柳林县第三高级中学2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
柳林县第三高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 在三棱柱111ABC A B C -中,已知1AA ⊥平面1=22
ABC AA BC BAC π
=∠=,,,此三棱
柱各个顶点都在一个球面上,则球的体积为( ) A .
323π B .16π C.253π D .312
π
2. 函数f (x )=e ln|x|+的大致图象为( )
A .
B .
C .
D .
3. 若函数()()()()()1cos sin cos sin 3sin cos 412f x x x x x a x x a x =
-++-+-在02π⎡⎤
-⎢⎥⎣⎦
,上单调递增,则实数的取值范围为( )
A .117⎡⎤⎢⎥⎣⎦,
B .117⎡
⎤-⎢⎥⎣
⎦,
C.1
(][1)7
-∞-+∞,,
D .[1)+∞, 4. 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有
( ) A .90种 B .180种
C .270种
D .540种
5. 点P 是棱长为1的正方体ABCD ﹣A 1B 1C 1D 1的底面A 1B 1C 1D 1上一点,则的取值范围是( )
A .[﹣1,﹣]
B .[﹣,﹣]
C .[﹣1,0]
D .[﹣,0]
6. 某几何体的三视图如图所示,则它的表面积为( )
A .
B .
C .
D .
7. 执行如图的程序框图,如果输入的100N =, 则输出的x =( )
A .0.95
B .0.98
C .0.99
D .1.00
8. 二项式(x 2﹣)6的展开式中不含x 3项的系数之和为( ) A .20 B .24 C .30 D .36
9. 十进制数25对应的二进制数是( )
A .11001
B .10011
C .10101
D .10001
10.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 11.过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段|AF|=( ) A .1 B .2
C .3
D .4
12.若函数21,1,()ln ,1,
x x f x x x ⎧-≤=⎨>⎩则函数1
()32y f x x =-+的零点个数为( ) A .1 B .2 C .3 D .4
二、填空题
13.设p :f (x )=e x +lnx+2x 2+mx+1在(0,+∞)上单调递增,q :m ≥﹣5,则p 是q 的 条件. 14.在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 .
15.长方体1111ABCD A BC D -中,对角线1AC 与棱CB 、CD 、1CC 所成角分别为α、β、, 则222sin sin sin αβγ++= .
16.设f (x )是(x 2+
)6
展开式的中间项,若f (x )≤mx 在区间[
,]上恒成立,则实数m 的取值范
围是 .
17.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C
相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则= .
18.已知(x 2﹣
)n
)的展开式中第三项与第五项的系数之比为
,则展开式中常数项是 .
三、解答题
19.已知函数f (x )=e x ﹣ax ﹣1(a >0,e 为自然对数的底数). (1)求函数f (x )的最小值;
(2)若f (x )≥0对任意的x ∈R 恒成立,求实数a 的值.
20.在平面直角坐标系中,矩阵M 对应的变换将平面上任意一点P (x ,y )变换为点P (2x+y ,3x ).
(Ⅰ)求矩阵M 的逆矩阵M ﹣1
;
(Ⅱ)求曲线4x+y ﹣1=0在矩阵M 的变换作用后得到的曲线C ′的方程.
21.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)
的数据资料,计算得x i=80,y i=20,x i y i=184,x i2=720.
(1)求家庭的月储蓄对月收入的回归方程;
(2)判断月收入与月储蓄之间是正相关还是负相关;
(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.
22.(本小题满分12分)
如图长方体ABCD-A1B1C1D1中,AB=16,
BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=4,D1F=8,过点E,F,C的平面α与长方体的面相交,交线围成一个四边形.
(1)在图中画出这个四边形(不必说明画法和理由);
(2)求平面α将长方体分成的两部分体积之比.
23.已知函数f(x)=lnx﹣a(1﹣),a∈R.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)的最小值为0.
(i)求实数a的值;
(ii)已知数列{a n}满足:a1=1,a n+1=f(a n)+2,记[x]表示不大于x的最大整数,求证:n>1时[a n]=2.
24.已知平面直角坐标系xoy中的一个椭圆,它的中心在原点,左焦点为,右顶点为D(2,
0),设点A(1,).
(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA的中点M的轨迹方程;
(3)过原点O的直线交椭圆于B,C两点,求△ABC面积的最大值,并求此时直线BC的方程.
