-1=1,
x2 所以椭圆的标准方程为 y 2 1. 2
4.共轭双曲线 (1)双曲线与它的共轭双曲线有相同的渐近线. (2)双曲线与它的共轭双曲线有相同的焦距.
2 2 2 2 x y x y (3)与 2 2 1 具有相同渐近线的双曲线系方程为 2 2 a b a b
k(k 0)
5.抛物线方程的设法 对顶点在原点,对称轴为坐标轴的抛物线方程,一般可设为 y2=ax(a≠0)或x2=ay(a≠0).
阶段复习课 第 二 章
【答案速填】
x 2 y2 1(a>b>0) a 2 b2 y2 x 2 ② 2 2 1(a>b>0) a b
① ③(〒a,0)(0,〒b)或(0,〒a),(〒b,0) ④2a ⑦2c ⑤2b ⑧ ⑥(-c,0),(c,0)
c a
x 2 y2 ⑨ 2 2 1(a, b>0) a b
解决.
2 2 x y 【补偿训练】(2014·长沙高二检测)过双曲线C: 2 2 1 a b
(a>0,b>0)的左焦点F1(-2,0),右焦点F2(2,0)分别作x轴的

2014-2015学年 高中数学 人教A版选修2-2 第一章导数及其应用课后作业

2014-2015学年 高中数学 人教A版选修2-2   第一章导数及其应用课后作业

)
12.若函数 f(x)=ax2+c,且 f′(1)=2,求 a 的值.
A.1
B.-1
1 C. 2
8.若曲线 y=2x2-4x+P 与直线 y=1 相切,则 P=________. π 9.设 P 为曲线 C:y=x2+2x+3 上的点,且曲线 C 在点 P 处的切线倾斜角的范围为 0,4,则点 P 横坐标 三、探究与拓展 13.若一物体运动方程如下:(位移单位:m,时间单位:s) 2 t≥3 ① 3t +2 s= 2 29+3t-3 0≤t<3 ② 求: (1)物体在 t∈[3,5]内的平均速度; (2)物体的初速度 v0; (3)物体在 t=1 时的瞬时速度. 的取值范围为________. 10.求过点 P(-1,2)且与曲线 y=3x2-4x+2 在点 M(1,1)处的切线平行的直线.
一、基础过关 1.当自变量从 x0 变到 x1 时,函数值的增量与相应自变量的增量之比是函数 A.在[x0,x1]上的平均变化率 C.在 x1 处的变化率 B.在 x0 处的变化率
D.以上都不对 ( D.7+2(Δx)2 ) ) 三、探究与拓展 13.巍巍泰山为我国的五岳之首,有“天下第一山”之美誉,登泰山在当地有“紧十八,慢十八,不紧不慢 又十八”的俗语来形容爬十八盘的感受,下面是一段登山路线图.同样是登山,但是从 A 处到 B 处会感觉比 较轻松,而从 B 处到 C 处会感觉比较吃力.想想看,为什么?你能用数学语言来量化 BC 段曲线的陡峭程度 吗?
11.已知抛物线 y=x2+4 与直线 y=x+10.求: (1)它们的交点; (2)抛物线在交点处的切线方程.
2
6.过曲线 y=f(x)=x2+1 上两点 P(1,2)和 Q(1+Δx,2+Δy)作曲线的割线,当 Δx=0.1 时,割线的斜率 k= ________. 二、能力提升 7.甲、乙二人跑步路程与时间关系如右图所示,则________跑得快. 8.将半径为 R 的球加热,若半径从 R=1 到 R=m 时球的体积膨胀 28π 率为 ,则 m 的值为________. 3 1 9. 在 x=1 附近, 取 Δx=0.3, 在四个函数①y=x, ②y=x2, ③y=x3, ④y= 中, 平均变化率最大的是________. x π π π 10.求函数 y=sin x 在 0 到 之间和 到 之间的平均变化率,并比较它们的大小. 6 3 2

