Biofilms Biofilms take shape

合集下载

细菌世界历险记写一篇作文

细菌世界历险记写一篇作文

细菌世界历险记写一篇作文英文回答:Bacterial World Adventure.As a lover of adventure and exploration, I embarked on a thrilling journey into the microscopic world of bacteria. Armed with my microscope and curiosity, I delved into the fascinating realm of these tiny organisms. Let me share with you the incredible discoveries I made along the way.One of the first things that struck me was the sheer diversity of bacteria. They come in all shapes and sizes, from the spherical cocci to the rod-shaped bacilli. Some even have unique spiral shapes, like the spirochetes. It was like entering a bustling city, with each bacterium representing a different species, each with its own characteristics and abilities.I encountered bacteria in various environments, fromthe depths of the ocean to the soil beneath our feet. It was amazing to see how they adapted and survived in these different conditions. For example, I discovered extremophiles, bacteria that thrive in extreme environments such as hot springs or deep-sea hydrothermal vents. These resilient organisms taught me the importance ofadaptability and resilience in the face of challenges.Another fascinating aspect of bacteria is their ability to form communities called biofilms. These biofilms arelike cities within cities, with bacteria working together to build protective structures. I observed biofilms on surfaces such as rocks and medical devices, where bacteria collaborate to establish a safe haven. This reminded me of the saying "strength in numbers," as the bacteria in these biofilms are more resistant to antibiotics and other forms of treatment.But not all bacteria are harmful or cause diseases. In fact, many bacteria play crucial roles in our everyday lives. For instance, the bacteria in our gut help us digest food and produce essential vitamins. They are like our ownpersonal army, fighting off harmful invaders and keeping us healthy. It made me appreciate the delicate balance of microorganisms within our bodies, and the importance of maintaining a healthy microbiome.中文回答:细菌世界历险记。

海洋生物学:珊瑚藻生物学与生态学概论

海洋生物学:珊瑚藻生物学与生态学概论

5.枝状(Fruticose):植 物体具有圆柱形到扁 平形的突起,突起长 度多数大于3mm,非 多块状,通常为分枝 状。
6.盘状(Discoid):植 物体每个由一非分 枝的及大部分未附 着的圆盘状的且有 不同形状薄片(disclike lamella)组成。
7.层状(Layered):植 物体由数个到许多 扁平薄片组成,层 状薄片分枝(lamella te branches)排列在 水平方向的层间, 表面通常呈梯田状 的外观。
一. 分类概述
珊瑚藻目 Corallinales
珊瑚藻科
Corallinaceae
混石藻科
Hapalidiaceae
孢石藻科
Sporolithaceae
叉节藻属 Amphiroa 扁节藻属 Bossiella 粗珊藻属 Calliarthron 唇孢藻属 Cheilosporum 珊瑚藻属 Corallina 水石藻属 Hydrolithon 叉珊藻属 Jania 石叶藻属 Lithophyllum 石孔藻属 Lithoporella 新角石藻属 Neogoniolithon 呼叶藻属 Pneophyllum 孔石藻属 Porolithon 皮石藻属 Titanoderma ……
藻体次表层原始体下部附近的相 邻藻丝常融合在一起或形成纹孔 连结(pit connection)。
2.3 珊瑚藻的生殖特征
生殖器官(如四分孢子囊及精子囊)在钙化的腔(生殖窠 conceptacles)中传送。生 殖窠可能为单孔型(uniporate), 多孔型(multiporate), 或者排列在孢子囊堆(sori)中。
2.5.2 大尺度生长型(Large-scaled growth forms)
粘附性: 藻体叶状体固着在基质上,它们能在热带礁体上形成简单的硬 壳(encrustations)(有些人认为珊瑚藻在珊瑚礁中是主要的粘结剂)。甚 至能形成珊瑚藻礁及同等的结构(comparable structures):

五大环保型塑料替代品

五大环保型塑料替代品

五大环保型塑料替代品在美国,每年有超过930亿个塑料饮料瓶被倒入垃圾场。

日常生活中,塑料无处不在。

从储物箱到家具,甚至是汽车,它们要么由塑料制成,要么含有塑料成分。

的确,塑料持久耐用且具柔韧性,而且能轻易做成各种造型。

塑料是一种高分子化合物,由碳(包括石油、矿物燃料产物等对环境有害的物质)以及经过高温加热、分解和重构的塑性树脂合成。

塑性树脂最大的优点在于其持久性,它不易腐烂分解,但这也同时意味着它无法降解,除了部分能被回收之外,大部分都堆满垃圾场。

塑料与重金属和软化剂一样,是一种对人体有害的物质。

尽管塑料制品看起来不可或缺,但是越来越多的环保型替代物正不断出现,同时,也有一些新科技能使传统塑料制品更加环保。

玻璃可不是矿物燃料制成的,它是由砂土制成的。

过去,妈妈们和送奶工们都用玻璃瓶盛牛奶。

如今,环顾你家厨房(或者打开冰箱看一眼),你可能会发现一堆塑料:纯净水瓶、汽水瓶、食物保鲜盒……时代已经变了。

似乎我们离了塑料制品就不能活,可是塑料制品危害多多。

有研究称塑料中的某些化学物质可能使人体内分泌系统失调,从而导致与荷尔蒙、身体成长和生殖有关的问题。

我们知道,塑料中通常含有双酚A(BPA)或者酞酸盐,双酚A有助于塑料制品防碎抗震(常用于奶瓶或者激光唱片类产品),而酞酸盐则使塑料更加坚韧耐用(常用于塑料整理箱和玩具类产品)。

塑料由矿物燃料制成,而玻璃则由砂土制成。

砂土不仅是可再生资源,而且不含任何可能渗入你的食物和身体的化学物质。

玻璃制品还很容易回收,你可以把它丢进垃圾箱以分类回收,还可以用旧瓶盛新物。

玻璃虽然容易打碎,但至少不会侵害你的身体内部。

如果塑料是可再生资源,并且不是由另全球变暖的元凶——石油制成,那就太好了,这个要求听起来有点苛刻。

不过,科学家的确发明了一种由细菌制成的环保可降解的新塑料制品,这种塑料就是丁酸酯的改良品。

丁酸酯是一种由多种细菌通过天然生物发酵而制成的新能源。

这种塑料的特殊之处在于:尽管它是由细菌制成的,但是非常类似人造聚丙烯,而且可以彻底降解。

2分钟杀光超级细菌!荷兰科学家发明「超级抗生素」

2分钟杀光超级细菌!荷兰科学家发明「超级抗生素」

2分钟杀光超级细菌!荷兰科学家发明「超级抗生素」弗莱明发明青霉素,说起来都已经是九十年前的事了。

医学的发展日新月异,但各种各样的感染仍然是人类健康的最大敌人之一[1]。

以细菌为首的病原体们在斗争中不断强化着自身的耐药性,人类手里可打的牌却是越来越少,去年9月,世卫组织正式发布了「全球濒临抗生素枯竭」的报告[2]。

虽说现实不是瘟疫公司之类的游戏,但形势已经不容乐观了。

多重耐药菌:你们这些花花绿绿的抗生素一起上吧,我萧某何惧?江湖上早有合称“Eskape”的六大耐药菌一说[3],耐甲氧西林金黄色葡萄球菌(MRSA)、鲍曼不动杆菌这些名字总会让医生们倒吸一口凉气,而且耐药菌往往能通过形成生物被膜的方式,进一步增强自身的抵抗能力,本就难以对付的感染棘手程度可以再蹿升数十倍甚至千倍[4-6]……哈利路亚。

不过正所谓柳暗花明又一村,人体自身的免疫机制,也可以为打造对抗超级细菌的新武器提供灵感。

荷兰莱顿大学的研究团队对人体内原有的抗菌肽进行了改造升级,得到了一种对抗MRSA和鲍曼不动杆菌的新型抗菌利器,在实验中这种名为SAAP-148的抗菌肽仅用4小时就彻底100%杀灭了这两大耐药菌!研究成果发表在1月11日的《科学·转化医学》上[7]。

英雄救世的剧情谁不爱看啊为什么强大的多重耐药菌,就这么被SAAP-148轻松消灭了?这得从它的祖师LL-37说起。

LL-37可以算是药如其名,它是一种氨基酸总数为37个,且前两个氨基酸为亮氨酸(L)的内源性抗菌肽,在人体内的分布广泛,除了本身可以中和细菌分泌的内毒素外,它还能调节中性粒细胞、巨噬细胞、T细胞等免疫系统的骨干分子,有着很强的抗菌能力和广泛的抗菌谱[8-10]。

人工合成LL-37或其类似物,作为新型抗生素治疗感染的想法早已被提出多年。

莱顿大学的科学家们在这个课题上做了长期的探索,2009年,研究团队改造出了一种只由24个氨基酸组成的“微缩版”LL-37类似物OP-145,在动物实验中OP-145对MRSA体现了不错的杀伤力[11],但临床试验时,效果就差强人意了。

细菌世界历险记的主要内容作文

细菌世界历险记的主要内容作文

细菌世界历险记的主要内容作文英文版Bacteria World AdventureBacteria are tiny organisms that can be found everywhere on Earth. They are incredibly diverse and can survive in extreme conditions, from the freezing cold of Antarctica to the scorching heat of volcanic vents on the ocean floor. In this article, we will take a closer look at the fascinating world of bacteria and their incredible ability to adapt and thrive in their environment.One of the most interesting things about bacteria is their ability to form biofilms. Biofilms are slimy layers of bacteria that stick to surfaces like rocks, pipes, and even our teeth. These biofilms protect the bacteria from harsh conditions and help them communicate and work together as a community. Some bacteria in biofilms can even exchange genetic material, allowing them to evolve and adapt to new challenges.Another amazing ability of bacteria is their role in the nitrogen cycle. Nitrogen is an essential element for all living organisms, but most plants and animals cannot use nitrogen gas in the atmosphere. Bacteria called nitrogen-fixing bacteria can convert nitrogen gas into a form that plants can use, helping to fertilize the soil and support plant growth. Without these bacteria, life on Earth would look very different.In addition to their important roles in the environment, bacteria also play a crucial role in our bodies. Our gut is home to trillions of bacteria that help us digest food, produce essential vitamins, and even regulate our immune system. These "good" bacteria are essential for our health and well-being, and researchers are still discovering new ways that they influence our bodies.Overall, bacteria are incredible organisms that have adapted to thrive in a wide range of environments. From forming biofilms to cycling nutrients and supporting our health, bacteria play a vital role in the world around us.中文翻译细菌世界历险记细菌是一种可以在地球上随处找到的微小生物。