柳林县第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】
考点:组合体的结构特征;球的体积公式.
【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.
2.【答案】C
【解析】解:∵f(x)=e ln|x|+
∴f(﹣x)=e ln|x|﹣
f(﹣x)与f(x)即不恒等,也不恒反,
故函数f(x)为非奇非偶函数,其图象不关于原点对称,也不关于y轴对称,
可排除A,D,
当x→0+时,y→+∞,故排除B
故选:C.
3.【答案】D
【解析】
考点:1、导数;2、单调性;3、函数与不等式.
4.【答案】D
【解析】解:三所学校依次选医生、护士,不同的分配方法共有:C31C62C21C42=540种.
故选D.
5.【答案】D
【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,
建立空间直角坐标系.
则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.
∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),
∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,
由二次函数的性质可得,当x=y=时,取得最小值为﹣;
故当x=0或1,且y=0或1时,取得最大值为0,
则的取值范围是[﹣,0],
故选D .
【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.
6. 【答案】 A
【解析】解:由三视图知几何体为半个圆锥,且圆锥的底面圆半径为1,高为2,
∴母线长为
,
圆锥的表面积S=S
底面+S 侧面=×π×12
+×2×2+×π×
=2+
.
故选A .
【点评】本题考查了由三视图求几何体的表面积,解题的关键是判断几何体的形状及三视图的数据所对应的几何量.
7. 【答案】C 【解析】111112233499100x =
+++⋅⋅⋅+⨯⨯⨯⨯ 111111199(1)()()()2233499100100
=-+-+-+⋅⋅⋅+-=.
8. 【答案】A
【解析】解:二项式的展开式的通项公式为T r+1=•(﹣1)r •x 12﹣3r ,令12﹣3r=3,求得r=3,
故展开式中含x 3
项的系数为
•(﹣1)3=﹣20,而所有系数和为0,
不含x 3
项的系数之和为20,
故选:A .
【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
9.【答案】A
【解析】解:25÷2=12 (1)
12÷2=6 0
6÷2=3 0
3÷2=1 (1)
1÷2=0 (1)
故25(10)=11001(2)故选A.
【点评】本题考查的知识点是十进制与其它进制之间的转化,其中熟练掌握“除k取余法”的方法步骤是解答本题的关键.
10.【答案】B
【解析】
11.【答案】A
【解析】解:∵x2=2y,∴y′=x,
∴抛物线C在点B处的切线斜率为1,
∴B(1,),
∵x2=2y的焦点F(0,),准线方程为y=﹣,
∴直线l的方程为y=,
∴|AF|=1.
故选:A.
【点评】本题考查抛物线的简单性质,考查导数知识,正确运用抛物线的定义是关键.
12.【答案】D
【解析】
考点:函数的零点.
【易错点睛】函数零点个数的判断方法:(1)直接求零点:令0)(=x f ,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理法:要求函数在],[b a 上是连续的曲线,且0)()(<b f a f .还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)图象法:先把所求函数分解为两个简单函数,再画两个函数图象,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.
二、填空题
13.【答案】 必要不充分
【解析】解:由题意得f ′(x )=e x
++4x+m , ∵f (x )=e x +lnx+2x 2
+mx+1在(0,+∞)内单调递增,
∴f ′(x )≥0,即e x
++4x+m ≥0在定义域内恒成立,
由于+4x ≥4,当且仅当=4x ,即x=时等号成立,
故对任意的x ∈(0,+∞),必有e x
++4x >5
∴m ≥﹣e x
﹣﹣4x 不能得出m ≥﹣5
但当m ≥﹣5时,必有e x
++4x+m ≥0成立,即f ′(x )≥0在x ∈(0,+∞)上成立
∴p 不是q 的充分条件,p 是q 的必要条件,即p 是q 的必要不充分条件 故答案为:必要不充分
14.【答案】
.
【解析】解:过CD 作平面PCD ,使AB ⊥平面PCD ,交AB 与P ,
设点P 到CD 的距离为h ,
则有
V=×2×h
××2,
当球的直径通过AB 与CD 的中点时,h 最大为
2,
则四面体ABCD
的体积的最大值为.
故答案为:
.
【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力.属于基础题.