高中数学人教A版选修2-1 (1.4)全称命题与特称命题

高中数学人教A版选修2-1 (1.4)全称命题与特称命题

练习:写出下列命题的否定,并判断其真假: (1)一切分数都是有理数; (2)有些三角形是锐角三角形; (3)∃x∈R, x²+x=x+2; (4)∀x∈R, 2x+4≥0. (5)∀x∈R, x²>0; (6)∃x∈R, x²=1; (7)∃x∈R, 是方程x²-3x+2=0的根.
一般地,对于含有一个量词的全称命题的否定, 有下面的结论: 全称命题 它的否定 一般地,对于含有一个量词的特称命题的否定,有下
写出下列命题的否定: (1)有些实数的绝对值是正数; (2)有些平行四边形是菱形; (3) ∃x0∈R, x0²+1<0. (4)所有能被3整除的整数都是奇数; (5)对任意x∈Z, x²的个位数字不等于3.
这些命题和它们的否定在形式上有什么变化?
例题
例3 写出下列特称命题的否定,并判断其真假: (1)p:∃x0∈R, x0²+2x0+2≤0; (2)p:有的三角形是等边三角形; (3)p:有一个素数含三个正因数. (4)q:至少有一个实数x,使x³+1=0 (5)r:任意两个等边三角形都是相似的; (6)s:∃x0∈R, x0²+2x0+2=0.
些”、“有一个”、“对某个”、“有的”在逻 辑中通常叫做存在量词。 表示: 用符号“∃”表示,
2.特称命题及表示:
定义: 含有存在量词的命题,叫做特称命题. 表示:特称命题“存在M中的一个x,使p(x)成立”可用
符号简记为∃x∈M,p(x). 读作:“存在一个x属于M,使p(x)成立”.
例如: 命题 (1)有的平行四边形是菱形;
关系(3: )在(1)的基础上,用短语“存在一个”对变量x的 取值进行限定,使(3)变成了可以判断真假的语句;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 1.4第2课时一、选择题1.命题“存在一个无理数,它的平方是有理数”的否定是()A.任意一个有理数,它的平方是有理数B.任意一个无理数,它的平方不是有理数C.存在一个有理数,它的平方是有理数D.存在一个无理数,它的平方不是有理数[答案] B[解析]量词“存在”否定后为“任意”,结论“它的平方是有理数”否定后为“它的平方不是有理数”,故选B.2.(2014·福州市八县联考)命题“有些实数的绝对值是正数”的否定是()A.∀x∈R,|x|>0B.∃x0∈R,|x0|>0C.∀x∈R,|x|≤0 D.∃x0∈R,|x0|≤0[答案] C[解析]由词语“有些”知原命题为特称命题,故其否定为全称命题,因为命题的否定只否定结论,所以选C.3.(2014·甘肃临夏中学期中)命题“存在x∈Z,使x2+2x+m≤0成立”的否定是() A.存在x∈Z,使x2+2x+m>0B.不存在x∈Z,使x2+2x+m>0C.对于任意x∈Z,都有x2+2x+m≤0D.对于任意x∈Z,都有x2+2x+m>0[答案] D[解析]特称命题的否定是全称命题.4.(2014·贵州湄潭中学期中)已知命题p:∀x∈R,2x>0,则()A.¬p:∃x∈R,2x<0 B.¬p:∀x∈R,2x<0C.¬p:∃x∈R,2x≤0 D.¬p:∀x∈R,2x≤0[答案] C[解析]全称命题的否定为特称命题,“>”的否定为“≤”,故选C.5.(2014·辽宁师大附中期中)下列命题错误的是()A.命题“若x2-3x+2=0,则x=1”的逆否命题为“若x≠1,则x2-3x+2≠0”B.若p∧q为假命题,则p、q均为假命题C.命题p:存在x0∈R,使得x20+x0+1<0,则¬p:任意x∈R,都有x2+x+1≥0 D.“x>2”是“x2-3x+2>0”的充分不必要条件[答案] B[解析]由逆否命题“条件的否定作结论,结论的否定为条件”知A为真命题;p∧q为假命题时,p假或q假,故B错误;由“非”命题的定义知C正确;∵x>2时,x2-3x+2>0成立,x2-3x+2>0时,x<1或x>2,∴D正确.6.