认识生物被膜

认识生物被膜

背景介绍
与人类感染有关的生物膜形成菌 Nhomakorabea相关疾病
生物膜形成菌
龋齿 牙周炎 中耳炎 骨骼肌感染 骨髓炎 心内膜炎 隐形眼镜所致感染 缝合部位感染 人工心瓣膜
产酸性G+球菌 口腔G-厌氧菌 嗜血流感杆菌 G+球菌 多种细菌和真菌(混合) 草绿色链球菌 绿脓杆菌和G+球菌 表皮葡萄球菌、金黄色葡萄球菌 金黄色葡萄球菌和表皮葡萄球菌
—J. William Costerton
背景介绍
❖ 细菌生物被膜(biofilm,BF)的存在是细菌为适应环境,有利 于生存而特有的生命现象。细菌吸附于惰性物体如生物医学材 料或机体黏膜表面后, 分泌多糖基质、纤维蛋白、脂蛋白等多 糖蛋白复合物,使细菌相互粘连并将自身克隆聚集缠绕其中形 成膜状物。生物被膜内的细菌对大多数抗生素耐药,能长期存 活,不断释放,成为感染源。
[6] Schinabeck MK, Long LA, Hossain MA, Chandra J,Mukherjee PK, Mohamed S, Ghannoum MA. Rabbit model of Candida albicans biofilm infection: liposomal amphotericin Bantifungal lock therapy[J]. Antimicrobial Agents and Chemotherapy, 2004, 48(5): 1727–1732. [7] Nett J, Lincoln L, Marchillo K, et al. Putative Role of β-1,3 Glucans in Candida albicans Biofilm Resistance[J]. Antimicrob Agents Chemother, 2007, 51(2):510-520.