15.【答案】 【解析】
试题分析:以1AC 为斜边构成直角三角形:1111,,AC D AC B AC A ∆∆∆,由长方体的对角线定理可得:
2222
2
2
1111222111sin sin sin BC DC AC AC AC AC αβγ++=++222
121
2()2AB AD AA AC ++==
.
考点:直线与直线所成的角.
【方法点晴】本题主要考查了空间中直线与直线所成的角的计算问题,其中解答中涉及到长方体的结构特征、直角三角形中三角函数的定义、长方体的对角线长公式等知识点的考查,着重考查学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直角三角形中三角函数的定义和长方体的对角线长定理是解答的关键. 16.【答案】 [5,+∞) .
【解析】二项式定理.
【专题】概率与统计;二项式定理.
【分析】由题意可得f(x)=x3,再由条件可得m≥x2在区间[,]上恒成立,求得x2在区间[,]上的最大值,可得m的范围.
【解答】解:由题意可得f(x)=x6=x3.
由f(x)≤mx在区间[,]上恒成立,可得m≥x2
在区间[,]上恒成立,
由于x2在区间[,]上的最大值为5,故m≥5,
即m的范围为[5,+∞),
故答案为:[5,+∞).
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.
17.【答案】.
【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,
过F斜率为的直线与抛物线C相交于A,B两点,
直线AO与l相交于D,
∴直线AB的方程为y=(x﹣),l的方程为x=﹣,
联立,解得A(﹣,P),B(,﹣)
∴直线OA的方程为:y=,
联立,解得D(﹣,﹣)
∴|BD|==,
∵|OF|=,∴==.
故答案为:.
【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.18.【答案】45.
【解析】解:第三项的系数为C n2,第五项的系数为C n4,
由第三项与第五项的系数之比为可得n=10,则T i+1=C10i(x2)10﹣i(﹣)i=(﹣1)i C10i=,
令40﹣5r=0,解得r=8,故所求的常数项为(﹣1)8C108=45,
故答案为:45.
三、解答题
19.【答案】
【解析】解:(1)∵f(x)=e x﹣ax﹣1(a>0),
∴f'(x)=e x﹣a,
由f'(x)=e x﹣a=0得x=lna,
由f'(x)>0得,x>lna,此时函数单调递增,
由f'(x)<0得,x<lna,此时函数单调递减,
即f(x)在x=lna处取得极小值且为最小值,
最小值为f(lna)=e lna﹣alna﹣1=a﹣alna﹣1.
(2)若f(x)≥0对任意的x∈R恒成立,
等价为f(x)min≥0,
由(1)知,f(x)min=a﹣alna﹣1,
设g(a)=a﹣alna﹣1,
则g'(a)=1﹣lna﹣1=﹣lna,
由g'(a)=0得a=1,
由g'(x)>0得,0<x<1,此时函数单调递增,
由g'(x)<0得,x>1,此时函数单调递减,
∴g(a)在a=1处取得最大值,即g(1)=0,
因此g(a)≥0的解为a=1,
∴a=1.
20.【答案】
【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),
则即=,
∴M=.
又det(M)=﹣3,
∴M﹣1=;
(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),
则=M﹣1=,
即,
∴代入4x+y﹣1=0,得,
即变换后的曲线方程为x+2y+1=0.
【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题.21.【答案】
【解析】解:(1)由题意,n=10,=x
=8,=y i=2,
i
∴b==0.3,a=2﹣0.3×8=﹣0.4,
∴y=0.3x﹣0.4;
(2)∵b=0.3>0,
∴y与x之间是正相关;
(3)x=7时,y=0.3×7﹣0.4=1.7(千元).
22.【答案】 【解析】解:
(1)交线围成的四边形EFCG (如图所示). (2)∵平面A 1B 1C 1D 1∥平面ABCD , 平面A 1B 1C 1D 1∩α=EF , 平面ABCD ∩α=GC , ∴EF ∥GC ,同理EG ∥FC . ∴四边形EFCG 为平行四边形, 过E 作EM ⊥D 1F ,垂足为M , ∴EM =BC =10,
∵A 1E =4,D 1F =8,∴MF =4. ∴GC =EF =EM 2+MF 2=
102+42=116,
∴GB =
GC 2-BC 2=
116-100=4(事实上Rt △EFM ≌Rt △CGB ).
