江山市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江山市第一中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1.
设实数
,则a 、b 、c 的大小关系为( )
A .a <c <b
B .c <b <a
C .b <a <c
D .a <b <c
2. 若关于x 的方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,且满足x 1<x 2<x 3,则a 的取值范围为( ) A .a
>
B
.﹣
<a <1 C .a <﹣1
D .a >﹣1
3. 已知U=R ,函数y=ln (1﹣x )的定义域为M ,集合N={x|x 2﹣x <0}.则下列结论正确的是( ) A .M ∩N=N B .M ∩(∁U N )=∅ C .M ∪N=U D .M ⊆(∁U N )
4. 用反证法证明命题:“已知a 、b ∈N *,如果ab 可被5整除,那么a 、b 中至少有一个能被5整除”时,假
设的内容应为( )
A .a 、b 都能被5整除
B .a 、b 都不能被5整除
C .a 、b 不都能被5整除
D .a 不能被5整除 5. 已知实数x ,y
满足约束条件,若y ≥kx ﹣3恒成立,则实数k 的数值范围是( )
A .[
﹣
,0]
B .[0
,
] C .(﹣∞,0]∪
[
,+∞)
D .(﹣∞
,﹣
]∪[0,+∞)
6. 函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)
7. 已知x ∈R ,命题“若x 2>0,则x >0”的逆命题、否命题和逆否命题中,正确命题的个数是( ) A .0
B .1
C .2
D .3
8. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )
A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定
B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定
C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定
D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定
9. 函数f (x )
=,则f (﹣1)的值为( )
A .1
B .2
C .3
D .4
10.已知等差数列的公差且
成等比数列,则( )
A .
B .
C .
D .
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
11.已知菱形ABCD 的边长为3,∠B=60°,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( ) A .15π B
.
C
.
π
D .6π
12.f
()
=,则f (2)=( ) A .3
B .1
C .2
D
.
二、填空题
13.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数
①f (x )=3x+1 ②f (x )=
()x+1 ③f (x )=x 2+1 ④f (x )
=
其中是“H 函数”的有 (填序号)
14
.向量=(1,2,﹣2
),=(﹣3,x ,y
),且
∥,则x ﹣y= .
15.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= . 16.△ABC 中,,BC=3,
,则∠C=
.
17.直线l 1和l 2是圆x 2+y 2=2的两条切线,若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于 _________ 。
18.过抛物线C :y 2=4x 的焦点F 作直线l 交抛物线C 于A ,B ,若|AF|=3|BF|,则l 的斜率是 .
三、解答题
19.本小题满分10分选修41-:几何证明选讲
如图,ABC ∆是⊙O 的内接三角形,PA 是⊙O 的切线,切点为A ,PB 交AC 于点E ,交⊙O 于点D ,
PE PA =,︒=∠45ABC ,1=PD ,8=DB .
Ⅰ求ABP ∆的面积; Ⅱ求弦AC 的长.
20.已知二次函数f (x )=x 2+2bx+c (b ,c ∈R ).
(1)若函数y=f (x )的零点为﹣1和1,求实数b ,c 的值;
(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.
21.已知p:2x2﹣3x+1≤0,q:x2﹣(2a+1)x+a(a+1)≤0
(1)若a=,且p∧q为真,求实数x的取值范围.
(2)若p是q的充分不必要条件,求实数a的取值范围.
22.如图,四边形ABCD是圆内接四边形,BA、CD的延长线交于点P,且AB=AD,BP=2BC
(Ⅰ)求证:PD=2AB;
(Ⅱ)当BC=2,PC=5时.求AB的长.
23.(本题满分12分)已知数列{a n}满足a1=1,a n+1=2a n+1.
(1)求数列{a n}的通项公式;
(2)令b n=n(a n+1),求数列{b n}的前n项和T n.
24.(本小题满分12分) 已知函数21()x f x x +=
,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭
(N n *
∈).
(1)求数列{}n a 的通项公式;
(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和n T .
【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.
江山市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)
一、选择题
1.【答案】A
【解析】解:∵,b=20.1>20=1,0<<0.90=1.
∴a<c<b.
故选:A.