微生物学术语双语(中英文)对照

微生物学术语双语(中英文)对照

Brock Biology of MicroorganismsBilingual Glossary(For Internal Circulation Only)微生物学术语双语(中英文)对照北京林业大学生物科学与技术学院微生物教研室谢响明生物秀-专心做生物www.bbioo.com2007年6月10日Catalogue目录Chapter1 Microorganisms and MicrobiologyChapter 2 An Overview of Microbial LifeChapter 3 MacromoleculesChapter 4 Cell Structure/FunctionChapter5 Nutrition, Laboratory Culture, and Metabolism of MicroorganismsChapter 6 Microbial GrowthChapter 7 Principles of Microbial Molecular Biology Chapter 8 Regulation of Gene ExpressionChapter 9 Essentials of VirologyChapter 10 Bacterial GeneticsChapter 11 Microbial Evolution and Systematics Chapter 15 Microbial GenomicsChapter 18 Methods in Microbial EcologyChapter 19 Microbial Habitats, Nutrients Cycles Chapter 20 Microbial Growth ControlBilingual Glossary for MicrobiologyChapter 1Landmark:里程碑Ramifications:分支non-cellular life :非细胞生命prion:朊病毒microbial diversity and evolution:微生物的多样性和进化pathogens:病原体genetic engineering:基因工程entity:实体macromolecules:大分子Reproduction:繁殖Differentiation:分化Communication:信息沟通coding devices:编码机制attributes:特征,品质coordination.:协调regulation:调节optimally attuned to最适地调和populations:种群habitat.:生境assemblages:集合体microbial communities:微生物群落biofilms:生物被膜hot springs:温泉Aquatic:水生的Terrestrial:陆生的Prokaryotic cells:原核细胞ecosystem :生态系统biomass:生物量nitrogen:氮phosphorus:磷Bubonic Plague:鼠疫Fleas:跳蚤Mortality:死亡率Grotesque:奇异Liquefy:液化Influenza and pneumonia:流感和肺炎Tuberculosis:肺结核spontaneous generation:自然发生学说microbes:微生物Broth:肉汤Flask:烧瓶Guncotton filters:棉花滤器Dissolved:溶解的Ether:醚Particles:微粒flask with swan neck:曲颈瓶sterilization:灭菌vaccines:疫苗anthrax:炭疽热fowl cholera:禽流感rabies:狂犬病Germ theory:病菌说Koch’s postulates:科赫假设(法则) contagious diseases:传染病artificially infected animals:人工感染的动物Solid medium:固体培养基Gelatin:明胶Agar:琼脂Colony formation:菌落形成Differential staining:鉴别染色Pure culture:纯培养isolation:分离, 隔离inoculation:接种Tuberculin:结核菌素Diagnosis:诊断Subdisciplines:(学科的)分支enrichment culture:富集培养aerobic:需氧的N-fixing bacteria:固氮细菌sulfate-reducing:硫酸盐还原sulfur-oxidizing bacteria:硫氧化细菌root nodule:根瘤Lactobacillus:乳酸杆菌tobacco mosaic virus:烟草花叶病毒tenets:原则virology:病毒学nitrifying bacteria:硝化细菌nitrification:硝化作用oxidation of ammonia to nitrate:从氨氧化为硝酸盐hydrogen sulfide:硫化氰chemolithotrophy:无机化能营养型autotrophs:自养生物anaerobe :厌氧生物Clostridium pasteurianum:巴斯德羧菌属Medical microbiology and immunology:医学微生物学和免疫学Aquatic microbiology:水生微生物学Microbial ecology:微生物生态学Microbial systematic:微生物的系统学Microbial physiology:微生物生理学Cytology :细胞学Bacterial genetics:细菌遗传学Chapter 2Evolutionary History:进化史Elements:原理,基础Viral Structure:病毒结构The Tree of Life:生命树Physiological:生理学的Eukaryotic:真核的Cytoplasmic (cell)membrane:细胞质膜Cytoplasm:细胞质Macromolecules:大分子Ribosome:核糖体organic molecules:有机分子inorganic ions:无机离子rod-shaped prokaryote:杆状原核生物organelles:细胞器Archaea:古生菌Nucleus:细胞核(nuclear的复数)Mitochondrion(Mitochondrion复数)线粒体Chloroplast:叶绿体Metazoans:后生生物Cytoplasmic:细胞质的Membrane:膜,隔膜Endoplasmic reticulum:内质网Nucleoid:类核,拟核Nucleolus:核仁Nuclear:核的,细胞核Static:静态的metabolic abilities:代谢能力biosynthetic:生物合成genetic alterations:遗传改造Genomes:基因组Chromosome:染色体Circular:环状copy:拷贝haploid:单倍体extrachromosomal:染色体外的plasmids:质粒conferring:赋予properties:性质,特性Packaged :包裹的Yeast:酵母Folding:折叠的Packing:包装gene expression:基因表达diploid:二倍体cell division:细胞分裂mitosis:有丝分裂mitotic division:有丝分裂a full complement of genes:一整套基因meiosis:减数分裂gametes:配子sexual reproduction:有性繁殖Fusion:融合Zygote:接合子,受精卵Sequenced:测序的Phylogeny:系统发生Phylogenetically:系统发生地deduced from 从推论出comparative sequencing:比较测序Ribosomal RNA:核糖体RNAbarometers :气压计clinic:临床microbiology:微生物学identical copies:相同的拷贝polymerase chain reaction (PCR):聚合酶链式反应aligned :排列的algorithm:运算法则pair-wise comparisons:配对比较Domains:域Lineages:血统,世系Proteobacteria:蛋白细菌Cyanobacteria:蓝细菌Hyperthermophiles:极端嗜热菌Methanogens:产甲烷菌extreme halophiles:极端嗜盐菌slime molds:黏菌flagellates:鞭毛虫giardia:双滴虫(贾弟虫属)Eukarya (eukaryotes):真核生物Morphology:形态学Motility:运动性Mechanism:机制Developmental biology:发育生物学Adaptation:适应environmental extremes:极端环境Organic chemicals:有机化合物Inorganic chemicals:无机化合物Oxidizing:氧化Conserved:保存,保留high-energy compound:高能量化合物Aerobes:需氧生物Anaerobes:厌氧生物Chemoorganotrophs:化能有机营养生物Chemolithotrophs:化能无机营养生物Phototrophic:光和营养的Pigments:色素major nutrient:主要营养Heterotrophic:异养的Autotrophic:自养的Autotrophs;自养生物primary producers:初级生产者extreme environmental habitats:极端环境生境extremophiles:极端环境微生物,嗜极菌hot spring:温泉tolerant :忍耐的pathogenic:致病的Phylum:门Aquifex:产液菌属Thermotoga:栖热孢菌属green nonsulfur bacteria:绿色非硫细菌deinococcus:异常球菌属spirochetes:螺旋体green sulfur bacteria紫硫细菌planctomyces:浮霉状菌属phylogenetic:系统发生的depicted:描述的marine:海洋halobacterium:盐杆菌属natronobacterium:嗜盐碱杆菌属halophilic methanogens:嗜盐产烷生物methanosarcina:甲烷八叠球菌属thermoplasma:热源体属methanobacterium:甲烷杆菌属methanococcus:甲烷球菌属pyrococcus:火球菌属pyrolobus:热叶菌属methanopyrus:嗜热甲烷菌属thermoproteus:热变形菌属desulfurococcus:硫还原球菌属sulfolobus:硫化叶菌属hyperthermophiles:嗜热细菌halophiles:嗜盐菌acidophiles:嗜酸菌filamentous:丝状的Protozoans:原生动物Motile:运动的Lichens:地衣Diplomonads:双滴虫Trichomonads:毛滴虫,微孢子虫Flagellates:鞭毛虫Ciliates:纤毛虫Green algae:绿藻Red algae:红藻Fungi:真菌Diatoms:硅藻属Brown algae:褐藻Apex:顶点Chapter 4Locomotion:运动、行动Inclusions:内含物、包涵物Light Microscopy:光学显微镜Bright-field:明视野Phase contrast:相差Dark-field:暗视野Fluorescence:荧光Magnification:放大率Resolution:分辨率Staining:染色Increasing Contrast for Bright-Field Microscopy:提高明视野显微镜的对比效果positively charged (cationic):带正电的(阳离子,正离子)negatively charged:带负电的polysaccharide:多糖cationic dyes:阳离子染料Methylene blue:亚甲蓝Crystal violet:结晶紫Safranin:番红Differential stains-Gram stain:鉴别染色—格兰氏染色Gram-positive:格兰氏阳性Gram-negative:格兰氏阴性ethanol decolorizing:乙醇脱色refractive index:折射率specimen:样品scatter:分散,散射chlorophyll (autofluorescence):叶绿素(自身荧光)Three-Dimensional Imaging:三维成像Drawbacks:限制,缺点Differential Interference Contrast Microscopy (DIC):相差干涉显微镜Nucleus:核Eukaryotic cells:真核细胞Spores:孢子、芽孢Vacuole:液泡Granule:颗粒internal structure:内部结构Atomic Force Microscopy (AFM):原子力显微镜Fixatives:固定剂Coatings:膜、层、覆盖物Hydrated:水合物Confocal Scanning Laser Microscopy (CSLM):聚焦扫描激光显微镜Couples:连接,伴随Habitat:生境resolving power:分辨率vacuum:真空Transmission Electron Microscope (TEM):透射电子显微镜thin sectioning, 超薄切片EM staining:电子显微镜染色Scanning Electron Microscope (SEM):扫描电子显微镜external features:外部特征prokaryote:原核生物Coccus (cocci):球菌Rod:杆菌Spirilla:螺菌Spirochetes:螺旋体Appendaged bacteria:附属细菌Filamentous bacteria:丝状细菌in general inversely proportional to cell size:从大体上说是于细胞大小成反比的nanobacteria:纳米细菌precipitates:沉淀物biofilms:生物膜surface-to-volume (S/V) ratio表面积与体积比Membrane Transport Systems:膜运输系统Peptidoglycan:肽聚糖outer Membrane:外膜Glycerol backbone:甘油主键fatty acids:脂肪酸phosphate-containing groups-ester linkage:含有磷酸的基团—酯键phospholipid bilayer:磷脂双分子层hydrophobic:疏水的hydrophilic:亲水的phosphate group:磷酸基团embedded:内嵌的hydrophobic external surface spanning the membrane:疏水的外表面跨膜hydrogen bonds:氢键hydrophobic interaction:疏水相互作用transverse:横切fluid mosaic:流动镶嵌Membrane Strengthening Agents: Sterols and Hopanoids:膜巩固剂:固醇和类何帕烷chemical composition:化学组分methanotrophic:嗜甲烷细菌mycoplasmas:支原体exception:例外side chains:侧链isoprene:异戊二烯Glycerol diethers:甘油二醚glycerol tetraethers:甘油四醚monolayers:单分子层hyperthermophilic:极端嗜热Permeability barrier:渗透屏障(透性障)passive leakage:被动泄漏Protein anchor:蛋白锚定Energy conservation:能量贮存Proton motive force:质子动力Aquaporins:水通道蛋白low osmotic conditions:低渗透势条件hypo-osmotic shock:低渗透压休克Simple diffusion:简单扩散Carrier-mediated process:载体介导过程Uptake:摄取、吸收Saturated:饱和的Symporter:同向运输蛋白Uniporter:单向运输蛋白Antiporters:逆向运输蛋白Lac Permease:乳糖透过酶Lactose:乳糖Group translocation:基团转位Phosphotransferase system:磷酸转移酶系统Glucose:葡萄糖Mannose:甘露糖Fructose:果糖Phosphorylation:磷酸化Dephosphorylation:去磷酸化cascading fashion:级联方式phosphoenolpyruvate:磷酸烯醇式丙酮酸Periplasmic:周质的periplasmic -binding protein:周质结合蛋白maltose:麦芽糖disaccharide sugar:双糖a family of related proteins:相关蛋白的家族High affinity for substrate:对底物的高亲和力Hydrolysis:水解drive transport across the membrane:促进跨膜运输translocase:移位酶amylase:淀粉酶cellulase:纤维素酶starch:淀粉cellulose:纤维素toxin:毒素deleterious:有害的solutes:溶质turgor pressure:膨胀压Multilayered structure and complex:多层结构和复合体Periplasm space:周质空间Teichoic acids:磷壁酸ribitol phosphate residues核糖醇磷酸盐残基Lipoteichoic acid:脂磷壁酸Murein:胞壁质Derive:衍生物N-acetylglucosamine (G):N—乙酰葡糖胺N-acetylmuramic acid (M):N—乙酰胞壁酸L-alanine:L—丙氨酸D-glutamic