傅里叶分析报告教程(完整版)
傅里叶实验报告
一、实验目的1. 了解傅里叶变换的基本原理和方法。
2. 掌握傅里叶变换在信号处理中的应用。
3. 通过实验验证傅里叶变换在信号处理中的效果。
二、实验原理傅里叶变换是一种将信号从时域转换为频域的方法,它可以将一个复杂的信号分解为一系列不同频率的正弦波和余弦波的叠加。
傅里叶变换的基本原理是:任何周期信号都可以表示为一系列不同频率的正弦波和余弦波的叠加。
三、实验仪器与材料1. 实验箱2. 信号发生器3. 示波器4. 计算机及傅里叶变换软件四、实验步骤1. 设置信号发生器,产生一个正弦信号,频率为f1,幅度为A1。
2. 将信号发生器输出的信号输入到实验箱,通过示波器观察该信号。
3. 利用傅里叶变换软件对观察到的信号进行傅里叶变换,得到频谱图。
4. 改变信号发生器的频率,分别产生频率为f2、f3、f4的正弦信号,重复步骤2-3。
5. 分析不同频率信号的频谱图,观察傅里叶变换在信号处理中的应用。
五、实验数据与结果1. 当信号发生器频率为f1时,示波器显示的信号波形如图1所示。
图1:频率为f1的正弦信号波形2. 对频率为f1的正弦信号进行傅里叶变换,得到的频谱图如图2所示。
图2:频率为f1的正弦信号的频谱图从图2可以看出,频率为f1的正弦信号在频域中只有一个频率成分,即f1。
3. 重复步骤4,分别对频率为f2、f3、f4的正弦信号进行傅里叶变换,得到的频谱图分别如图3、图4、图5所示。
图3:频率为f2的正弦信号的频谱图图4:频率为f3的正弦信号的频谱图图5:频率为f4的正弦信号的频谱图从图3、图4、图5可以看出,不同频率的正弦信号在频域中分别只有一个频率成分,即对应的f2、f3、f4。
六、实验分析与讨论1. 傅里叶变换可以将信号从时域转换为频域,方便我们分析信号的频率成分。
2. 通过傅里叶变换,我们可以得到信号的频谱图,直观地观察信号的频率成分。
3. 实验结果表明,傅里叶变换在信号处理中具有重要作用,可以应用于信号分解、滤波、调制等领域。
傅里叶光学的实验报告(3篇)
第1篇一、实验目的1. 深入理解傅里叶光学的基本原理和概念。
2. 通过实验验证傅里叶变换在光学系统中的应用。
3. 掌握光学信息处理的基本方法,如空间滤波和图像重建。
4. 理解透镜的成像过程及其与傅里叶变换的关系。
二、实验原理傅里叶光学是利用傅里叶变换来描述和分析光学系统的一种方法。
根据傅里叶变换原理,任何光场都可以分解为一系列不同频率的平面波。
透镜可以将这些平面波聚焦成一个点,从而实现成像。
本实验主要涉及以下原理:1. 傅里叶变换:将空间域中的函数转换为频域中的函数。
2. 光学系统:利用透镜实现傅里叶变换。
3. 空间滤波:在频域中去除不需要的频率成分。
4. 图像重建:根据傅里叶变换的结果恢复原始图像。
三、实验仪器1. 光具座2. 氦氖激光器3. 白色像屏4. 一维、二维光栅5. 傅里叶透镜6. 小透镜四、实验内容1. 测量小透镜的焦距实验步骤:(1)打开氦氖激光器,调整光路使激光束成为平行光。
(2)将小透镜放置在光具座上,调节光屏的位置,观察光斑的会聚情况。
(3)当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
2. 利用夫琅和费衍射测光栅的光栅常数实验步骤:(1)调整光路,使激光束通过光栅后形成衍射图样。
(2)测量衍射图样的间距,根据dsinθ = kλ 的关系式,计算出光栅常数 d。
3. 傅里叶变换光学系统实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在光栅后放置傅里叶透镜,将光栅的频谱图像投影到屏幕上。
(3)在傅里叶透镜后放置小透镜,将频谱图像聚焦成一个点。
(4)观察频谱图像的变化,分析透镜的成像过程。
4. 空间滤波实验实验步骤:(1)将光栅放置在光具座上,调整光路使激光束通过光栅。
(2)在傅里叶透镜后放置空间滤波器,选择不同的滤波器进行实验。
(3)观察滤波后的频谱图像,分析滤波器对图像的影响。
五、实验结果与分析1. 通过测量小透镜的焦距,验证了透镜的成像原理。
傅里叶变换实验报告
傅里叶变换实验报告
一、首先将遥感图像从空间域转换到频率域,把RGB彩色图像转成一系列不同频率的二维正弦波傅里叶图像;
二、然后,在频率域对傅里叶图像进行滤波、掩膜等各种编辑,减少或消除部分高频成份或低频成份;
三、最后,再把频率域的傅里叶图像变换到RGB彩色空间域,得到经过处理的彩色图像,傅里叶变换主要用于消除周期性噪声。
操作步骤:
打开傅里叶变换图像——滤波——保存傅里叶处理图像——傅里叶逆变换
把输入的空间域彩色图像转换成频率域傅里叶图像
如:图一
图一
输入图像表示对1~7波段都处理
打开fourier transform edior 输入处理图像,再打开的图像中只能输入
处理一个波段
选择波段输入显示,低通滤波:ideal 80 增益1,高通:Hanning 200 增益1
傅里叶图像中有分散分布的亮点,应用圆形掩膜可以去除。
首先应用鼠标查询亮点分布坐标,然后启动圆形掩膜功能,设置相应的参数据处理。
低通滤波,去除地物噪声,斑点等,若50不适合,Edit-undo可撤销重做,直到得到合适的半径,点Eile-save as保存
条带处理后
去条带等,还可在mask――wedgemask中设置该楔形的角度及偏角,每个波段都逐一进行条带、噪音等处理后进行各波段融合
去噪之后融合结果对比。
傅里叶分析
1
f (i )
第二节 离散傅里叶分析
实 用 测 量 数 据 处 理 方 法
中 南 大 学
一、离散傅里叶谱分析 设有一实验曲线,时间 长度为0到T,将其
分成N等分,其步长设为 t,得序列x j jt , j 0,1,2, , N 1,则其抽样值为:
xj yj x0 y0 x1 y1 …… …… xN-1 yN-1