已知命题“∀a,b∈R,如果ab>0,则a>0”,则它的否命题是()A.∀a,b∈R,如果ab<0,则a<0B.∀a,b∈R,如果ab≤0,则a≤0C.∃a,b∈R,如果ab<0,则a<0D.∃a,b∈R,如果ab≤0,则a≤0[答案] B[解析]条件ab>0的否定为ab≤0;结论a>0的否定为a≤0,故选B.二、填空题7.命题“存在x∈R,使得x2+2x+5=0”的否定是________.[答案]任意x∈R,使得x2+2x+5≠0[解析]特称命题的否定是全称命题,将“存在”改为“任意”,“=”改为“≠”.8.命题“过平面外一点与已知平面平行的直线在同一平面内”的否定为________.[答案]过平面外一点与已知平面平行的直线不都在同一平面内[解析]原命题为全称命题,写其否定是要将全称量词改为存在量词.9.给出下列三个命题:①5≥5;②存在x∈R,使得2x+1=3;③对任意的x∈R,有x2+1<0,其中为真命题的是______________________.[答案]①②[解析]对于①,由5≥5成立,故①为真;对于②来说,因为2x+1=3,所以x=1.所以存在x∈R,使2x+1=3,故②为真命题;对于③,因为x2+1>0恒成立,则不存在x∈R,使得x2+1<0,故③为假命题,所以①②为真命题.三、解答题10.写出下列命题的否定并判断真假:(1)不论m 取何实数,方程x 2+x -m =0必有实数根;(2)所有末位数字是0或5的整数都能被5整除;(3)某些梯形的对角线互相平分;(4)被8整除的数能被4整除.[解析] (1)这一命题可以表述为p :“对所有的实数m ,方程x 2+x -m =0都有实数根”,其否定是¬p :“存在实数m ,使得x 2+x -m =0没有实数根”,注意到当Δ=1+4m <0,即m <-14时,一元二次方程没有实根,因此¬p 是真命题. (2)命题的否定是:存在末位数字是0或5的整数不能被5整除,是假命题.(3)命题的否定:任一个梯形的对角线都不互相平分,是真命题.(4)命题的否定:存在一个数能被8整除,但不能被4整除,是假命题.一、选择题11.已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( )A .p ∧qB .(¬p )∧qC .p ∧(¬q )D .(¬p )∧(¬q )[答案] B[解析] 由20=30知p 为假命题;令h (x )=x 3+x 2-1,则h (0)=-1<0,h (1)=1>0,∴方程x 3+x 2-1=0在(-1,1)内有解,∴q 为真命题,∴(¬p )∧q 为真命题,故选B.12.(2014·福建厦门六中期中)下列命题错误..的是( ) A .命题“若m >0,则方程x 2+x -m =0有实数根”的逆否命题为:“若方程x 2+x -m =0无实数根,则m ≤0”.B .“x =1”是“x 2-3x =2=0”的充分不必要条件.C .对于命题p :∃x ∈R ,使得x 2+x +1<0,则¬p :∀x ∈R ,均有x 2+x +1≥0.D .若p ∧q 为假命题,则p ,q 均为假命题.[答案] D[解析] 由逆否命题的定义知A 正确;x =1时,x 2-3x +2=0成立,但x 2-3x +2=0时,不一定有x =1,故B 正确;由特称命题的否定为全称命题知C 正确;p 与q 只要有一个为假命题,p ∧q 为假命题,故D 错.13.(2014·抚顺二中期中)下列说法正确..的是( ) A .命题“∀x ∈R ,e x >0”的否定是“∃x ∈R ,e x >0”B .命题“已知x 、y ∈R ,若x +y ≠3,则x ≠2或y ≠1”是真命题C .“x 2+2x ≥ax 在x ∈[1,2]上恒成立”⇔“(x 2+2x )min ≥(ax )max 在x ∈[1,2]上恒成立”D .