acid:D—谷氨酸L-lysine:L—赖氨酸diaminopimelic acid (DAP):二氨基庚二酸tetrapeptide:四肽glycan:聚糖ß-1,4 linkage:ß-1,4连接interbridge:肽间桥capsular polymers:荚膜Protoplasts:原生质体Spheroplasts:原生质球Mycoplasma:支原体Osmotically:渗透地Thermoplasma:热原体属Lysozyme:溶菌酶Penicillin:青霉素ß-1,4 –glycosidic bonds:ß-1,4糖苷键saliva:唾液autolysin:自溶素transpeptidation:转肽Pseudopeptidoglycan:假肽聚糖N-acetyltalosaminuronic acids:N-乙酰塔罗糖胺糖醛酸Glycosidic bonds:糖苷键Polysaccharide:多糖Glycoprotein:糖蛋白Methanosarcina:甲烷八叠球菌glucuronic acid葡糖醛酸:galactosamine:半乳糖胺acetate:乙酸haiophilic Archaea:嗜盐古生菌Halococcus:盐球菌Paracrystalline surface layer:类结晶表面层hexagonal symmetry:六角对称lipopolysaccharide (LPS layer) :脂多糖Core polysaccharide:核心多糖O-polysaccharide:O—特异侧链LipidA:类脂ADisaccharide:双糖Endotoxin:内毒素Pathogenic:致病的Shigella:志贺氏菌属mol-weight :分子量Hydrolytic enzymes:水解酶Chemoreceptor:化学受体Flagella:鞭毛(复数)Flagellum:鞭毛Peritrichous:周生Polar:极生Lophotrichous:丛生Filament:鞭毛丝Flagellin:鞭毛蛋白Hook:钩motor portion:motor蛋白L-ring:L环P-ring:P环MS-ring:MS环Flexing:摆动Cheetah:猎豹Gliding:滑动Cyanobacteria:蓝细菌Myxococcus xanthus:黄色粘球菌physical or chemical gradients:物理或化学梯度Chemotaxes:趋化性Phototaxes:趋光性Other Taxes:其他趋性Temporal:时间的Spatial:空间的Tumbles:翻滚Attractant:引诱剂Scotophobotaxis (darkness escaping phototaxis):避暗趋光性Aerotaxis:趋氧性Osmotaxis:趋渗透性Elucidated:阐述signal transduction pathway,:信号传导途径Gas Vesicle:气泡Endospore:芽孢Fimbriae:菌毛Pili:性毛Pellicles:菌膜Conjugation:接合Symmetries:对称性Capsules and Slime Layers:荚膜和黏液层The Glycocalyx:多糖包被Matrix:矩阵Deformed:变形Phagocytic:吞噬细胞的Desiccation:干燥作用Carbon Storage Polymers:碳源贮存物PHB, poly-ß-hydroxybutyric acid:聚ß羟丁酸PHA, poly-ß-hydroxyalkanoate:聚ß羟基链烷酸Magnetosomes:磁小体Intracellular crystal particles:细胞内晶体颗粒Magnetotaxis:趋磁性aquatic Bacteria:水生细菌buoyancy:浮力purple and green phototrophic bacteria:紫色和绿色光养细菌watertight:防水的ribs:脊ß-sheet:ß折叠ą-helix:ą螺旋Germination:萌发Halotolerant:耐盐的Permian:休眠Dominican amberGut:消化道Morphology:形态学Refractile:折光的Exosporium:孢子外壁Cortex:皮层Calcium-dipicolinic acid complex:钙—吡啶二羧酸Cytoplasm:细胞质Small acid-soluble spore proteins (SASPs:酸溶小芽孢蛋白Ceases:终止Sporulation:芽孢形成Bacillus subtili:枯草芽孢杆菌s Outgrowth:生长Chapter 51. Oxidation-Reduction 氧化还原反应2. Catabolic Pathways 异化途径3. Proton Motive Force 质子动势4. Macronutrients 大量营养元素5. Cytochromes 细胞色素6. cellular respiration 细胞呼吸7. Siderophores 铁传递蛋白8. hydroxamate, 异羟肟酸9.enterobactin 肠杆菌素10.Acuqchelin儿茶酚11. Micronutrients 微量营养元素12. Trace elements微量元素13. Streptococcus链球菌属14. Lactobacillus乳杆菌属15. Leuconostoc明串球菌属16. distilled water 蒸馏水17. casein 酪蛋白18. soybean 大豆19. Leuconostoc mesenteroides肠膜明串珠菌20. Fastidious 营养复杂的,挑剔的21. Aseptic Technique 无菌技术22. Exergonic 放能的23. Endergonic 吸能的24. Redox 氧化还原作用25. hydrogen atom 氢原子26. reactants 反应物27. Chemoorganotrophy 化能有机营养28. Photophosphorylation 光和磷酸化29. Pyruvate 丙酮酸盐(或酯)30. Glycolysis 糖酵解31. glyceraldehyde 3-phosphate 3-磷酸甘油醛32. Saccharomyces cerevisa e啤酒酵母33. Beverage 饮料34. Yogurt 酸奶酪,酵母乳35. Pickled vegetables 盐渍蔬菜36. anaerobically 厌氧地37. Aerobic oxidation 有氧氧化38. Anaerobic oxidation 无氧氧化39. Dehydrogenase 脱氢酶40. Flavoproteins 黄素蛋白41. Iron-sulfur proteins 铁硫蛋白42. Quinones-non-protein 辅酶Q43. Heme 亚铁血红素44. Chemiosmosis 化学渗透势45. electrochemically potential 电子势46. alkaline 碱性的47. headpiece 帽子,头盔48. cyanide 氰化物49. Dinitrophenol(DNP) 二硝基苯酚50. Dicumarol 血液凝固防止剂51. the Citric Acid Cycle 柠檬酸循环52. aerobic respiration有氧呼吸53. Nitrate 硝酸盐54. ferric iron 铁离子55. sulfate 硫酸盐56. carbonate 碳酸盐57. Chemolithotrophy 矿质(无机)化能营养58. Ammonia 氨,氨水59. Chemolithotrophs 化能自养60. chemoorganotrophs 化能异养61. Phototrophy 光合营养62. Photoautotrophs 光合自养生物63. Phtoheterotrophs 光合异养生物64. Catabolism 分解代谢65. Anabolism 合成代谢Chapter 6Binary Fission二分裂Peptidoglycan肽聚糖Viable Counts活菌计数Turbidity浊度Continuous Culture连续培养Preexisting先前存在的Duplicate复制Monomers单体Coenzymes辅酶Cofactors辅助因子Polymerization reactions聚合反应Polymers聚合体Fts(f ilamentous t emperature s ensitive )Protein :丝状温敏蛋白mitochondria 线粒体chloroplasts叶绿体tubulin微管蛋白Divisome:分裂体Apparatus设备,仪器Cylinder圆柱体polymerize to form an intact ring聚合形成完整环penicillin青霉素MreBhomology 相同actin肌动蛋白cytoskeleton细胞骨架structural integrity结构的完整性autolysins自溶素lysozyme溶解酵素bactoprenol:细菌萜醇N-acetyl glucosamine N-乙酰葡糖胺N-acetylemuramic acid N-乙酰胞壁酸Pentapeptide peptidoglycan precursors五肽肽聚糖前体物Transpeptidation 转肽作用muramic acid residues 胞壁酸残基adjacent glycan chains 邻近多糖链noteworthy 值得注目的periplasm 周质Unsterilized 未灭菌的Detrimental 有害的Slope 斜面Semilogarithmic 半对数的Vessel 导管,器皿Elapsed时间流逝Inoculum 接种体Cryptic 秘密的Counting chambers:计数室plate count 平板计数colony count菌落计数Serial Dilutions 系列稀释Statistically:统计学地colony-forming unit 菌落形成单位Anomaly 不规则Magnitude 数量,量级Photometer 光度计Spectrophotometer 分光光度计The Chemostat 恒化器Cardinal 主要的,最重要的Optimum 最适宜的Pschrophile 嗜冷生物Mesophile 嗜温生物Thermophile 嗜热生物Hyperthermophile 极端嗜热生物Extremophiles 极端生物Psychrotolerant 耐寒的unsaturated fatty acids 不饱和脂肪酸morphological and physiological types形态的和生理的类型a critical amino acid substitution关键的氨基酸替代物counterpart 副本,配对物hydrophobic interiors 疏水的内部saturated fatty acids 饱和脂肪酸isoprene 异戊二烯monolayer 单层melting 熔化annealing退火Acidophile 嗜酸细菌Thiobacillus硫杆菌属Sulfolobus 硫化叶菌属Thermoplasma热源体属Alkaliphile 嗜碱微生物Carotenoids:类胡萝卜素Proteases 蛋白酶Lipases 脂肪酶Detergent 清洁剂Water activity:水活度vapor pressure 蒸汽压Osmophiles 嗜渗透微生物Xerophiles 旱生生物Sucrose 蔗糖Trehalose 海藻糖Glycerol 甘油,丙三醇Glycosides 配糖类Glycine 甘氨酸,氨基乙酸Betaine 甜菜碱Praline 果仁糖Staphylococcus葡萄球菌potassium ions钾离子Aerobes 需氧生物Anaerobes 厌氧生物thioglycolate broth巯基乙酸盐肉汤Anoxic jar 厌氧罐anoxic glove bag 厌氧手套peroxidase enzymes 过氧化物酶Airborn bacteria 空气携带菌Catalase 过氧化氢酶Peroxidase 过氧化物酶Superoxide dismutase 超氧化歧化酶(SOD)Superoxide reductase 超氧化还原酶obligately anaerobic:专性厌氧的Pyrococcus furiousus:激烈热球菌Chapter 7Pneumococcus 肺炎球菌Pathogenic 致病的Pneumonia 肺炎polysaccharide capsule 多糖荚膜pathogenicity 致病性transformation 转化Versatile 通用的,万能的in vivo体内in vitro体外ultracentrifugal, 超离心的diffusive 扩散electrophoretic 电泳的Polypeptide cleaving enzymes 多肽裂解酶Ribonulclease 核糖核酸酶Deoxyribonuclease 脱氧核糖核酸酶Amino acid 氨基酸hydrogen bonds 氢键grooves 凹槽polynucleotide多(聚)核苷酸Supercoiling 超螺旋Twisted 盘旋Predominantly 主要地Nucleosome 核小体Torsion 扭转Gyrase 解旋酶Topoisomerase:拓扑异构酶Nonchromosomal 非染色体的Extracellular 细胞外的Templates 模板deoxyribonucleic acid 脱氧核糖核酸isotope同位素Density gradient equilibrium sedimentation密度梯度平衡沉降Cesium chloride 氯化铯Centrifugation 离心Detection of peaks检测高峰fidelity 忠诚度dilemma 进退两难的局面Okazaki fragment 冈崎片断Polymerase 聚合酶Exonuclease 核酸外切酶Ligase 连接酶Helicase 螺旋酶Initiation 起始Elongation 延伸Termination 终止Triphosphate 三磷酸盐Purine 嘌呤Bacillus subtilis :枯草芽孢杆菌intrinsic terminators 内在终止子Transcription 转录Cotranscribed 共转录Polycistronic 多顺反子性的Operon 操纵子introns 内含子exons 外显子Splicing 拼接Ribonucleoprotein核蛋白(略作RNP)Capping 加帽Polyadenylation 多聚腺苷酸Deciphering 译码Polylysine多聚赖氨酸Polyproline 多聚脯氨酸Proline 脯氨酸Polyphenylalanine多聚苯基丙氨酸Phenylalanine 苯基丙氨酸Trinucleotide 三核苷酸密码子Codons 密码子codon-degeneracy:密码子的简并性Formylmethionine 甲酰甲硫氨酸Methionine 蛋氨酸Methylated 甲基化的Synthetase 合成酶Catalyzing 催化The peptide transferase reaction 转肽反应Streptomycin 链霉素Puromycin 嘌呤霉素Chloramphenicol 氯霉素Cycloheximide 放线菌酮,环己酰亚胺Tetracycline 四环素molecular chaperones 分子伴侣aggregation 聚合Signal recognition particle (SRP) 信号识别颗粒Chapter 8Scarce protein 稀有蛋白Abundant protein 丰度蛋白Posttranslationally 翻译后地Coarser 粗糙的Precursor 前体物(分子),-先导物Degrading 降解Allostery 变构Conformational change 构象变化Isozymes 同工酶Covalent modification 共价修饰Methylation 甲基化Glutamine synthetase 谷氨酸盐合成酶allosteric enzyme 变构酶adenylylation 腺嘌呤形成Global Control全局调控Regulator proteins调节蛋白Histones 组蛋白Nucleosomes 核小体Inducer诱导物Substrate 底物Corepressor 辅阻遏物Polymerase 聚合酶Maltose regulon 麦芽糖调节子consensus sequence 保守序列utilization 利用operons 操纵子Regulon调节子global regulatory system全局调控系统lac Operon 乳糖操纵子simultaneously 同时地Constitutive mutant组成型突变体lactose 乳糖Glucose 葡萄糖glucose effect葡萄糖效应diauxic growth二次生长Catabolite Repression分解代谢物阻遏catabolite activator protein (CAP)激活蛋白(活化蛋白)cAMP-receptor protein (CRP)环腺苷酸受体蛋白hydrolyze 水解galactose 半乳糖Galactosidase半乳糖苷酶Hydrolysis 水解Modulates 调节galactoside permease 半乳糖苷透性酶thiogalactoside transacetylase 硫代半乳糖苷转乙酰酶allolactose 异乳糖diffusible 可扩散的Intact copy完整拷贝positive control正调节negative control副调节Attenuation 衰减,弱化Two-component Regulatory Systems双组分调控系统Sensory proteins (transducers)感受器蛋白MCP –transducers MCP感受器m ethyl-accepting c hemotaxis