2.【答案】B
【解析】解:由x3﹣x2﹣x+a=0得﹣a=x3﹣x2﹣x,
设f(x)=x3﹣x2﹣x,则函数的导数f′(x)=3x2﹣2x﹣1,
由f′(x)>0得x>1或x<﹣,此时函数单调递增,
由f′(x)<0得﹣<x<1,此时函数单调递减,
即函数在x=1时,取得极小值f(1)=1﹣1﹣1=﹣1,
在x=﹣时,函数取得极大值f(﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,
要使方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,
则﹣1<﹣a<,
即﹣<a<1,
故选:B.
【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.3.【答案】A
【解析】解:由1﹣x>0,解得:x<1,
故函数y=ln(1﹣x)的定义域为M=(﹣∞,1),
由x2﹣x<0,解得:0<x<1,
故集合N={x|x2﹣x<0}=(0,1),
∴M∩N=N,
故选:A.
【点评】本题考察了集合的包含关系,考察不等式问题,是一道基础题.
4.【答案】B
【解析】解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除”的否定是“a,b都不能被5整除”.故选:B.
5.【答案】A
【解析】解:由约束条件作可行域如图,
联立,解得B(3,﹣3).
联立,解得A().
由题意得:,解得:.
∴实数k的数值范围是.
故选:A.
【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.
6.【答案】A
【解析】解:∵f(0)=﹣2<0,f(1)=1>0,
∴由零点存在性定理可知函数f(x)=3x+x﹣3的零点所在的区间是(0,1).
故选A
【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.
7.【答案】C
【解析】解:命题“若x2>0,则x>0”的逆命题是“若x>0,则x2>0”,是真命题;
否命题是“若x2≤0,则x≤0”,是真命题;
逆否命题是“若x≤0,则x2≤0”,是假命题;
综上,以上3个命题中真命题的个数是2.
故选:C
8.【答案】C
【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,
∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,
故选:C.
【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.
9.【答案】A
【解析】解:由题意可得f(﹣1)=f(﹣1+3)=f(2)=log22=1
故选:A
【点评】本题考查分度函数求值,涉及对数的运算,属基础题.
10.【答案】A
【解析】
由已知,,成等比数列,所以,即
所以,故选A
答案:A
11.【答案】A
【解析】解:如图所示,设球心为O,在平面ABC中的射影为F,E是AB的中点,OF=x,则CF=,EF=
R2=x2+()2=(﹣x)2+()2,
∴x=
∴R2=
∴球的表面积为15π.
故选:A.
【点评】本题考查球的表面积,考查学生的计算能力,确定球的半径是关键.
12.【答案】A
【解析】解:∵f()=,
∴f(2)=f()==3.
故选:A.
二、填空题
13.【答案】①④
【解析】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0恒成立,
即函数f(x)是定义在R上的不减函数(即无递减区间);
①f(x)在R递增,符合题意;
②f(x)在R递减,不合题意;
③f(x)在(﹣∞,0)递减,在(0,+∞)递增,不合题意;
④f(x)在R递增,符合题意;
故答案为:①④.
14.【答案】﹣12.
【解析】解:∵向量=(1,2,﹣2),=(﹣3,x,y),且∥,
∴==,
解得x=﹣6,y=6,
x﹣y=﹣6﹣6=﹣12.
故答案为:﹣12.
【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目.
15.【答案】1.
【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,
f(x)是偶函数,所以f(﹣1)=f(1)=1.
故答案为:1.
16.【答案】
【解析】解:由,a=BC=3,c=,
根据正弦定理=得:
sinC==,
又C为三角形的内角,且c<a,
∴0<∠C<,
则∠C=.
故答案为:
【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断C的范围.
17.【答案】
【解析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,
且点A与圆心O之间的距离为OA==,
圆的半径为r=,
∴sinθ==,
∴cosθ=,tanθ==,
∴tan2θ===,
故答案为:。
18.【答案】.
【解析】解:∵抛物线C 方程为y 2
=4x ,可得它的焦点为F (1,0),
∴设直线l 方程为y=k (x ﹣1),
由
,消去x 得
.
