初一数学人教下册镶嵌习题三
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
镶嵌习题三
典型例题
【例1】 商店出售下列形状的地砖:①正方形;②长方形;③正五边形;④正六边形;⑤正八边形.如果要求只选购其中一种地砖镶嵌平面,则可供选择的地砖有( ) A.1种 B.2种 C.3种 D.4种
【解析】 判断一个多边形能不能用来作平面镶嵌,就是看这个多边形的内角能否组成360°若能,则可以用来作平面镶嵌,否则就不能.正方形和长方形的内角为90°,4个内角刚好构成360°,所以①②可以用来作平面镶嵌;正五边形的内角为108°,它不可能构成360°角,因此正五边形不能用来平面镶嵌;正六边形的内角为120°,三个内角可拼成360°角,所以正六边形可用来平面镶嵌;同样正八边形不能用作平面镶嵌. 【答案】 C
【例2】 如图7-65是某广场的一部分,地面的中央是一块正六边形的地砖,周围用正三角形和正方形的大理石地砖密铺,从里向外共铺了12层(不包括中央的正六边形地砖),每一层的外边界都围成了一个多边形,若中央正六边形地砖的边长为0.5 m ,则第12层的外边界所围成的多边形的周长是_____________.
图7-64
【解析】 这类题一定要通过图形寻求数字规律.各层的镶嵌实际上只有两种(正三角形和正方形)镶嵌,从图形上看到每一层都有6个正方形,由第1层开始,外边界依次有(1×6)个,(2×6)个,…,(n ×6)个正三角形的边,所以第12层外边界应是5个正方形和(12×6)个正三角形的边围成的多边形.所以第12层处边界所围成的多边形的周长为6×0. 5+12×6×0.5=39(m). 【答案】 39m
【例3】 某单位的地板由三种正多边形铺成,设这三种多边形的边数为m 、n 、p 求
p
n m 1
11++的值.
【解析】 求出这三种正多边形的每个内角的度数,再根据三者的和为360°求解. 【答案】依题意,得m 边形的每个内角为:m
m ︒
•-180)2(;
n 边形的每个内角为:
n
n ︒
•-180)1(;
p 边形的每个内角为:
p
p ︒
•-180)1(.
因为
m m ︒•-180)2(+n
n ︒•-180)1(+p p ︒
•-180)1(=360°.
所以
2
1
111=++p n m . 其正整数解可列表如下:
n 1 n 2 n 3 3 7 42 3 8 24 3 9[ 18 3 10 15 3 12 12 4 6 12 4 8 8 5 5 10 6
6
6
根据上表,我们可以得到一些用三种不同正多边形镶嵌的图案. 总分100分 时间60分钟 成绩评定____________ 一、填空题(每题5分,共50分) 课前热身
1. 正五边形、正六边形、正八边形的每个内角的度数分别是_______. 答案:108°、120°、135°
2.形状、大小完全相同的任意三角形、四边形能否单独作镶嵌_______(填“能”或“不能”) 答案:能 课上作业
3.用任意三角形镶嵌平面时,同一顶点处应摆放_______个三角形;用任意四边形镶嵌平面
时,同一顶点处应摆放_______个四边形.
答案:6;414.(2010福建)只用同一种正多边形铺满地面,请你写出一种这样的正多边形;___________. 答案:正边三角形(或正四边形,正六边形)
5.通常情况下,用地砖及瓷砖铺设时,基本要求是______________.
答案:顶点角度和为360°,且相接处边长相等
6.图7-66是用四个大小一样的长方形和一个正方形镶嵌而成的,请利用图中正方形面积的不同表示方法写出一个关于(a-b)的等式_________.
图7-66
答案:(a+b)2=(a-b)2+4ab
课下作业
7.用两种正多边形铺成的图案,这两种正多边形分别是_____________________.
答案:正三角形和正六边形或正三角形和正方形
8.如图7-67,用8块相同的长方形地砖镶嵌成一个大长方形,则每个长方形地砖的面积是____.
图7-67
答案:300 cm2
9.某体育馆用大小相同的长方形木块镶嵌地面,第1次铺2块,如图7-68a;第2次把第1次铺的完全围起来,如图7-68b;第3次把第2次铺的完全围起来,如图7-68c;…依此方法,第n次铺完后,用字母n表示第n次镶嵌所使用的木块块数为____________.
图7-68
答案:8n-6
10.图7-9中几个图形都是由同一个长方形变化而来的,只用其中一种图形来铺地板,不能选用的个数为___________.
图7-69
答案:0
二、选择题(每题5分,共10分)
模拟在线
11.(2010福建)用以下图形为基本单位,不能进行密铺(铺满地面)的是( )
A.等边三角形
B.矩形
C.正五边形
D.正六边形
答案:C
12.(2010湖北)阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖镶嵌地面,在每个顶点的周围正方形、正三角形地砖的块数可以分别是( )
A.2,2
B.2,3
C.1,2
D.2,1
答案:B
三、解答题(13题15分,14题25分,共40分)
13.某生产厂家因工作失误,使一批正方形瓷砖的一个角都受到了同样的损坏如图7-70所示,在有人决定将这批瓷砖全部报废时,一位技术员设计了一个合理的方案,使这批瓷砖经过简单加工后又能铺地用了,请画图表示这位技术员的设计方案.
图7-70
答案:如图所示(提供两种设计方案):
第13题图
14.我们常用各种多边形地砖铺砌成美丽的图案,也就是说,使用给定的某些多边形,能够拼成一个平面图形,既不留一丝空白,又不互相重叠,这在几何里叫做平面密铺(镶嵌).我
们知道,当围绕一点拼在一起的几个多边形的内角和为360°时,就能够拼成一个平面图形,某校研究性学习小组研究平面密铺的问题,其中在探究用两种边长相等的正多边形做平面密铺的情形时用了以下方法;
如果用x个正三角形、y个正六边形进行平面密铺,可得60°×x+120°×y=360°,化简得x+2y=6.因为x、y都是正整数,所以只有当x=2,y=2或x=4,y=1时上式才成立,即2个正三角形和2个正六边形或4个正三角形和1个正六边形可以拼成一个无缝隙、不重叠的平面图形,如图7-71(1)、(2)、(3).
①请你依照上面的方法研究用边长相等的x个正三角形和y个正方形进行平面密铺的情形,并按图(4)中给出的正方形和正三角形的大小大致画出密铺后的图形的示意图(只要画出一种图形即可);
②如用形状、大小相同的如图(5)方格纸中的三角形,能进行平面密铺吗?若能,请在方格纸中画出密铺的设计图.
图7-71
答案:①用x个正三角形,y个正方形进行镶嵌,可得60°·x+90°·y=360°,即2x+3y=12因为.x、y都是正整数,所以只有当x=3,y=2时上式才成立,即用三个正三角形和两个正方形可以进行平面密铺.
拼法如图a、b[
②正确图形如图c所示.
第14题图。