proteins(MCP)接受甲基趋化性蛋白Methylase甲基化酶Chemotaxis 趋化性Tryptophan Operon 色氨酸操纵子Tandom 串联重复Insufficient 不足Termination 终止Dual Regulation of Trp Operon色氨酸的二重调节Translational attenuation翻译衰减(弱化)Bacillus subtilis 枯草芽孢杆菌trp attenuation protein色氨酸弱化蛋白Polycistronic 多顺反子性的Heat Shock Response 热激反应Global Control Networks全局调控网络Quorum Sensing:最少密度感应degraded by proteases 被蛋白酶降解Heat shock protein热激蛋白chaperones (chaperonin) 分子伴侣acylated homoserine lactone 酰化的高丝氨酸内酯bioluminescence 生物发光Sensor Kinases感受器激酶phosphorylation 磷酸化The phosphoryl group 磷酰基团Demethylated 脱甲基Flagellum 鞭毛Rotation of flagellum鞭毛旋转clockwise 顺时针counterclockwise 逆时针Antisense Nucleic Acid反义核酸Compartmentation分区Polycistronic mRNA多顺反子mRNA Splicing 接合,粘接Chapter 9Essentials本质Viral Replication病毒复制Viral Diversity病毒多样性Chromosome染色体Conferring new properties on the host赋予宿主新的特性Extracellular state-virus particles (virions)胞外状态-病毒颗粒(病毒粒子)Lysis:裂解genomic nucleic acid基因组核酸Intracellular state胞内状态the central dogma of molecular biology分子生物学中心法则Taxonomy分类学Bacteriophage嗜菌体Order目family (and subfamily)科(亚科)genus属species种morphology形态学suffix后缀Hepadnaviruses嗜肝DNA病毒Smallpox 天花病毒Polio virus 脊髄灰质炎病毒Nucleocapsid核壳体naked and enveloped裸露和包被的self-assembly自我装配molecular chaperones分子伴侣Virus Symmetry病毒对称Helical symmetry螺旋状对称Tobacco mosaic virus (TMV)烟草花叶病毒Icosahedral Symmetry二十面体Complex viruses复合体病毒Complex Symmetry复合体对称lipid bilayer脂双层glycoproteins糖蛋白Lysozyme溶菌酶reverse transcriptase逆转录酶retroviruses逆转录病毒Neuraminadase 神经氨酸酶(唾液酸苷酶)Semiliquid半流体Protoplasts原生质体Monolayer单层permanent cell lines:亲本细胞系primary cell lines:原初细胞系virus infection unit病毒侵染单位Plaque嗜菌斑tumor virus肿瘤病毒Plaque assay空斑测定Titer滴度,效价Suspension悬浮液plaque-forming units噬菌斑形成单位Attachment and Penetration吸附和侵入tail fibers尾丝polysaccharide多聚糖tail pins尾针Contraction 收缩tail sheath尾鞘Restriction enzyme限制性酶Invasion入侵methylation of purine and pyrimidine bases嘌呤和嘧啶碱基的甲基化glucosylation糖基化methylation甲基化Virulent Bacteriophage裂性噬菌体Temperate Bacteriophage温和噬菌体Viriods and Prions类病毒和朊病毒Schematic representations示意表示图Linear线性的Encode编码Hydroxymethylcytosine羟甲基胞嘧啶Cytosine胞嘧啶restriction endonucleases限制性内切酶circularly permuted环状变化Terminal repeats 末端重复Concatemer多联体Lysogeny溶原性Synchrony同步Provirus前病毒nitrogen mustards氮芥cohesive粘性的lysis or lysogeny裂解或溶源bidirection双向repressor protein 阻遏蛋白irrevocably不可逆地integrase整合酶PE(promoter establishment)启动子建立Topoisomerase拓扑异构酶Bracket括号Excisionase切除酶Compartmentation分隔Polycistronic多顺反子性的Monocistronic单顺反子性的5’ methylated guanosine triphosphate cap and 3’ poly A tail:5’甲基化三磷酸鸟苷酸帽子和3’多聚腺苷酸尾巴Endocytosis 内吞作用Lytic infection裂解传染Persistent infection持久传染Latent infection潜伏传染Foci焦距benign 良性的malignant 恶性的metastasis转移oncogenes致癌基因intermediate中间的Human immunodefiency virus (HIV)人类免疫缺陷病毒acquired immunodefiency syndrome (AIDS)获得性免疫缺陷综合症internal proteins内部蛋白endonuclease核酸内切酶Protease蛋白酶5’ capped and 3’ polyadenylated: 5’帽化和3’聚腺苷酸化Encapsidation壳体化Budding出芽RNA dependent DNA polymerase(RdDp)依赖于RNA的DNA聚合酶DNA dependent DNA polymerase(DdDp)依赖于DNA的DNA聚合酶Ribonuclease H核糖核酸酶Hcoconut cadang-cadang viroid椰子可可树类病毒citrus exocortis viroid柑橘裂皮类病毒scrape刮伤BSE: bovine spongiform encephalopathy牛绵状脑病pathogenic proteins病原蛋白质insoluble不可溶解的mad cow disease 疯牛病Chapter 10In Vivo活体内Mutants突变体Carcinogenesis致癌作用The Ames Test埃姆斯试验Genotype基因型Phenotype表现型lowercase letters小写字母uppercase letters大写字母italics斜体字superscript上标progeny后代Screening筛选Selection挑选Penicillin青霉素Lysozyme水解酶Spheroplast原生质球Nutritional Mutants营养突变体Imprint印迹Prototroph原养型Auxotroph营养缺陷型histidine auxotrophs组氨酸营养缺陷型微生物Spontaneous自发的Induced诱发的Point mutations点突变Base-Pair Substitutions碱基置换Silent mutation沉默突变Missense mutation错义突变Triplet三联体Temperature-sensitive mutants 温度敏感突变体conditionally lethal mutants条件致死突变体Nonsense mutation 无义突变Back Mutations or Reversions回复突变Compensate 补偿Transposition转位,转座proof-reading校对epidemic流行病Mutagens诱变剂Base analogs碱基类似物Radiation 辐射Transposon转位子,转座子Site-Directed Mutagenesis定点突变Mutagenicity致突变性Protocol 方案salmonella enterica沙门氏肠菌Trp- auxotroph色氨酸营养缺陷型Errorprone错误倾向Plasmids质粒Homologous 同源的redundant pathways冗余的途径Homologous Recombination同源重组SSB protein单链结合蛋白RecA protein RecA蛋白Nick formation缺口形成Strand invasion链侵入Heteroduplex formation 杂合双链形成Transformation转化Transduction转导Conjugation接合Transfection 转染Artificially Induced Competence人工诱导感受态Acinetobacter不动杆菌属Azotobacter固氮菌属Bacillus杆菌属Streptococcus链球菌属Haemophilus嗜血菌属Neisseria奈瑟球菌属Thermus栖热菌属Electroporation电穿孔Generalized transduction普遍性转导Specialized transduction特异性(局限性)转导Recipient受体temperate or virulent温和的或者裂性的lysogenization溶源化作用randomly incorporate随机整合Phage Conversion溶源转变,噬菌体转变Prophage前噬菌体Polysaccharide多糖Nontoxin非毒素Corynebacterium diphtheriae白喉杆菌toxin 毒素Supercoiled configuration超螺旋构型Incompatibility 不相容性,不亲和性Episomes游离体,附加体Curing(噬菌体)治愈Conjugative可接合的Hfr (high frequency of recombination)高频重组Rhizobium根瘤菌属Pseudomonas of octane辛烷假单胞菌camphor and naphthalene樟脑和卫生球Bacteriocins细菌素Resistance Plasmids- R Plasmids抗性质粒Sulfonamides磺胺药物Streptomycin链霉素Spectinomycin壮观霉素fusidic acid梭链孢酸chloramphenicol 氯霉素tetracycline四环素mercury汞Therapies治疗物Diarrhea痢疾CFA-colonization factor antigen 入侵因子抗原hemolysin and enterotoxin溶血素和肠毒素a wider spectrum of activity广谱活性colicins大肠肝菌素subtilisin枯草杆菌蛋白酶NisinA乳酸菌肽Arolling cycle replication滚环复制pilus菌毛IS(insertion sequences)插入序列Interrupted Mating中断杂交Agitation搅拌transposable elements转座因子transposase转位酶inverted terminal repeats末端反向重复序列Conservation保存,保守Replicative重复的Bacteriophages噬菌体Cointegrate共合体cointegrate structure共合体结构Mutagenesis with Transponsable Elements用转座子诱变insertional inactivation插入失活neomycin and kanamycin resistance新霉素和卡那霉素抗性tetracycline 四环素biological mutagen生物诱变剂vector载体Integrons整合子Integrase整合酶Genetic Map基因图谱Operon操纵子Polycistronic mRNA 多顺反子mRNABidirection双向Highly expressed genes高度表达基因Horizontal gene transfer水平基因转移Haemophilus influenzae流感嗜血杆菌Hyperthermophiles极端嗜热微生物Mycoplasma genitalium生殖道支原体Chlorella 绿藻的一种Methanococcus jannaschii詹氏甲烷球菌Pseudomonas aeruginosa铜绿假单胞菌Saccharomyces cerevisiae啤酒酵母Streptomyces coelicolor天蓝色链霉菌Treponema pallidum苍白密螺旋体(梅毒密螺旋体)Thermotoga maritima海栖热孢菌Unidentified reading frame-URF未经确认的阅读框架Genomic mining基因组挖掘Paralogs侧向同源Orthologs直向同源obligate parasitic bacterium严格寄生菌Helicobacter pylori螺旋幽门菌cyanobacterium Synechocytis 蓝细菌introns内含子Plasmodium falciparum疟原虫Malaria疟疾Encephalitozoon cuniculi 家兔脑内原虫病Ustilago maydis玉米黑粉病Phytopathogenic fungus植物病原真菌smut disease黑穗病Chapter 11Stromatolites叠层石Fossiled 化石Filamentous丝状的Systematics系统学Taxonomy分类法Diversification多样化Phylogeny系统发生, 发展史Endosymbiosis内共生Prokaryotes原核生物trapped sediments捕捉的沉淀物phototrophic bacteria光养细菌anoxygenic phototrophic bacteria 厌氧光养细菌lipoprotein vesicles脂蛋白小泡cyanobacterium 蓝细菌entity实体ferrous亚铁的photosynthesis光合作用oxygenation加氧作用,氧气形成oxic有氧的ozone shield臭氧层eukaryotes cell真核细胞chemoorganotrophic化能有机营养mitochondrion线粒体cytoplasm细胞质chloroplast叶绿体endosymbiotic内共生的phototroph光养生物,光能利用菌symbionts共生体metazoan后生生物Evolutionary Chronometers进化时钟Homologous function相同功能Sequence alignment序列排列,序列对比ATPase ATP酶genetic recombination遗传重组Ribosomal核糖体的Phylogenetic系统发生的Cellular细胞的Microbial Community Analysis微生物群体分析phylogenetic tree系统发育树Evolutionary distance ED 进化距离fluorescent i n-s itu h ybridization荧光素原位杂交Horizontal (lateral) gene transfer 水平(侧向)基因转移human genome人类基因组nematode线虫yeast酵母mustard芥菜parasites寄生虫vertebrates脊椎动物Peptidoglycan肽聚糖Cellulose纤维素Chitin几丁质,壳质Archaea古生菌Lipids脂质Ester酯RNA polymerase RNA聚合酶Polypeptides多肽Framework框架Phenotype显型,表现型Phylogenetics系统发生学Classical Taxonomy Morphology传统形态分类学fatty acid methyl ester (FAME) 脂肪酸甲基酯hybridization杂交genus属Molecular fingerprinting分子指纹PCR amplification聚合酶链式反应扩增Speciation物种形成coexist 共存prime ecological niche最初生态位ecotypes生态型Nomenclature命名法Manual手册Chapter 18Biodiversity 生物多样性Quantification 定量microorganisms微生物habitats栖息地Enrichment富集培养Staining染色Radioisotopes放射性同位素Microelectrodes微电极in situ(原位)Pure Culture纯培养Counterselective反选择enrichment vehicle富集培养手段purple紫色phototrophic光养anaerobes厌氧微生物microbial ecosystem 微生物生态系统tubes试管Agar shake琼脂震荡法dilution 稀释molten agar熔化的琼脂serial dilution 系列稀释inoculum接种体most probable numbers (MPN)最大概率数The Laser Tweezers 激光镊子microscopy显微镜术infrared laser 红外线激光器micromanipulation device显微操作装置trapped捕集的laser beam 激光柱contaminating污染Stable Isotope稳定同位素Azotobacter n.固氮(细)菌。