实 用 测 量 数 据 处 理 方 法
中 南 大 学
令: c0 2 1 c k (a k ibk ), 2 1 c k (a k ibk ) 2 则其复数形式为: a0 f (t ) 1 其中:c k T
k
(5.5)
c e
第三节 快速傅里叶变换
实 用 测 量 数 据 处 理 方 法
中 南 大 学
由(5.15 )式得:F ( j ) f (k )W
k 0
N 1
jk
[ f (0)W 0 j f (2)W 2 j f (4)W 4 j f ( N 2)W
( N 2) j
]
[ f (1)W 1 j f (3)W 3 j f (5)W 5 j f ( N 1)W ( N 1) j ] [ f (0)W
k 1 n
(a k cos kt bk sin kt )
k 1
(5.2)
上式为一三角级数,当 n 时,即
实 用 测 量
2
(a k cos kt bk sin kt )
k 1
称为傅里叶级数。其中 a k , bk 为傅里叶系数, 可按最小二乘原理解出 为: 2 T2 a 0 T f (t )dt T 2 2 T2 a k T f (t ) cos ktdt T 2 T 2 2 bk T f (t ) sin ktdt T 2
傅里叶红外实验报告
傅里叶红外实验报告
傅里叶红外实验是一种常见的分析化学实验,它利用傅里叶变换原理,将物质的红外光谱图像转换为频率分布图像,从而得到物质的结构信息。
本次实验我们使用的是红外光谱仪,通过对样品的红外光谱进行分析,得到了样品的结构信息。
实验步骤如下:
1. 准备样品:将待测样品制成薄膜或粉末,并将其放置在红外光谱仪的样品室中。
2. 调整仪器:打开红外光谱仪,调整仪器的参数,如光源强度、光谱分辨率等,以保证实验的准确性。
3. 开始实验:启动红外光谱仪,让样品受到红外光的照射,记录下样品的红外光谱图像。
4. 分析数据:将得到的红外光谱图像进行傅里叶变换,得到频率分布图像,从中分析出样品的结构信息。
通过本次实验,我们得到了样品的红外光谱图像和频率分布图像,从中可以看出样品的结构信息。
例如,我们可以通过红外光谱图像中的吸收峰来判断样品中的化学键类型,如羰基、羟基、胺基等。
同时,我们还可以通过频率分布图像中的峰位和峰形来判断样品中的分子结构,如分子中的取代基、环状结构等。
傅里叶红外实验是一种非常重要的分析化学实验,它可以帮助我们了解样品的结构信息,从而更好地进行化学研究和应用。
(完整版)傅里叶分析及应用
实验二傅里叶分析及应用一、实验目的(一)掌握使用Matlab进行周期信号傅里叶级数展开和频谱分析1、学会使用Matlab分析傅里叶级数展开,深入理解傅里叶级数的物理含义2、学会使用Matlab分析周期信号的频谱特性(二)掌握使用Matlab求解信号的傅里叶变换并分析傅里叶变换的性质1、学会运用Matlab求连续时间信号的傅里叶变换2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质(三)掌握使用Matlab完成信号抽样并验证抽样定理1、学会运用MATLAB完成信号抽样以及对抽样信号的频谱进行分析2、学会运用MATLAB改变抽样时间间隔,观察抽样后信号的频谱变化3、学会运用MATLAB对抽样后的信号进行重建二、实验条件安装winXP系统的电脑一台、matlab 7。
0软件三、实验内容1、已知周期三角信号如下图所示[注:图中时间单位为:毫秒(ms)]:(1)试求出该信号的傅里叶级数[自己求或参见课本P112或P394],利用Matlab编程实现其各次谐波[如1、3、5、13、49]的叠加,并验证其收敛性;解:命令文件:clear all;close all;clc;t=—10:0。
01:10;omega=pi;y=abs(sawtooth(pi*0.5*t,0。
5));plot(t,y),grid on;axis([—10,10,0,3]);n_max=[1,3,5,13,49];N=length(n_max);for k=1:Nn=1:2:n_max(k);b=4./((pi*n).^2);x=b*cos(omega*n’*t);figure;plot(t,y);hold on;x=x+1/2; plot(t ,x); hold off ;axis ([-10,10,0,3]);title (['最大谐波数=',num2str (n_max(k))]); end 图像:-10-8-6-4-2024681000.511.522.53-10-8-6-4-2024681000.511.522.5-10-8-6-4-2024681000.511.522.53最大谐波数=3-10-8-6-4-2024681000.511.522.5-10-8-6-4-2024681000.511.522.53最大谐波数=13-10-8-6-4-2024681000.511.522.5(2)用Matlab 分析该周期三角信号的频谱[三角形式或指数形式均可]。
傅里叶分析1
A y st
例1
1 1 2 / 2
3.将得到的位移、内力乘以动力系数 即得动位移幅值、动内力幅值。
求图示体系振幅和动弯矩幅值图,已知
0.5
P
24 EI P sin t 解. k 11 l3 l P Pl 3 y st k 11 24 EI 1 4 1 2 / 2 3
l
=1
11
解: y st
1 1 Pl l 5 5 Pl l EI 2 2 2 6 48 EI 1 4 1 2 / 2 3 3 5 Pl A y st 36 EI
l
=1
11
I mA
5 P 48
2
mA
1 2 A 4 4 11
Q 35 kN , P 10 kN , n 500 转 / 分 .
m
l 0 . 722 10 7 m/N 48 EI 1 重力引起的弯矩 M Q Ql 35 kN 4 3 重力引起的位移 Q Q 11 2 .53 10 m
解.