过C 1作C 1H ∥FE 交EB 1于H ,连接GH ,则四边形EHC 1F 为平行四边形,由题意知,B 1H =EB 1-EH =12-8=4=GB .
∴平面α将长方体分成的右边部分由三棱柱EHG -FC 1C 与三棱柱HB 1C 1GBC 两部分组成. 其体积为V 2=V 三棱柱EHG -FC 1C +V 三棱柱HB 1C 1GBC =S △FC 1C ·B 1C 1+S △GBC ·BB 1 =12×8×8×10+1
2
×4×10×8=480, ∴平面α将长方体分成的左边部分的体积V 1=V 长方体-V 2=16×10×8-480=800. ∴V 1V 2=800480=53
, ∴其体积比为53(3
5也可以).
23.【答案】
【解析】解:(Ⅰ)函数f (x )的定义域为(0,+∞),且f ′(x )=﹣=
.
当a ≤0时,f ′(x )>0,所以f (x )在区间(0,+∞)内单调递增;
当a>0时,由f′(x)>0,解得x>a;由f′(x)<0,解得0<x<a.
所以f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a).
综上述:a≤0时,f(x)的单调递增区间是(0,+∞);
a>0时,f(x)的单调递减区间是(0,a),单调递增区间是(a,+∞).
(Ⅱ)(ⅰ)由(Ⅰ)知,当a≤0时,f(x)无最小值,不合题意;
当a>0时,[f(x)]min=f(a)=1﹣a+lna=0,
令g(x)=1﹣x+lnx(x>0),则g′(x)=﹣1+=,
由g′(x)>0,解得0<x<1;由g′(x)<0,解得x>1.
所以g(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
故[g(x)]max=g(1)=0,即当且仅当x=1时,g(x)=0.
因此,a=1.
(ⅱ)因为f(x)=lnx﹣1+,所以a n+1=f(a n)+2=1++lna n.
由a1=1得a2=2于是a3=+ln2.因为<ln2<1,所以2<a3<.
猜想当n≥3,n∈N时,2<a n<.
下面用数学归纳法进行证明.
①当n=3时,a3=+ln2,故2<a3<.成立.
②假设当n=k(k≥3,k∈N)时,不等式2<a k<成立.
则当n=k+1时,a k+1=1++lna k,
由(Ⅰ)知函数h(x)=f(x)+2=1++lnx在区间(2,)单调递增,
所以h(2)<h(a k)<h(),又因为h(2)=1++ln2>2,
h()=1++ln<1++1<.
故2<a k+1<成立,即当n=k+1时,不等式成立.
根据①②可知,当n≥3,n∈N时,不等式2<a n<成立.
综上可得,n>1时[a n]=2.
【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题.
24.【答案】
【解析】解;(1)由题意可设椭圆的标准方程为,c为半焦距.
∵右顶点为D(2,0),左焦点为,
∴a=2,,.
∴该椭圆的标准方程为.
(2)设点P(x0,y0),线段PA的中点M(x,y).
由中点坐标公式可得,解得.(*)
∵点P是椭圆上的动点,∴.
把(*)代入上式可得,可化为.
即线段PA的中点M的轨迹方程为一焦点在x轴上的椭圆.
(3)①当直线BC的斜率不存在时,可得B(0,﹣1),C(0,1).
∴|BC|=2,点A到y轴的距离为1,∴=1;
②当直线BC的斜率存在时,设直线BC的方程为y=kx,B(x1,y1),C(﹣x1,﹣y1)(x1<0).
联立,化为(1+4k2)x2=4.解得,
∴.
∴|BC|==2=.
又点A到直线BC的距离d=.
∴==,
∴==,
令f(k)=,则.
令f′(k)=0,解得.列表如下:
又由表格可知:当k=时,函数f(x)取得极小值,即取得最大值2,即.
而当x→+∞时,f(x)→0,→1.
综上可得:当k=时,△ABC的面积取得最大值,即.
【点评】熟练掌握椭圆的标准方程及其性质、中点坐标公式及“代点法”、分类讨论的思想方法、直线与椭圆相交问题转化为直线的方程与椭圆的方程联立解方程组、两点间的距离公式、点到直线的距离公式、三角形的面积计算公式、利用导数研究函数的单调性及其极值.。