Biofilm细菌生物膜适用医学生

Biofilm细菌生物膜适用医学生

临床意义
细菌生物膜 进入体内的 可能途径
临床意义
• 医疗器械表面、插入导管、植入医疗器具/hip replacement- 是医原性感染的主要原因之一
• 生物造成细菌对抗生素不敏感/耐药性
• P. N. R. Nair (2019) International Endodontic Journal. On the causes of persistent apical periodontitis: a review
回肠表面的细菌生物被膜
细菌生物膜广泛存在于自然环境中
人体植入导管表面的细菌生物被膜
真菌生物膜
Biofilms can be harmful
• Catheters and prostheses (may lead to systemic infection)
• Dental disease (牙菌斑、口腔味道?) • Otitis media/中耳炎, inflammatory bowel
Biofilms — matrix-enclosed microbial accretions/逐渐生长/增加 that adhere to biological or non-biological surfaces.
细菌生物膜广泛存在于自然环境中
on a contact lens
on a spider
古老:fossil record (3.25 billion years ago) Common:a diverse range of organisms
Archaea/ 单细胞生物, bacteria,fungi
Represents a protected mode of growth

biofilm reactor 生物膜反应器 BIOSURFACE TECHNOLOGIES CORPORATION

biofilm reactor 生物膜反应器 BIOSURFACE TECHNOLOGIES CORPORATION

BIOSURFACE TECHNOLOGIES CORPORATION CDC REACTORThe CDC Biofilm Reactor consists of eight (8) polypropylene coupon holders suspended from a UHMW-polyethylene ported lid. The coupon holders can accommodate three 1/2 inch (12.7 mm) diameter coupons each . The lid with coupon holders and coupons is mounted in a 1 liter glass vessel with side-arm discharge port. A liquid growth media/biocide/etc.is circulated through the vessel while mixing and shear is generated by a magnetic stir bar/vane rotated by a magnetic stir plate.Sampling of the coupons is conducted by aseptically removing individual coupon holders with accompanying coupons (3). The coupon holder or a blank is replaced in the lid after sampling to allow the time course experiment to continue.The CDC Biofilm Reactor is autoclavable and re-useable. The total liquid volume is approximately 350 ml. A variety of coupon materials are available, including plastics, metals, and ceramics.The CDC Biofilm Reactor provides a controlled and reproducible environment for growing biofilm on test surfaces. The CDC Biofilm reactor is an ideal system to evaluate and screen anti-microbial surfaces and chemistries. The CDC Biofilm Reactor is part of the ASTM Standard Method E2562-12: Standard Test Method for Quantification of Pseudomonas aeruginosa Biofilm Grown with High Shear and Continuous Flow using CDC Biofilm Reactor and ASTM Standard MethodE2871-12:Standard Test Method for Evaluation of Disinfectant Efficacy against Pseudomonas aeruginosa Biofilm Grown in a CDC Biofilm Reactor using Single Tube Method.The CDC Biofilm Reactor is available in standard and gas containment (anaerobic) models, and with membrane, porous media, and slide test inserts.CDC反应器在CDC生物膜反应器由八(8)聚丙烯券持有人悬挂在UHMW-聚乙烯移植盖子。

细菌生物膜荧光染色

细菌生物膜荧光染色

细菌生物膜荧光染色英文回答:Fluorescent staining of bacterial biofilms is a common technique used to visualize and study the structure and composition of these complex microbial communities. There are several methods available for staining biofilms, each with its own advantages and limitations.One commonly used method for fluorescent staining of biofilms is the use of a fluorescent dye such as SYTO 9 or propidium iodide. These dyes can penetrate the biofilm matrix and stain both live and dead bacteria. SYTO 9 stains live bacteria green, while propidium iodide stains dead bacteria red. This allows researchers to differentiate between viable and non-viable cells within the biofilm.To perform the staining, the biofilm is first fixed with a fixative solution to preserve its structure. The fixed biofilm is then incubated with the fluorescent dyefor a specific period of time. After staining, the biofilm is washed to remove any unbound dye and mounted on a microscope slide for imaging. The stained biofilm can be visualized using a fluorescence microscope, and the images can be analyzed using image analysis software.Another method for fluorescent staining of biofilms is the use of fluorescently labeled antibodies or lectins. Antibodies or lectins specifically bind to certain components of the biofilm, such as specific bacterial species or extracellular matrix proteins. These labeled antibodies or lectins can be incubated with the biofilm, allowing for specific visualization of the targeted components.In addition to fluorescent staining, other techniques such as confocal laser scanning microscopy (CLSM) can be used to obtain three-dimensional images of biofilms. CLSM uses a laser to scan through the biofilm, capturing images at different depths. These images can then be reconstructed to create a three-dimensional representation of the biofilm structure.Overall, fluorescent staining of bacterial biofilms is a powerful tool for studying the organization and composition of these complex microbial communities. It allows researchers to visualize the spatial distribution of bacteria and other components within the biofilm, providing valuable insights into biofilm formation, function, and resistance mechanisms.中文回答:细菌生物膜的荧光染色是一种常用的技术,可用于可视化和研究这些复杂微生物群落的结构和组成。

Microbial Biofilm Sample

Microbial Biofilm Sample

Microbial Biofilm Sample Microbial biofilms are a fascinating and complex subject within the field of microbiology. These structured communities of microorganisms are encased in aself-produced extracellular matrix and can be found in a wide range of environments, from natural ecosystems to industrial settings. The study of microbial biofilms is crucial for understanding their role in various processes, including disease development, bioremediation, and biofouling. In this article, we will explore the significance of microbial biofilms, their formation and structure, as well as their impact on human health and industrial processes. One of the key aspects of microbial biofilms is their ability to form on a variety of surfaces, including medical implants, industrial equipment, and natural substrates. This ability to adhere and colonize surfaces is a result of the initial attachment of microbial cells to a substrate, followed by the production of extracellular polymeric substances (EPS) that form the biofilm matrix. Understanding the mechanisms of biofilm formation is essential for developing strategies to prevent their formation on medical devices and industrial equipment, where they can leadto serious health and economic consequences. Furthermore, the structure of microbial biofilms plays a crucial role in their resilience and resistance to antimicrobial agents. The EPS matrix provides physical protection to the microbial cells within the biofilm, making them less susceptible to antibiotics and disinfectants. This poses a significant challenge in clinical settings, where biofilm-associated infections are notoriously difficult to treat. Research intothe composition and architecture of biofilms is essential for developing new therapeutic approaches to combat biofilm-related infections and improve patient outcomes. In addition to their impact on human health, microbial biofilms also play a significant role in industrial processes. Biofouling, the accumulation of microorganisms on surfaces such as ship hulls and water pipes, can lead to reduced efficiency and increased maintenance costs. Understanding the factors that contribute to biofilm formation in industrial settings is crucial for developing effective biofouling prevention strategies, ultimately leading to cost savings and environmental benefits. Despite the challenges posed by microbial biofilms, there is also growing interest in their potential applications in bioremediation andwastewater treatment. Certain microbial species within biofilms have the ability to degrade pollutants and contaminants, making them valuable tools for environmental remediation. Harnessing the potential of microbial biofilms for sustainable environmental solutions requires a deeper understanding of their metabolic activities and interactions within complex microbial communities. In conclusion, microbial biofilms are a multifaceted and dynamic area of research with implications for human health, industrial processes, and environmental sustainability. Understanding the formation, structure, and function of biofilms is essential for developing strategies to mitigate their negative impacts and harness their potential for beneficial applications. As researchers continue to unravel the complexities of microbial biofilms, the insights gained will undoubtedly lead to innovative approaches for addressing biofilm-related challenges in diverse fields.。

细菌的衣食住行的读后感

细菌的衣食住行的读后感

细菌的衣食住行的读后感英文回答:The book "Bacteria's Clothing, Food, Shelter, and Transportation" provides a fascinating insight into the world of bacteria and their daily lives. As I read through the pages, I was amazed by the intricate details of their existence and how they adapt to different environments. From their clothing, which refers to the outer protective layers, to their food sources and methods of obtaining shelter, the book delves into every aspect of their lives.One aspect that stood out to me was the bacteria's ability to adapt their clothing or outer protective layers to survive in harsh conditions. For example, some bacteria have a thick capsule or slime layer that acts as a shield against harmful substances or predators. This adaptation allows them to thrive in environments that would be inhospitable to other organisms. It made me realize that even the tiniest of creatures have developed ingenious waysto protect themselves.In terms of food, bacteria have diverse diets and can obtain nutrients from various sources. Some bacteria are autotrophs, capable of producing their own food through photosynthesis or chemosynthesis. Others are heterotrophs, relying on organic matter for their nutrition. The book provides examples of bacteria that can break down complex compounds such as oil spills or waste materials,highlighting their important role in the ecosystem. It made me appreciate the incredible diversity and resilience of bacteria in finding sustenance.When it comes to shelter, bacteria are incredibly adaptable and can survive in a wide range of habitats. They can be found in soil, water, air, and even within thebodies of plants and animals. The book explores howbacteria form biofilms, which are communities of bacteria that adhere to surfaces and create a protective environment for themselves. These biofilms can be found on rocks, pipes, and even on our teeth as dental plaque. It made me realize that bacteria are not just solitary organisms, but they canform complex communities and interact with their environment.Transportation is another fascinating aspect ofbacteria's lives. While they may not have cars or airplanes, bacteria have developed various mechanisms for movement. Some bacteria have flagella, which are whip-like structures that propel them through liquids. Others can move usingpili, which are thread-like appendages that help them crawl along surfaces. The book also mentions how bacteria can be transported by wind, water currents, or even by hitching a ride on insects or other animals. It made me marvel at the ingenuity of bacteria in finding ways to travel andcolonize new environments.Overall, reading about bacteria's clothing, food, shelter, and transportation was an eye-opening experience.It made me appreciate the resilience and adaptability of these tiny organisms and their important role in thenatural world. The book's detailed explanations and examples helped me understand the complexities ofbacteria's lives in a way that was both informative andengaging.中文回答:《细菌的衣食住行》这本书深入探索了细菌的日常生活,让我对它们的存在方式有了全新的认识。