11
3
(t ) m y y (t ) P sin t
2
例2:图示机器与基础总重量W=60kN,体系自振周期44.27s, 基 础 下 土 壤 的 抗 压 刚 度 系 数 为 cz=0.6N/cm3 , 基 础 底 面 积 A=20m2 。当机器运转产生 P0sinθt, P0=20kN ,转速为 400r/min ,求振幅及地基最大压力。
3
29 Pl 48
P
5 P 48
5 Pl 96 动弯矩幅值图
例:求图示体系右端的质点振幅
P sin t
P m o
1傅里叶分析解析
1傅里叶分析解析傅里叶分析是一种重要的数学工具,用于分析和描述周期性信号及其频谱。
在物理学、工程学和数学等领域中都有广泛的应用。
本文将介绍傅里叶分析的基本原理和方法,并探讨其在不同领域的具体应用。
傅里叶分析的基本原理是基于傅里叶级数展开定理,即任意周期信号都可以表示为一组正弦和余弦信号的叠加。
根据傅里叶级数展开定理,一个周期为T的连续信号f(t)可以表示为:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an和bn是待定系数,ω=2π/T是信号的角频率。
为了求解这些系数,需要利用傅里叶变换的方法,将连续信号f(t)转化为连续频率域的表示。
傅里叶变换将时域信号转换为频域信号,通过将信号分解为不同频率的正弦和余弦信号,得到信号在频域的幅度和相位信息。
在连续傅里叶变换中,信号f(t)的傅里叶变换F(ω)给出了信号在频率域的表示,其中:F(ω) = ∫[f(t)*exp(-jωt)]dt其中,j是虚数单位。
类似地,对于离散信号,可以使用离散傅里叶变换和离散傅里叶级数展开来进行分析。
离散傅里叶变换是对信号采样后的离散版本进行频域分析,而离散傅里叶级数展开则将离散信号表示为一组离散频率上的正弦和余弦波的叠加。
傅里叶分析的应用广泛,下面将介绍一些具体的应用。
1.信号处理:傅里叶分析在信号处理中有广泛的应用,例如,可以通过傅里叶变换将时域上的声音信号转换为频域上的频谱图,用于音频压缩、滤波和降噪等处理。
2.图像处理:傅里叶变换也可以应用于图像处理,将二维图像转换为频域上的频谱图,用于图像增强、去噪和特征提取等。
3.通信系统:傅里叶分析在通信系统中起到重要作用,例如,信号可以通过傅里叶变换转换为频谱图后,可以对信号进行调制、解调和信道编码等操作。
4.物理学:傅里叶分析在物理学中也有广泛的应用,例如,可以用于分析光谱、原子和分子结构以及量子力学等问题。
5.工程学:在工程学中,傅里叶分析可以用于分析和处理信号和系统的特性,包括控制系统、电路和通信系统等。
《傅里叶分析》课件
通信系统
傅里叶分析可以用 于调制解调过程中 的频谱分析,以及 信道估计和均衡等 关键问题的解决, 提高通信系统的性 能。
图像处理
傅里叶分析可以用 于图像的频域滤波、 去噪和增强等操作, 以及图像压缩和特 征提取等应用,提 高图像处理的效果 和质量。
其他领域的 应用
除了信号处理、通 信系统和图像处理 外,傅里叶分析还 在许多其他领域中 有着广泛的应用, 如物理学、经济学 等。
《傅里叶分析》PPT课件
傅里叶分析是一种广泛应用于信号处理、通信系统、图像处理等领域的数学 工具。本课件将介绍傅里叶分析的定义、傅里叶级数和傅里叶变换,以及其 在各个领域中的实际应用。
傅里叶级数
傅里叶级数是用正弦和余弦函数将周期函数分解为一系列振幅和相位不同的谐波信号的方法。它可以表 示周期函数在频域上的相关信息。
总结
傅里叶分析是一种重要的数学工具,它可以用于分析和处理各种信号,并在信号处理、通信系统、图像 处理等领域中发挥作用。
1 傅里叶分析的重要性和应用
2 学习和研究傅里叶分析的意义
傅里叶分析在现代科学和工程中具有重要 地位,它为我们理解和处理信号提供了有 力的工具和方法。
学习和研究傅里叶分析不仅能够提高我们 的数学能力,还能够拓宽我们的科学视野, 培养我们的创新思维。
3 傅里叶变换的性质与应用
傅里叶变换具有平移性、尺度性和对称性等重要性质,它在信号处理、通信系统等领域 中有着广泛的应用。
傅里叶分析的实际应用
傅里叶分析在许多领域中发挥着重要作用,包括信号处理、通信系统、图像处理以及其他领域的实际应 用。
信号处理
傅里叶分析可以用 于分析和处理各种 信号,包括音频信 号、视频信号等, 以提取有用的信息 或实现信号压缩等 功能。
傅里叶红外光谱仪实验报告数据
傅里叶红外光谱仪实验报告数据傅里叶红外光谱仪实验报告数据一、介绍和实验目的傅里叶红外光谱仪是一种非常常用的分析仪器。
它可以分析样品中分子之间化学键的振动和转动等特征,从而用曲线来表示其结构。
本次实验旨在利用傅里叶红外光谱仪的原理,对几种常见样品进行分析,从而验证其结构。
二、实验步骤1. 样品准备:本次实验选用了苯酚、肌醇、硅烷三种样品,并分别使用干燥剂进行去除水分和杂质。
2. 实验仪器的使用:使用傅里叶红外光谱仪进行扫描,采集数据。
3. 数据处理:对采集到的数据进行处理,识别峰值和谷值。
4. 结果分析:从峰值和谷值的位置和形状等方面,来分析样品的结构特征。
三、实验结果根据实验得到的红外光谱图,可以明显地看到每个样品的峰值和谷值。
从每个峰值或谷值的出现位置和形状等方面,可以说明样品中不同化学键的存在情况。
1. 苯酚苯酚红外光谱图中,出现了苯环上的C-H伸缩振动、芳香基上的C-H变形振动和羟基O-H伸缩振动。
其中,伸缩振动位于3100-3700 cm-1。
而O-H伸缩振动位于3550 cm-1左右,属于强峰。
2. 肌醇肌醇的红外光谱图中,出现了C-O伸缩振动、羟基O-H伸缩振动、烷基CH3的变形振动等。
其中,肌醇的伸缩振动位于1000-1200 cm-1,烷基CH3变形振动位于1375 cm-1左右。
3. 硅烷硅烷的红外光谱图中,出现了硅烷基的Si-H的伸缩振动、C-H伸缩振动等。
其中,硅烷基的Si-H伸缩振动位于2000-2200 cm-1左右,C-H伸缩振动位于2900-3100 cm-1。
四、分析与总结本次实验结果表明,利用傅里叶红外光谱仪可以快速的分析样品的结构和化学键情况。
不同样品因为分子结构的差异,会产生不同的峰值和谷值。
需要对不同光谱区域的特征进行了解。
这种仪器具有分析快速、范围广等特点,可以在化学分析领域得到广泛应用。
傅里叶光学实验报告[整理]
傅里叶光学实验报告[整理]傅里叶光学实验报告一、实验目的1. 掌握傅里叶光学的基本原理和方法;2. 实验验证平面波和球面波通过透镜之后的傅里叶变换关系;3. 了解频谱成像的基本原理和方法。