命题“若a =-1,则函数f (x )=ax 2+2x -1只有一个零点”的逆命题为真命题[答案] B[解析] A 显然错误;若x =2且y =1,则x +y =3,∴B 正确;如图,在x ∈[1,2]时,y =x 2+2x 的图象总在y =ax 的图象的上方,但y =x 2+2x (1≤x ≤2)的最小值不大于y =ax (1≤x ≤2)的最大值,故C 错;若f (x )=ax 2+2x -1只有一个零点,则a =0或a =-1,故原命题的逆命题为假命题,∴D 错误.14.(2014·海南省文昌市检测)下列命题中是假命题...的是( ) A .∃m ∈R ,使f (x )=(m -1)·xm 2-4m +3是幂函数,且在(0,+∞)上单调递减B .∀a >0,函数f (x )=ln 2x +ln x -a 有零点C .∃α,β∈R ,使cos(α+β)=cos α+sin βD .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数[答案] D[解析] ∵f (x )为幂函数,∴m -1=1,∴m =2,f (x )=x -1,∴f (x )在(0,+∞)上递减,故A真;∵y =ln 2x +ln x 的值域为[-14,+∞),∴对∀a >0,方程ln 2x +ln x -a =0有解,即f (x )有零点,故B 真;当α=π6,β=2π时,cos(α+β)=cos α+sin β成立,故C 真;当φ=π2时,f (x )=sin(2x +φ)=cos2x 为偶函数,故D 为假命题.二、填空题15.已知命题p :∀x ∈R ,x 2-x +14<0,命题q :∃x 0∈R ,sin x 0+cos x 0=2,则p ∨q ,p ∧q ,¬p ,¬q 中是真命题的有________.[答案] p ∨q ¬p[解析] ∵x 2-x +14=(x -12)2≥0,故p 是假命题,而存在x 0=π4,使sin x 0+cos x 0=2,故q 是真命题,因此p ∨q 是真命题,¬p 是真命题.16.(2014·福州市八县联考)已知命题p :m ∈R ,且m +1≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立,若p ∧q 为假命题且p ∨q 为真命题,则m 的取值范围是________.[答案] m ≤-2或-1<m <2[解析] p :m ≤-1,q :-2<m <2,∵p ∧q 为假命题且p ∨q 为真命题,∴p 与q 一真一假,当p 假q 真时,-1<m <2,当p 真q 假时,m ≤-2,∴m 的取值范围是m ≤-2或-1<m <2.17.命题“∃x ∈R ,使x 2+ax +1<0”为真命题,则实数a 的取值范围是________.[答案] a >2或a <-2[解析] 由于∃x ∈R ,使x 2+ax +1<0,又二次函数f (x )=x 2+ax +1开口向上,故Δ=a 2-4>0,所以a >2或a <-2.三、解答题18.(2014·马鞍山二中期中)设命题p :f (x )=2x -m在区间(1,+∞)上是减函数;命题q :x 1,x 2是方程x 2-ax -2=0的两个实根,且不等式m 2+5m -3≥|x 1-x 2|对任意的实数a ∈[-1,1]恒成立,若(¬p )∧q 为真,试求实数m 的取值范围.[解析] 对命题p :x -m ≠0,又x ∈(1,+∞),故m ≤1,对命题q :|x 1-x 2|=(x 1+x 2)2-4x 1x 2=a 2+8对a ∈[-1,1]有a 2+8≤3,∴m 2+5m -3≥3⇒m ≥1或m ≤-6.若(¬p )∧q 为真,则p 假q 真,∴⎩⎪⎨⎪⎧m >1,m ≥1或m ≤-6,∴m >1.。

相关文档
最新文档