细菌的衣食住行好词好句和读后感

细菌的衣食住行好词好句和读后感

细菌的衣食住行好词好句和读后感英文回答:Bacteria are one of the most diverse and adaptable organisms on Earth. They can be found in almost every habitat, from the depths of the ocean to the highest mountains. As such, their lifestyle and habits vary greatly depending on their environment. Let's take a closer look at the clothing, food, shelter, and movement of bacteria.Clothing: Unlike humans and animals, bacteria do not have a need for clothing. They have a protective outerlayer called a cell wall, which provides them withstructural support and helps them maintain their shape. Some bacteria also have an additional layer called a capsule, which helps protect them from the immune system of their host organism.Food: Bacteria have a wide range of dietary preferences. Some bacteria are autotrophs, meaning they can producetheir own food through photosynthesis or chemosynthesis. Others are heterotrophs, which means they rely on external sources for their nutrition. Heterotrophic bacteria can be further classified into categories such as saprophytes (feeding on dead organic matter), parasites (feeding on living organisms), and symbionts (mutually beneficial relationships with other organisms).Shelter: Bacteria can live in various types of habitats. Some bacteria are free-living and can survive in soil, water, or air. Others have adapted to live in extreme environments such as hot springs, deep-sea hydrothermal vents, or even inside the human body. Bacteria can form colonies or biofilms, which provide them with protectionand help them adhere to surfaces.Movement: Bacteria have different mechanisms for movement. Some bacteria have flagella, which are long whip-like structures that enable them to swim through liquid environments. Others use pili, which are shorter hair-like appendages that help them crawl along surfaces. Somebacteria are non-motile and rely on external factors suchas water currents or the movement of their host organism to disperse.Overall, bacteria are incredibly diverse in their clothing, food, shelter, and movement strategies. Their ability to adapt to a wide range of environments allowsthem to thrive in various ecological niches.中文回答:细菌是地球上最多样化和适应性最强的生物之一。

专业解读-细菌生物被膜Bacterial biofilm形成、特点预防与控制

专业解读-细菌生物被膜Bacterial biofilm形成、特点预防与控制

细菌生物被膜Bacterial biofilm目录细菌生物被膜Bacterial biofilm (1)定义 (2)形成过程原理 (3)表面特性 (5)特点及耐药性 (6)预防与控制 (7)细菌生物被膜(或称细菌生物膜Bacterial biofilm,BF),是指细菌粘附于接触表面,分泌多糖基质、纤维蛋白、脂质蛋白等,将其自身包绕其中而形成的大量细菌聚集膜样物。

Biofilm formation constitutes an alternative lifestyle in which microorganisms adopt a multicellular behavior that facilitates and/or prolongs survival in diverse environmental niches. Biofilms form on biotic and abiotic surfaces both in the environment and in the healthcare setting. In hospital wards, the formation ofbiofilms on vents and medical equipment enables pathogens to persist as reservoirs that can readily spread to patients. Inside the host, biofilms allow pathogens to subvert innate immune defenses and are thus associated with long-term persistence. Here we provide a general review of the steps leading to biofilm formation on surfaces and within eukaryotic cells, high lighting several medically important pathogens, and discuss recent advances on novel strategies aimed at biofilm prevention and/or dissolution.多糖基质通常是指多糖蛋白复合物,也包括由周边沉淀的有机物和无机物等。

应用碘伏和苯扎氯铵清创换药治疗大面积软组织缺损并严重感染1例

应用碘伏和苯扎氯铵清创换药治疗大面积软组织缺损并严重感染1例

应用碘伏和苯扎氯铵清创换药治疗大面积软组织缺损并严重感染1例发表时间:2011-07-20T15:32:48.233Z 来源:《求医问药》2011年第4期供稿作者:刘恒平1 孙鲁2 王明喜2[导读] 患者感染严重,流脓量多,创面分泌物细菌培养结果一直为阳性,故未行皮瓣和皮肤移植手术。

刘恒平1 孙鲁2 王明喜2(1 山东中医药大学;2 山东省中医院)【摘要】大面积皮肤软组织缺损病例的治疗,临床上一般清创换药,待创面肉芽组织新鲜后,做皮瓣或皮肤移植手术。

本病例因感染严重,又有骨质肌腱内固定物外露,一直流脓较多,故未行手术,仅通过清创换药治愈。

【关键词】皮肤缺损;感染;碘伏;苯扎氯铵;清创换药【中图分类号】R440 【文献标识码】C 【文章编号】1672-2523(2011)04-0148-011 一般资料患者马某,男,58岁,18天前因交通事故,以右踝关节毁损伤于外院行手术治疗,后皮肤坏死并感染流脓,来我院就诊。

入院查见:右踝处约宽12cm全周皮肤缺损,肌腱、血管、神经、骨质、内固定物外露,流黄白色粘稠脓液,量多味恶臭。

X线示:右踝骨折术后克氏针钢丝内固定,诊断为:右踝关节毁损性伤术后皮肤坏死并感染。

创面分泌物细菌培养结果:①绿脓杆菌;②肺炎克雷伯菌。

2 治疗经过患者感染严重,流脓量多,创面分泌物细菌培养结果一直为阳性,故未行皮瓣和皮肤移植手术。

患者入院后共经过两次清创手术,另外每日清创换药,清除坏死组织、陈旧肉芽,并用生理盐水冲洗至创面干净,以0.05 %苯扎氯铵或碘伏盐水冲洗创面,再覆盖一层无菌敷料,稍加包扎,以保持创面湿润,敷料湿敷后在其蒸发干燥的过程中有自然的虹吸作用,促使创面少量渗出物排出,利于新生组织生长。

治疗的前两周用碘伏换药,但是碘伏换药容易导致创面黄染,而且患者创面周围皮肤因刺激发生皮炎,患者感觉瘙痒。

后改用苯扎氯铵冲洗换药,患者创面周围皮肤皮炎消失,未再感觉瘙痒,直至创面愈合。

期间视患者情况,予以全身对症治疗。

BWT 11

BWT 11

The thickness of the mass transport boundary layer, defined here as the distance from the biofilm surface. to the point where the nutrient concentration is 950/0 of the nutrient concentration in the bulk solution, can be calculated from Equation 7.1 by substituting C = O.95Cb and solving for ~ . Nutrient concentration profiles are measured at a pseudo-steady state, which means that the shape of the concentration profile does not change for reasonable lengths of time. Each data point in Figure 7.2 represents a unique equilibrium between the rate of nutrient delivery to a point in space and the rate of nutrient uptake from that point in space. To be exact, the nutrients are metabolically transformed only within the space occupied by the biofilm: there is no nutrient consumption outside the biofilm, and the gradient of nutrient concentration in that zone is due to nutrient transport toward the biofilm surface at a rate determined by the microbial metabolic activity in the biofilm and by hydrodynamics. Because each point of the concentration profile reflects equilibrium between nutrient delivery and nutrient uptake, the shape of the profile is affected by all factors influencing the rate of microbial metabolism and all factors influencing the rate of mass transport. Because of this complex arrangement of factors influencing the profile, judging local biofilm activity or local mass transport dynamics from nutrient concentration profiles alone is difficult. Changes in nutrient uptake rate, caused by microbial metabolism, may have the same effect on the shape of the profile as changes in the flow rate.

抗冲生物毯的施工方法

抗冲生物毯的施工方法

抗冲生物毯的施工方法英文回答:Construction Methods for Antimicrobial Biofilms.Antimicrobial biofilms are a promising new approach to preventing and treating infections. They are composed of living cells that are encapsulated in a protective matrix of extracellular polymeric substances (EPS). This matrix makes biofilms resistant to many antibiotics and antimicrobials.Antimicrobial biofilms can be constructed using a variety of methods. One common method is to grow thebiofilm on a solid surface, such as a glass or plastic slide. The surface is first coated with a nutrient-rich medium, and then the bacteria are added. The bacteria will attach to the surface and begin to grow. As they grow, they will produce EPS, which will form the biofilm matrix.Another method for constructing antimicrobial biofilms is to grow the biofilm in a liquid culture. The bacteria are added to a nutrient-rich medium, and then the cultureis incubated at a temperature that is optimal for the bacteria's growth. As the bacteria grow, they will produce EPS, which will form the biofilm matrix.Once the biofilm has been formed, it can be tested for its antimicrobial properties. This can be done by exposing the biofilm to a variety of antimicrobial agents, such as antibiotics or antimicrobials. The biofilm's susceptibility to the antimicrobial agents can be determined by measuring the biofilm's growth or by observing the biofilm's morphology.Antimicrobial biofilms have a number of potential applications. They could be used to prevent infections in medical devices, such as catheters and implants. They could also be used to treat infections in chronic wounds.中文回答:抗冲生物毯的施工方法。

美国《科学》周刊新闻六则

美国《科学》周刊新闻六则

南极冰川正在变薄英国科学家收集到的新证据表明南极洲西部的松岛冰川(Pine Island Glacier)正在变薄,并且如果继续照此速度发展下去,那么在600年内这一冰川将会漂浮于海面上。