二、实验原理傅里叶光学是一种将光场分解为一组微小的平面波或球面波的方法,然后利用傅里叶变换将这些平面波或球面波的振幅和相位信息转换为相应的频谱图像。
1. 平面波通过透镜的傅里叶变换关系当平面波通过透镜时,透镜将平面波折射成球面波。
根据惠更斯原理,球面波前可以看作由无限多的次波分布组成。
如果透镜的曲率半径为R,球面波前中心距离透镜为s,则透镜折射后的球面波前半径为r=R+s。
当球面波面向透镜的时候,透镜将其中心处的波捕获并将其折射到焦平面上。
由于透镜的几何关系,球面波的频谱可以通过傅里叶变换转换为另一个球面波,其频率等于初始球面波频率的两倍,且与原始平面波的振幅和相位有关。
2. 球面波通过透镜的傅里叶变换关系当球面波通过透镜时,透镜将其变为以透镜为中心的球面波。
根据惠更斯原理,透镜表面的每个点都在向球面波前广播无限多的次波。
在透镜上选择一个点作为坐标原点,并定义该点上的波面为 z=0。
当球面波辐射到该点上的时候,透镜所发出的微光波会在该点上聚焦。
此时,球面波的频谱可以通过傅里叶变换转换为平面波,其频率等于初始球面波频率的两倍,且与原始球面波的振幅和相位有关。
3. 频谱成像将频谱图像转换为空间图像的方法称为频谱成像。
在傅里叶光学中,频谱成像允许我们在不影响图像分辨率的情况下调整像场大小和形状。
简单地说,对于一张图像,我们可以选择不同的频率空间滤波器进行滤波,然后通过傅里叶反变换将滤波后的频谱图像转换为空间图像。
滤波后的频谱图像通常会显示出图像的高频信息,使我们可以对图像分辨率和清晰度进行调整。
三、实验仪器1. He-Ne激光器2. 分束器3. 透镜4. 母线5. 干涉条纹增强滤波器6. 透镜支架7. CCD相机8. 分光仪9. 激光干涉仪四、实验步骤1. 准备实验仪器并清洁透镜表面。
傅里叶光学实验报告
实验原理:(略) 实验仪器:光具座、氦氖激光器、白色像屏、作为物的一维、二维光栅、白色像屏、傅立叶透镜、小透镜实验内容与数据分析1.测小透镜的焦距f 1 (付里叶透镜f 2=45.0CM )光路:激光器→望远镜(倒置)(出射应是平行光)→小透镜→屏操作及测量方法:打开氦氖激光器,在光具座上依次放上扩束镜,小透镜和光屏,调节各光学元件的相对位置是激光沿其主轴方向射入,将小透镜固定,调节光屏的前后位置,观察光斑的会聚情况,当屏上亮斑达到最小时,即屏处于小透镜的焦点位置,测量出此时屏与小透镜的距离,即为小透镜的焦距。
112.1913.2011.6712.3533f cm ++==0.7780cm σ==1.320.5929p A pt t cm μ=== 0.68P = 0.0210.00673B p B pt k cm C μ∆==⨯= 0.68P =0.59cm μ== 0.68P =1(12.350.59)f cm =±0.68P =2.利用弗朗和费衍射测光栅的的光栅常数光路:激光器→光栅→屏(此光路满足远场近似)在屏上会观察到间距相等的k 级衍射图样,用锥子扎孔或用笔描点,测出衍射图样的间距,再根据sin d k θλ=测出光栅常数d (1)利用夫琅和费衍射测一维光栅常数;衍射图样见原始数据; 数据列表:sin ||i k Lk d x λλθ=≈ 取第一组数据进行分析:21051343.0910******* 4.00106.810d m ----⨯⨯⨯⨯==⨯⨯ 21052343.0910******* 3.871014.110d m ----⨯⨯⨯⨯==⨯⨯ 21053343.0910******* 3.95106.910d m ----⨯⨯⨯⨯==⨯⨯ 21054343.0910******* 4.191013.010d m ----⨯⨯⨯⨯==⨯⨯554.00 3.87 3.95 4.1910 4.0025104d m m --+++=⨯=⨯61.3610d m σ-=⨯忽略b 类不确定度:671.20 1.3610/9.410p A pt t m μμ--===⨯⨯=⨯则7(400.29.4)10d m -=±⨯(2)记录二维光栅的衍射图样并测量其光栅常数.二维衍射图样如原始数据中所示 取一组数据分析:114.0086.8027.2L cm =-=1(4.6 4.6)/2 4.6x mm ±=+=故2105327.210632810 3.74104.610d m ----⨯⨯⨯==⨯⨯3.利用空间频谱测量一维、二维光栅常数光路:激光器→光栅→透镜→屏(位于空间频谱面上) (1)利用空间频谱的方法测量一维光栅常数 取k=111 6.8 6.96.8522x x x mm mm -+++=== 1025363281045.010 4.16106.8510fd m xλ----⨯⨯⨯===⨯⨯ (2)利用空间频谱的方法测量二维光栅常数 取k=11025363281045.010 6.18104.610fd m xλ----⨯⨯⨯===⨯⨯ 比较两种方法计算的结果后发现,二维光栅常数的计算结果相差较大,分析误差产生的原因可能为:1.衍射光斑是用笔描点记录的,需要依靠试验者的判断,会出现较大误差;2.光斑的间距是由钢尺测纸上的点而得,由于测量时会产生误差;3.利用公式计算式用了近似,也会带来一定的误差;4.观察并记录下述傅立叶频谱面上不同滤波条件的图样或特征;光路:激光器→光栅→小透镜→滤波模板(位于空间频谱面上)→墙上屏 空间频谱面经过小透镜的焦点,此时图样为清晰的一排点列(1)一维光栅:(滤波模板自制,一定要注意戴眼镜保护;可用一张纸,一根针扎空来制作,也可用其他方法).a.滤波模板只让0级通过;现象:屏上只出现一个0级光斑的轮廓,无条纹b.滤波模板只让0、±1级通过;现象:屏上出现平行且竖直的条纹c.滤波模板只让0、1 、±2级通过;现象:屏上出现更为清晰并分布面较大的平行且竖直的条纹(2)二维光栅:a.滤波模板只让含0级的水平方向一排点阵通过;现象:屏上只出现竖直条纹b.滤波模板只让含0级的竖直方向一排点阵通过;现象:屏上只出现水平条纹c.滤波模板只让含0级的与水平方向成45O一排点阵通过;现象:屏上只出现与水平方向成135°方向的条纹d.滤波模板只让含0级的与水平方向成135O一排点阵通过.现象:屏上只出现与水平方向成45°方向的条纹5.“光”字屏滤波物面上是规则的光栅和一个汉字“光”叠加而成,在实验中要求得到如下结果:a.如何操作在像面上仅能看到像面上是“光”,写出操作过程.操作过程:在大透镜的后焦面上加一个只让0级中间点通过的滤波模板b.如何操作在像面上仅能看到像面上是横条纹,写出操作过程;操作过程:在大透镜的后焦面上加一个只让含0级的竖直方向一排点阵通过的滤波模板c.如何操作在像面上仅能看到像面上是竖条纹,写出操作过程;操作过程:在大透镜的后焦面上加一个只让含0级的水平方向一排点阵通过的滤波模板由实验4.5可得,对像的垂直结构起作用的是沿水平方向的频谱分量,反之亦然。