设A (x 1,y 1),B (x 2,y 2),
可得y 1+y 2=,y 1y 2=﹣4①. ∵|AF|=3|BF|,
∴y 1+3y 2=0,可得y 1=﹣3y 2,代入①得﹣2y 2=,且﹣3y 22
=﹣4, 消去y
2得k 2
=3,解之得k=±
.
故答案为:.
【点评】本题考查了抛物线的简单性质,着重考查了舍而不求的解题思想方法,是中档题.
三、解答题
19.【答案】 【解析】Ⅰ
PA 是⊙O 的切线,切点为A ∴PAE ∠=45ABC ∠=︒
又∵PE PA = ∴PEA ∠=45︒,APE ∠=90︒
由于1=PD ,8=DB ,所以由切割线定理可知92
=⋅=PB PD PA ,既3==PA EP
故ABP ∆的面积为
12PA BP ⋅=272
.
Ⅱ在Rt APE ∆APE 中,由勾股定理得AE =
由于2=-=PD EP ED ,6=-=DE DB EB ,所以由相交弦定理得
EC EA EB ED ⋅=⋅ 12= 所以222
312==
EC ,故=AC .
20.【答案】
【解析】解:(1)∵﹣1,1是函数y=f (x )的零点,∴,解得b=0,c=﹣1.
(2)∵f (1)=1+2b+c=0,所以c=﹣1﹣2b .
令g (x )=f (x )+x+b=x 2+(2b+1)x+b+c=x 2+(2b+1)x ﹣b ﹣1,
∵关于x 的方程f (x )+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,
∴,即.解得<b <,
即实数b 的取值范围为(,).
【点评】本题考查了二次函数根与系数得关系,零点的存在性定理,属于中档题.
21.【答案】
【解析】解:p:,q:a≤x≤a+1;
∴(1)若a=,则q:;
∵p∧q为真,∴p,q都为真;
∴,∴;
∴实数x的取值范围为;
(2)若p是q的充分不必要条件,即由p能得到q,而由q得不到p;
∴,∴;
∴实数a的取值范围为.
【点评】考查解一元二次不等式,p∧q真假和p,q真假的关系,以及充分不必要条件的概念.
22.【答案】
【解析】(Ⅰ)证明:∵四边形ABCD是圆内接四边形,
∴∠PAD=∠PCB,
∴∠APD=∠CPB,
∴△APD∽△CPB,
∴=,
∵BP=2BC
∴PD=2AD,
∴AB=AD,
∴PD=2AB;
(Ⅱ)解:由题意,BP=2BC=4,设AB=t,由割线定理得PD•PC=PA•PB,
∴2t×5=(4﹣t)×4
∴t=,即AB=.
【点评】本题考查三角形相似的判断,考查割线定理,考查学生分析解决问题的能力,属于中档题.
23.【答案】解:(1)∵a n+1=2a n+1,
∴a n+1+1=2(a n+1),
又∵a1=1,
∴数列{a n+1}是首项、公比均为2的等比数列,
∴a n+1=2n,
∴a n =﹣1+2n ; 6分
(2)由(1)可知b n
=n (a n +1)
=n •2n =n •2n ﹣1
,
∴T n =1•20+2•2+…+n •2n ﹣1,
2T n =1•2+2•22…+(n ﹣1)•2n ﹣1+n •2n ,
错位相减得:﹣T n =1+2+22…+2n ﹣1﹣n •2n
=
﹣n •2n
=﹣1﹣(n ﹣1)•2n , 于是T n =1+(n ﹣1)•2n .
则所求和为12n
n - 6分
24.【答案】
【解析】(1)∵211()2x f x x x +=
=+,∴11
()2n n n
a f a a +==+. 即12n n a a +-=,所以数列{}n a 是以首项为2,公差为2的等差数列, ∴1(1)22(1)2n a a n d n n =+-=+-=. (5分) (2)∵数列{}n a 是等差数列,
∴1()(22)(1)22
n n a a n n n
S n n ++===+, ∴1111(1)1
n S n n n n ==-
++. (8分) ∴1231111n n T S S S S =++++
11111111()()()()1223341
n n =-+-+-++-+ 111n =-+1
n n =+. (12分)。