如果南极洲西部冰层发生融化,它所含有的水足可以让全球的海平面上升大约5米。

松岛冰川是所有流向海洋的冰河中最大的一个,因此它是南极西部冰层内部所发生的任何大变动的一个关键性“指示器”。

Andrew Shepherd 和同事们在1992年到1999年间对该冰川进行了监测,他们利用卫星测高技术和卫星干涉测量法分别对高度的变化和冰移动的速率进行了测量。

研究人员发现内陆冰川在此期间正逐渐变薄,并估计松岛冰川的重量正以每年大约40亿吨的速度在减少——这相当于使海平面上升了近0.01个毫米。

这些新发现也表明冰川变薄是冰川内部冰雪流动变化的结果,而不是积雪的改变。

报告:Inland Thinning of Pine Island Glacier, West Antarctica, by Andrew Shepherd, et al. 埃博拉病毒的毒性本质德国和法国的研究人员利用一种转基因系统从克隆的DNA中筛选出有感染力的埃博拉(Ebola)病毒。

这使得科学家们可以在基因水平上控制这种病毒,以便对它破坏方式的分子基础有更多的了解。

这类信息有助于改进这种疾病以及马尔堡病(Marburg)等由类似病毒引起的疾病的治疗策略,以及预防策略。

从克隆DNA中筛选出埃博拉病毒后,Viktor E. Volchkov 和同事们在病毒中制造了一个突变,使其不能编辑一种重要的病毒蛋白的基因。

这些突变的埃博拉病毒的毒性甚至比普通类型更强。

作者提出,这个关键基因的编辑可能限制了病毒的毒性,使病毒的负载增加并促进了感染传播。

(这篇论文将以初稿形式刊登于2001年2月1日的《科学》特快;其印刷版将在晚些时候出来。

) [!--empirenews.page--]科学特快:Recovery of Infectious Ebola Virus from cDNA: Transcriptional RNA Editing of the GP Gene and Viral Cytotoxicity, by Viktor E. Volchkov, et al. 发面用酵母的生物膜虽然酵母S. cerevisiae 是面包师傅和生物学家的朋友,但它却能开始生物膜的形成,生物膜是各种传染病患者的敌人。

酵母菌的形态特征

酵母菌的形态特征

酵母菌的形态特征引言酵母菌是一类单细胞真核生物,广泛存在于自然界中的各种环境中,例如土壤、水体、植物表面以及动物体内。

酵母菌具有许多重要的应用价值,包括工业发酵、食品加工、生物研究等方面。

了解酵母菌的形态特征对于研究其生物学特性以及开发应用具有重要意义。

酵母菌的基本形态酵母菌的基本形态特征是单细胞结构,其细胞形状通常为圆球形或椭圆形。

下面我们将详细探讨酵母菌形态的几个方面。

细胞大小酵母菌细胞的大小通常在1-10微米之间,不同种类的酵母菌细胞大小存在一定的差异。

在培养基中,酵母菌细胞通常会在合适的环境条件下迅速生长和繁殖。

细胞壁酵母菌细胞壁是其形态特征中的重要组成部分。

细胞壁由多种不同的聚合物构成,包括β-1,3-葡聚糖、β-1,6-葡聚糖和甘露聚糖等。

细胞壁的主要功能是保护细胞免受外界环境的损害,并提供细胞形态的稳定性。

细胞膜酵母菌细胞膜位于细胞壁的内侧,是细胞内外物质交换的关键部位。

细胞膜主要由磷脂分子构成,其具有半透性的特性,能够选择性地控制物质的进出。

此外,细胞膜还包含一些重要的膜蛋白,参与信号转导、运输等生物学过程。

酵母菌的菌丝形态除了基本的单细胞形态,某些酵母菌在特定条件下还能形成菌丝结构。

菌丝是由单个酵母菌细胞逐渐分裂延伸而成的长丝状结构,其构成了细胞间网络。

菌丝的形成条件酵母菌形成菌丝的条件通常包括营养不足、环境压力和细胞个体之间的联系等。

在这些条件下,酵母菌会通过细胞壁的特定部位分裂,产生新的发芽孢子,并逐渐延伸形成菌丝。

菌丝的结构菌丝的结构由许多细胞组成,细胞之间通过母细胞和子细胞之间的特殊鲜膜连接。

细胞在菌丝中的位置和角色也有所不同,部分细胞发育成为发芽孢子,进行新的繁殖,而其他细胞则负责菌丝的延伸和营养摄取。

酵母菌的多态性除了基本的单细胞形态和菌丝形态,酵母菌还具有多态性的特征。

多态性是指同一种酵母菌在不同生长条件下形态的差异。

酵母菌的分芽形态酵母菌在适宜的营养条件下,会产生小孢子或分芽,参与繁殖过程。

肠球菌生物被膜研究进展

肠球菌生物被膜研究进展

肠球菌生物被膜研究进展丁丽;林东昉【期刊名称】《中国感染与化疗杂志》【年(卷),期】2019(019)003【总页数】5页(P331-335)【关键词】肠球菌;生物被膜;感染【作者】丁丽;林东昉【作者单位】复旦大学附属华山医院抗生素研究所,国家卫生健康委员会抗生素临床药理重点实验室,上海200040;复旦大学附属华山医院抗生素研究所,国家卫生健康委员会抗生素临床药理重点实验室,上海200040【正文语种】中文【中图分类】R378.1生物被膜(biofilms)是指细菌在生长过程中附着于生物体表面(如伤口表面)或非生物体表面(导尿管、中心静脉导管、人工心脏瓣膜等医用植入装置),由自身产生的胞外聚合物(包括核酸、蛋白质、多糖和脂类)包裹细菌组成的一个细菌群体。

生物被膜的形成为细菌提供了保护作用,生物被膜抵抗抗生素作用以及宿主免疫防御,并涉及许多细菌和真菌慢性感染 [1]。

肠球菌是一种重要的条件致病菌,主要包括粪肠球菌和屎肠球菌,能够引起尿路感染、腹腔感染、血流感染以及感染性心内膜炎,尤其是免疫功能低下的患者 [2]。

根据2017 年中国CHINET细菌耐药性监测显示,肠球菌在医院分离革兰阳性临床菌株中位列第二,其中,粪肠球菌占42.3%,屎肠球菌则占50.7% [3-4]。

现有资料显示,高达65%~80%感染与生物被膜形成有关,突出了其巨大的临床影响[5]。

随着研究的不断深入,发现肠球菌生物被膜的形成是尿路感染、心内膜炎等感染慢性化的重要原因 [6]。

本文主要介绍肠球菌生物被膜的最新研究进展及其临床意义。

1 肠球菌生物被膜及其流行性1.1 生物被膜的形成生物被膜形成是一个多阶段的过程,主要包括黏附、成熟以及脱落三个过程 [7]。

首先,细菌可逆性附着于生物体或者非生物体表面,随后细菌自身诱导产生的胞外聚合物使得细菌更加坚固地聚集在一起,其结构提供了一个最佳的微环境,促进细菌之间遗传因子的传播,当生物被膜内微环境出现不利因素(缺氧、营养物质不足等)时,细菌从生物被膜中脱落,随血流等进入循环系统,引起血流感染,同时能黏附在机体其他部位,再次形成生物被膜 [6,8]。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A recent paper in Proceedings of the National Academy of Sciences USA confirms the importance of bacterial quorum sensing-controlled surfactants in biofilm structuring and detachment.
The ‘lifecycle’ of a biofilm involves several distinct stages, from attach-ment, to maturation, to detachment and dispersal. Michael Otto and col-leagues were interested in the factors
involved in the development of the structure of a mature Staphylococcus aureus biofilm and its eventual detachment. Although the specific factors involved in biofilm detach-ment in S. aureus are unknown, the overall process is known to be regulated by the Agr quorum sensing system. Moreover, recent work in the related organism Staphylococcus epidermidis revealed a role for a specific class of phenol-soluble
modulins (PSMs) — small α-helical, amphipathic peptides with surfactant qualities — in biofilm detachment. S. aureus encodes a total of nine PSMs. The authors created a series of isogenic psm mutants and then, using confocal laser scanning microscopy, undertook a comprehensive analysis of the structure of the biofilms formed by the psm mutants and an agr mutant in both static and dynamic (flow cell) conditions. The results showed that in both static and dynamic biofilms the agr and psm mutants elaborated smoother bio-films with poorer channel formation and greater thickness and volume than the biofilms formed by wild-type S. aureus , indicating a role for
Agr and PSMs in biofilm structuring and detachment. Analysis of the patterns of agr and psm expression within dynamic biofilms showed that expression varied both with time and with position in the biofilm, and suggested that Agr controls PSM pro-duction. Finally, in a mouse catheter-associated infection model, a triple psm deletion strain showed reduced dissemination to the lymph nodes, skin and the tissues surrounding the catheter.
This work confirms that PSMs have a key role in structuring and detachment of S. aureus biofilms. Given that similar quorum sensing-controlled surfactants are encoded by many other biofilm-forming bacterial species, the authors speculate that this represents a widespread mecha-nism of controlling biofilm structure and detachment.
Sheilagh Molloy
B I O F I L M S
Biofilms take shape
ORIGINAL RESEARCH PAPER Periasamy, S. et al . How Staphylococcus aureus biofilms develop their characteristic structure. Proc. Natl Acad. Sci. USA 109, 1281–1286 (2012)
FURTHER READING McDougald, D. et al . Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nature Rev. Microbiol. 10
, 39–50 (2012)
High-resolution scanning electron microscopy image of a community-associated methicillin-resistant Staphylococcus aureus biofilm embedded in extracellular matrix, formed on implanted catheter tubing during experimental biofilm
infection. Image courtesy of M. Otto, D. Dorward, E. Fischer and A. Mora, National Institute of Allergy and Infectious Diseases, USA.
R E S E A R C H H I G H L I G H T S
NATURE REVIEWS | MICROBIOLOGY
VOLUME 10 | MARCH 2012
Nature Reviews Microbiology | AOP , published online 13 February 2012; doi:10.1038/nrmicro2756
© 2012 Macmillan Publishers Limited. All rights reserved。

相关文档
最新文档