第三章傅里叶分析教材
第3章傅里叶分析傅里叶分析是利用傅里叶变换来分析信号的一种通用工具,其实质是将信号分解成若 干个不同频率的正弦波之和。
它在信号处理的理论和应用中具有重要意义。
3.1傅里叶变换概述我们知道,傅里叶变换定义了以时间为自变量的“信号”与以频率为自变量的“频谱 函数”之间的某种变换关系,也就是说,傅里叶变换建立了时域和频域之间的联系。
所以当自变量“时间”或“频率”取连续值或离散值时,就形成了各种不同形式的傅里叶变换对。
一、时间连续、频率连续的傅里叶变换( FT )其傅里叶变换公式为: 正变换 X(j 「」)=j-x(t)e jtdt反变换x(t)1"X(j.^e ji d^2兀J连续时间非周期信号 x(t)的傅里叶变换结果是连续的非周期的频谱密度函数X(j Q ),如图所示。
可见,时域函数的连续性造成频域函数的非周期性, 而时域的非周期性造成频谱的连续性。
二、时间连续、频率离散的傅里叶变换一一傅里叶级数(FS )周期为T 的周期性连续时间函数x(t)可展开成傅里叶级数,其系数为X(jk Q 0), X(jk Q o )是离散频率的非周期函数。
x(t)和X(jk Q °)组成变换对,其变换公式为: 1 T/2正变换 X(jk ,S)=〒 _2X (t)e dt 反变换 x(t) = a X( j^10)e j^°tk =JO C I式中,k谐波序号;Q o =2 n /T ――两条相邻的离散谱线之间角频率的间隔;x(t)和 X(jk Q °)之间的变换关系如图所示。
iztl)可见,时域函数的连续性造成频域函数的非周期性, 而时域函数的周期性造成频域函数的离散化。
三、时间离散、频率连续的傅里叶变换一一序列的傅里叶变换( DTFT )1. DTFT 的定义序列的傅里叶变换公式为:X e (n)=1尹(n) 5]X °( n) 尹(叭xE]正变换O0X(e j')二 '、x(n)en 二 3反变换x(n)1X(e j)e j nd ‘2兀5注意:序列x( n )只有当n 为整数时才有意义,.否则没有定义。
傅里叶实验报告
傅里叶实验报告傅里叶实验报告引言傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像处理、物理学等领域。
本实验旨在通过实际操作,深入理解傅里叶变换的原理和应用。
实验设备本实验所需设备包括信号发生器、示波器、计算机等。
实验步骤1. 准备工作首先,我们需要将信号发生器连接到示波器上,以便观察信号的波形。
同时,将示波器与计算机连接,以便进行数据采集和分析。
2. 信号发生器设置将信号发生器的频率设置为50Hz,幅度设置为适当的值。
这样可以产生一个稳定的正弦信号。
3. 示波器设置将示波器的触发方式设置为外部触发,以保证观测到稳定的波形。
同时,调整示波器的水平和垂直缩放,使波形在屏幕上能够清晰显示。
4. 信号采集将示波器的输出信号通过USB接口连接到计算机上,使用相应的软件进行数据采集。
在采集过程中,需要注意保持信号的稳定性,避免干扰。
5. 数据分析将采集到的数据导入到计算机上的数据处理软件中,进行傅里叶变换。
通过傅里叶变换,我们可以将时域信号转换为频域信号,进一步分析信号的频谱特性。
实验结果通过对采集到的数据进行傅里叶变换,我们可以得到信号的频谱图。
从频谱图中,我们可以观察到信号的频率成分和强度分布情况。
通过进一步的分析,我们可以得到信号的频率、幅度、相位等信息。
实验思考傅里叶变换的应用非常广泛,例如在通信领域中,可以通过傅里叶变换将信号从时域转换为频域,从而实现信号的调制和解调。
在图像处理中,傅里叶变换可以用于图像的滤波和压缩。
在物理学中,傅里叶变换可以用于光学、声学等领域的研究。
总结通过本次实验,我们深入了解了傅里叶变换的原理和应用。
傅里叶变换是一种非常重要的数学工具,对于信号处理、图像处理、物理学等领域都具有重要意义。
通过实际操作,我们更加深入地理解了傅里叶变换的工作原理,并通过数据分析得到了实验结果。
通过实验思考,我们发现傅里叶变换在各个领域的应用都非常广泛,对于进一步研究和应用具有重要价值。
傅里叶红外吸收光谱法的实验报告
傅里叶红外吸收光谱法的实验报告傅里叶红外吸收光谱法的实验报告引言:本文主要介绍傅里叶红外吸收光谱法的实验报告。
傅里叶红外光谱法是一种非常常用且重要的光谱分析方法,它广泛应用于催化剂、高分子材料、药物等各种行业和领域。
在实验中,我们通过傅里叶变换红外光谱仪对样品进行了测试,得出了比较准确的结果。
实验步骤:(1)样品的制备我们选择了市场上常见的牙膏品牌作为测试样品。
首先将样品取出,均匀地涂抹在稳定的基板上。
然后使用干燥器将样品中的水分蒸发。
最后将样品固定在傅里叶红外吸收光谱仪所提供的样品盒中。
(2)测试仪器的校准仪器的校准是保证测试结果准确的重要前提。
在测试之前,我们使用标准的聚氨酯用于校准仪器。
校准过程中需要保持稳定的环境温度、光源强度和检测器灵敏度。
(3)测试样品在进行测试之前,我们选择的仪器为傅里叶变换红外光谱仪,该仪器能够提供比较准确的测试结果。
我们在测试样品时,使用紫外线光源照射样品,并将其转化为红外光谱。
通过仪器所提供的计算软件,可以得出样品的稳定吸收光谱。
实验结果:在我们所测试的样品中,可以明显地看到不同材料的吸收峰,每个峰代表了不同的化学键。
比如说,牙膏中常见的氟化合物,我们可以看到其呈现出独特的吸收峰。
通过测试结果分析,我们可以准确地确定样品中存在的化合物种类和数量。
实验结论:傅里叶红外吸收光谱法是一种非常有效、准确的分析方法,可以用于检测不同种类的物质。
在实验中,我们使用了傅里叶变换红外光谱仪,并通过对样品的吸收光谱进行分析,得出了比较准确的测试结果。
因此,该方法可以广泛应用于药物、高分子材料、催化剂等领域。
参考文献:1. Fei Ding, Sepideh Malekpour, and Lixin Xia. Application of Fourier Transform Infrared (FTIR) Spectroscopy in the Analysis of Cone-in-ConeStructures in Rocks. Minerals, 2017, 7(7): 116.2. Wang Jinyao, Lv Zhaoyi, Zhou Fan. FTIR Spectroscopy of Adsorption of atorvastatin calcium on Silica Gel[J]. Spectroscopy and Spectral Analysis, 2015, 35(9):2734-2738.。
傅里叶光学实验报告
傅里叶光学实验报告摘要:本实验主要是通过傅里叶光学的实验,研究光的干涉和衍射现象以及傅里叶变换的原理与应用。
在实验中,我们用干涉仪观察了两个光源的干涉现象,并利用光栅观察了光的衍射现象。
实验结果表明,光的干涉和衍射具有波动性和干涉性,傅里叶变换能够将信号从时域转换到频域。
1.引言2.实验装置实验主要用到了干涉仪和光栅。
干涉仪是由两个光源和一系列光学元件组成的装置,用于观察光的干涉现象。
光栅则是一种特殊的光学元件,能够通过衍射产生多个光斑。
3.实验步骤3.1干涉实验首先我们调整干涉仪的各个光路元件,使得两个光源的光线通过干涉仪后能够叠加在一起。
接着,我们调整干涉仪的反射镜,使得两束光叠加后的干涉条纹清晰可见。
在实验中,我们发现当两个光源相位差恰好为0时,干涉条纹最为明显;而当相位差为180度时,干涉条纹相消。
这说明光的干涉现象与光源的相位差有关。
3.2衍射实验接下来,我们使用光栅进行衍射实验。
将光栅置于光源前方,然后调整光栅的位置和角度,使得衍射光斑能够清晰可见。
实验中,我们观察到了光栅产生的多个光斑,这是由于光经过光栅后发生了衍射现象。
3.3傅里叶变换实验最后,我们进行了傅里叶变换实验。
在实验中,我们使用傅里叶变换将信号从时域转换到频域。
通过调整输入信号的频率,我们观察到傅里叶变换的输出结果呈现出不同的频谱。
4.结果与讨论实验结果表明,光的干涉和衍射现象能够用波动光学的理论进行解释。
干涉实验显示了光的相位差对干涉条纹的影响,而衍射实验则是光波通过光栅后发生了弯曲现象。
傅里叶变换实验则展示了将信号从时域转换到频域的能力。
在实际应用中,傅里叶光学在光学成像、信号处理等领域具有重要作用。
例如,利用傅里叶变换可以对图像进行去噪、增强等处理,同时也可以通过干涉和衍射现象实现光学传感器、光学显微镜等设备。
5.结论通过本次实验,我们深入了解了光的干涉和衍射现象以及傅里叶变换的原理与应用。
实验结果验证了光的波动性和干涉性,同时也为我们在光学领域的研究与应用提供了基础知识和实验基础。
傅里叶分析
感谢观看
这是哈代空间在高维度的推广 。
A.Zygmund,Trigonometric Series,2nd ed.,Cam-bridge Univ.Press,Cambridge,1959.
,Singular Integrals and Differen-tiability Properties of Functions,Princeton Univ. Press,Princeton,1970.
基本简介
傅里叶分析(Fourier analysis)是分析学中逐渐形成的一个重要分支,它研究并扩展傅里叶级数和傅里叶 变换的概念,又称调和分析。在过去两个世纪中,它已成为一个广泛的主题,并在诸多领域得到广泛应用,如信 号处理、量子力学、神经科学等。
定义于R上的经典傅里叶变换仍然是一个十分活跃的研究领域,特别是在作用于更一般的对象(例如缓增广义 函数)上的傅里叶变换。例如,如果在函数或者信号上加上一个分布f,我们可以试图用f的傅里叶变换来表达这 些要求。Paley-Wiener定理就是这样的一个例子。Paley-Wiener定理直接蕴涵如果f是紧支撑的一个非零分布, (这包含紧支撑函数),则其傅里叶变换从不拥有紧支撑。这是在调和分析下的测不准原理的一个非常初等的形 式。参看经典调和分析 。
and G.Weiss,Introduction to Fourier Analysis on Euclidean Spaces,Princeton Univ.Press,Princeton,1971.
E.Hewitt and,Abstract harmonicAnalysisVol.1~2,Springer-Verlag. Berlin,1963.1970.
傅里叶分析
分析学术语
傅里叶红外光谱的测定实验报告
傅里叶红外光谱的测定实验报告本实验以傅里叶红外光谱仪为工具,利用红外光谱分析技术对不同样品进行测定,以了解样品所包含的化学结构。
实验中我们选用的样品有氯化钠、甲醛、氨基苯甲酸甲酯和纤维素等。
首先,我们将样品按要求制成薄片,并在一定范围内对样品进行扫描,通过仪器计算出不同波数下的吸收光谱。
我们在实验中发现,不同样品之间的光谱图结果有着明显的区别。
对于氯化钠样品,我们可以看到相对较强的单峰峰值在波数4000左右。
这是因为氯化钠为离子晶体,结构特征简单,其分子内部相互作用相对较少,因此对红外辐射能力较弱。
因此在红外辐射光谱中,氯化钠所表现出的吸收带比较窄。
对于甲醛样品,在3370-2850cm-1波段内的C-H键伸缩振动产生的峰值比较明显,而460-880cm-1波段间的C-H摆动波数峰值较为弱。
这是因为甲醛分子中含有烷基官能团,因此对红外辐射的吸收峰呈现出明显的特征。
因此我们可以利用甲醛样品的红外光谱特征,来对甲醛进行鉴定。
对于氨基苯甲酸甲酯样品,在3280-3500cm-1波段内的存在着较强的N-H化学键伸缩振动产生的峰值。
同时,这个峰值表现出了微小的峰裂而呈现褶皱形状,这是因为该样品中的氨基化合物分子中的N-H键被氢键所包围,因此其形状十分特殊。
最后,我们对纤维素样品进行了红外光谱分析。
在650-1000cm-1波段内的弱吸收峰,表示了众所周知的C-OH、O-C-O的拉伸振动,是纤维素聚合物中分子结构特点之一。
同时,其在3400-3600cm-1的H-O-H振动峰以及在1640-1690cm-1中的C=O键振动峰,都分别对应了氢键和纤维素中酰基吸收带的存在。
总的来说,通过本次实验我们可以获得不同样品所具有的红外光谱谱图,从而进一步理解它们的化学结构特征。
这些结构特征有助于我们在测定中根据样品的红外光谱图来对不同化合物进行鉴定。
傅里叶分析实验报告
班级:姓名: 学号: 实验日期:一、实验名称脉搏、语音及图像信号的傅里叶分析二、实验目的1、了解常用周期信号的傅里叶级数表示。
2、了解周期脉搏信号、语音信号及图像信号的傅里叶分析过程3、理解体会傅里叶分析的理论及现实意义三、实验仪器脉搏语音实验仪器,数字信号发生器,示波器四、实验原理1、周期信号傅里叶分析的数学基础任意一个周期为T 的函数f(t)都可以表示为傅里叶级数:00010000000001()(cos sin )21()()1()cos()()1()sin()()n n n n n f t a a n t b n t a f t d t a f t n t d t b f t n t d t ππππππωωωωπωωωπωωωπ∞=---=++===∑⎰⎰⎰ 其中0ω为角频率,称为基频,0a 为常数,n a 和n b 称为第n 次谐波的幅值。
任何周期性非简谐交变信号均可用上述傅里叶级数进行展开,即分解为一系列不同次谐波的叠加。
对于如图1所示的方波,一个周期内的函数表达式为:(0t<)2() (-t 0)2h f t h ππ⎧≤⎪⎪=⎨⎪-≤<⎪⎩其傅里叶级数展开为:0100041()()sin(21)21411(sin sin 3sin 5)35n h f t n t n h t t t ωπωωωπ∞==--=+++∑L 同理:对于如图2所示的三角波,函数表达式为:4t (-t<)44()232(1) (t )44h T T f t t T T h T π⎧≤⎪⎪=⎨⎪-≤<⎪⎩其傅里叶级数展开为:1202100022281()(1)()sin(21)21811(sin sin 3sin 5)35n n h f t n t n h t t t ωπωωωπ∞-==---=-++∑L图1 方波 图2 三角波从以上各式可知,任何周期信号都可以表示为无限多次谐波的叠加,谐波次数越高,振幅越小,它对叠加波的贡献就越小,当小至一定程度时(谐波振幅小于基波振幅的5%),则高次的谐波就可以忽略而变成有限次数谐波的叠加,这对设计仪器电路是很有意义的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
傅里叶分析之掐死教程(完整版)更新于2014.06.06Heinrich · 6 个月前作者:韩昊知乎:Heinrich 微博:@花生油工人知乎专栏:与时间无关的故事谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。
转载的同学请保留上面这句话,谢谢。
如果还能保留文章来源就更感激不尽了。
我保证这篇文章和你以前看过的所有文章都不同,这是12年还在果壳的时候写的,但是当时没有来得及写完就出国了……于是拖了两年,嗯,我是拖延症患者……这篇文章的核心思想就是:要让读者在不看任何数学公式的情况下理解傅里叶分析。
傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。
但不幸的是,傅里叶分析的公式看起来太复杂了,所以很多大一新生上来就懵圈并从此对它深恶痛绝。
老实说,这么有意思的东西居然成了大学里的杀手课程,不得不归咎于编教材的人实在是太严肃了。
(您把教材写得好玩一点会死吗?会死吗?)所以我一直想写一个有意思的文章来解释傅里叶分析,有可能的话高中生都能看懂的那种。
所以,不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。
至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。
——————————————以上是定场诗——————————————下面进入正题:抱歉,还是要啰嗦一句:其实学习本来就不是易事,我写这篇文章的初衷也是希望大家学习起来更加轻松,充满乐趣。
但是千万!千万不要把这篇文章收藏起来,或是存下地址,心里想着:以后有时间再看。
这样的例子太多了,也许几年后你都没有再打开这个页面。
无论如何,耐下心,读下去。
这篇文章要比读课本要轻松、开心得多……p.s.本文无论是cos还是sin,都统一用“正弦波”(Sine Wave)一词来代表简谐波。
一、什么是频域从我们出生,我们看到的世界都以时间贯穿,股票的走势、人的身高、汽车的轨迹都会随着时间发生改变。
这种以时间作为参照来观察动态世界的方法我们称其为时域分析。
而我们也想当然的认为,世间万物都在随着时间不停的改变,并且永远不会静止下来。
但如果我告诉你,用另一种方法来观察世界的话,你会发现世界是永恒不变的,你会不会觉得我疯了?我没有疯,这个静止的世界就叫做频域。
先举一个公式上并非很恰当,但意义上再贴切不过的例子:在你的理解中,一段音乐是什么呢?这是我们对音乐最普遍的理解,一个随着时间变化的震动。
但我相信对于乐器小能手们来说,音乐更直观的理解是这样的:好的!下课,同学们再见。
是的,其实这一段写到这里已经可以结束了。
上图是音乐在时域的样子,而下图则是音乐在频域的样子。
所以频域这一概念对大家都从不陌生,只是从来没意识到而已。
现在我们可以回过头来重新看看一开始那句痴人说梦般的话:世界是永恒的。
将以上两图简化:时域:频域:在时域,我们观察到钢琴的琴弦一会上一会下的摆动,就如同一支股票的走势;而在频域,只有那一个永恒的音符。
所以你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。
抱歉,这不是一句鸡汤文,而是黑板上确凿的公式:傅里叶同学告诉我们,任何周期函数,都可以看作是不同振幅,不同相位正弦波的叠加。
在第一个例子里我们可以理解为,利用对不同琴键不同力度,不同时间点的敲击,可以组合出任何一首乐曲。
而贯穿时域与频域的方法之一,就是传中说的傅里叶分析。
傅里叶分析可分为傅里叶级数(Fourier Serie)和傅里叶变换(Fourier Transformation),我们从简单的开始谈起。
二、傅里叶级数(Fourier Series)的频谱还是举个栗子并且有图有真相才好理解。
如果我说我能用前面说的正弦曲线波叠加出一个带90度角的矩形波来,你会相信吗?你不会,就像当年的我一样。
但是看看下图:第一幅图是一个郁闷的正弦波cos(x)第二幅图是2个卖萌的正弦波的叠加cos(x)+a.cos(3x)第三幅图是4个发春的正弦波的叠加第四幅图是10个便秘的正弦波的叠加随着正弦波数量逐渐的增长,他们最终会叠加成一个标准的矩形,大家从中体会到了什么道理?(只要努力,弯的都能掰直!)随着叠加的递增,所有正弦波中上升的部分逐渐让原本缓慢增加的曲线不断变陡,而所有正弦波中下降的部分又抵消了上升到最高处时继续上升的部分使其变为水平线。
一个矩形就这么叠加而成了。
但是要多少个正弦波叠加起来才能形成一个标准90度角的矩形波呢?不幸的告诉大家,答案是无穷多个。
(上帝:我能让你们猜着我?)不仅仅是矩形,你能想到的任何波形都是可以如此方法用正弦波叠加起来的。
这是没有接触过傅里叶分析的人在直觉上的第一个难点,但是一旦接受了这样的设定,游戏就开始有意思起来了。
还是上图的正弦波累加成矩形波,我们换一个角度来看看:在这几幅图中,最前面黑色的线就是所有正弦波叠加而成的总和,也就是越来越接近矩形波的那个图形。
而后面依不同颜色排列而成的正弦波就是组合为矩形波的各个分量。
这些正弦波按照频率从低到高从前向后排列开来,而每一个波的振幅都是不同的。
一定有细心的读者发现了,每两个正弦波之间都还有一条直线,那并不是分割线,而是振幅为0的正弦波!也就是说,为了组成特殊的曲线,有些正弦波成分是不需要的。
这里,不同频率的正弦波我们成为频率分量。
好了,关键的地方来了!!如果我们把第一个频率最低的频率分量看作“1”,我们就有了构建频域的最基本单元。
对于我们最常见的有理数轴,数字“1”就是有理数轴的基本单元。
时域的基本单元就是“1秒”,如果我们将一个角频率为的正弦波cos(t)看作基础,那么频域的基本单元就是。
有了“1”,还要有“0”才能构成世界,那么频域的“0”是什么呢?cos(0t)就是一个周期无限长的正弦波,也就是一条直线!所以在频域,0频率也被称为直流分量,在傅里叶级数的叠加中,它仅仅影响全部波形相对于数轴整体向上或是向下而不改变波的形状。
接下来,让我们回到初中,回忆一下已经死去的八戒,啊不,已经死去的老师是怎么定义正弦波的吧。
正弦波就是一个圆周运动在一条直线上的投影。
所以频域的基本单元也可以理解为一个始终在旋转的圆知乎不能传动态图真是太让人惋惜了……想看动图的同学请戳这里:File:Fourier series square wave circlesanimation.gif以及这里:File:Fourier series sawtooth wave circles animation.gif点出去的朋友不要被wiki拐跑了,wiki写的哪有这里的文章这么没节操是不是。
介绍完了频域的基本组成单元,我们就可以看一看一个矩形波,在频域里的另一个模样了:这是什么奇怪的东西?这就是矩形波在频域的样子,是不是完全认不出来了?教科书一般就给到这里然后留给了读者无穷的遐想,以及无穷的吐槽,其实教科书只要补一张图就足够了:频域图像,也就是俗称的频谱,就是——再清楚一点:可以发现,在频谱中,偶数项的振幅都是0,也就对应了图中的彩色直线。
振幅为0的正弦波。
动图请戳:File:Fourier series and transform.gif老实说,在我学傅里叶变换时,维基的这个图还没有出现,那时我就想到了这种表达方法,而且,后面还会加入维基没有表示出来的另一个谱——相位谱。
但是在讲相位谱之前,我们先回顾一下刚刚的这个例子究竟意味着什么。
记得前面说过的那句“世界是静止的”吗?估计好多人对这句话都已经吐槽半天了。
想象一下,世界上每一个看似混乱的表象,实际都是一条时间轴上不规则的曲线,但实际这些曲线都是由这些无穷无尽的正弦波组成。
我们看似不规律的事情反而是规律的正弦波在时域上的投影,而正弦波又是一个旋转的圆在直线上的投影。
那么你的脑海中会产生一个什么画面呢?我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。
在最外面的小齿轮上有一个小人——那就是我们自己。
我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。
而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。
这样说来有些宿命论的感觉。
说实话,这种对人生的描绘是我一个朋友在我们都是高中生的时候感叹的,当时想想似懂非懂,直到有一天我学到了傅里叶级数……三、傅里叶级数(Fourier Series)的相位谱上一章的关键词是:从侧面看。
这一章的关键词是:从下面看。
在这一章最开始,我想先回答很多人的一个问题:傅里叶分析究竟是干什么用的?这段相对比较枯燥,已经知道了的同学可以直接跳到下一个分割线。
先说一个最直接的用途。
无论听广播还是看电视,我们一定对一个词不陌生——频道。
频道频道,就是频率的通道,不同的频道就是将不同的频率作为一个通道来进行信息传输。
下面大家尝试一件事:先在纸上画一个sin(x),不一定标准,意思差不多就行。
不是很难吧。
好,接下去画一个sin(3x)+sin(5x)的图形。
别说标准不标准了,曲线什么时候上升什么时候下降你都不一定画的对吧?好,画不出来不要紧,我把sin(3x)+sin(5x)的曲线给你,但是前提是你不知道这个曲线的方程式,现在需要你把sin(5x)给我从图里拿出去,看看剩下的是什么。
这基本是不可能做到的。
但是在频域呢?则简单的很,无非就是几条竖线而已。
所以很多在时域看似不可能做到的数学操作,在频域相反很容易。
这就是需要傅里叶变换的地方。
尤其是从某条曲线中去除一些特定的频率成分,这在工程上称为滤波,是信号处理最重要的概念之一,只有在频域才能轻松的做到。
再说一个更重要,但是稍微复杂一点的用途——求解微分方程。
(这段有点难度,看不懂的可以直接跳过这段)微分方程的重要性不用我过多介绍了。
各行各业都用的到。
但是求解微分方程却是一件相当麻烦的事情。
因为除了要计算加减乘除,还要计算微分积分。
而傅里叶变换则可以让微分和积分在频域中变为乘法和除法,大学数学瞬间变小学算术有没有。
傅里叶分析当然还有其他更重要的用途,我们随着讲随着提。
下面我们继续说相位谱:通过时域到频域的变换,我们得到了一个从侧面看的频谱,但是这个频谱并没有包含时域中全部的信息。
因为频谱只代表每一个对应的正弦波的振幅是多少,而没有提到相位。
基础的正弦波 A.sin(wt+θ)中,振幅,频率,相位缺一不可,不同相位决定了波的位置,所以对于频域分析,仅仅有频谱(振幅谱)是不够的,我们还需要一个相位谱。
那么这个相位谱在哪呢?我们看下图,这次为了避免图片太混论,我们用7个波叠加的图。
鉴于正弦波是周期的,我们需要设定一个用来标记正弦波位置的东西。
在图中就是那些小红点。
小红点是距离频率轴最近的波峰,而这个波峰所处的位置离频率轴有多远呢?为了看的更清楚,我们将红色的点投影到下平面,投影点我们用粉色点来表示。