离子液体的应用综述 大全必看
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离子液体的应用综述大全
摘要:离子液体作为环境友好、“可设计性”溶剂正越来越多地受到关注。
已有的研究表明,离子液体具有独特的性能并有着十分广阔的应用前景。
该文在介绍离子液体特性的基础上,综述了其在有机合成、聚合反应、电化学、分离过程、新材料制备、生物技术等方面的应用。
关键词:离子液体;绿色溶剂;有机合成;聚合反应;电化学;分离过程
离子液体是在室温或室温附近呈液态的由离子构成的物质,具有呈液态的温度区间大、溶解范围广、没有显著的蒸气压、良好的稳定性、极性较强且酸性可调、电化学窗口宽等许多优点,因此,它是继超临界CO2后的又一种极具吸引力的绿色溶剂,是传统挥发性溶剂的理想替代品。
离子液体的阳离子和阴离子可以有多种形式,可设计成为带有特定末端或具有一系列特定性质的基团。
因此,离子液体也被称为“designer solvents”,这就意味着它的性质可以通过对阳离子修饰或改变阴离子来进行调节,像熔点、黏性、密度、疏水性等性质,均可以通过改变离子的结构而予以改变[1]。
因此,它不仅作为绿色溶剂在分离过程、电化学、有机合成、聚合反应等方面有着十分广阔的应用前景,而且由于其独特的物理化学性质及性能,有望作为新型功能材料使用,是近年来国内外精细化工研究开发的热点领域。
1、在化学反应中的应用
以离子液体作为化学反应的介质,为化学反应提供了不同于传统分子溶剂的环境,有可能通过改变反应机理而使催化剂活性、稳定性更好,转化率、选择性更高。
离子液体种类多,选择范围宽,将催化剂溶于离子液体中,与离子液体一起循环利用,催化剂兼有均相催化效率高、多相催化易分离的优点。
同时离子液体无蒸气压,液相温度范围宽,产物可通过倾析、萃取、蒸馏等简单的方法分离出来。
1.1在有机合成中的应用
离子液体[EtNH3] [NO3]最先应用于环戊二烯与丙烯酸甲酯和甲基酮的Diels2Alder反应,结果表明:离子液体的种类和组成对内、外旋产物的比例影响较大,与丙酮等非极性分子溶剂相比,离子液体体系中反应速率更快,内旋产物的选择性更高,为解决对水敏感的Diels2Alder 反应提供了一个良好的溶剂环境。
Abbott等人的研究也表明在离子液体进行的Diels2Alder 反应有很好的立体选择性[2]。
Howarth等人以Pd(OAc)2/PPh3为催化剂,分别在传统溶剂DMF 和离子液体[bmim]PF6中进行了一系列的卤代苯与甲基丙烯酸酯之间的Heck反应[3],发现离子液体的使用不仅使产率大大提高,而且有效地防止了催化剂的还原失活,溶剂和催化剂可重复使用。
Admas等人在离子液体[ emim]Cl2AlCl3中研究了苯的衍生物如甲苯、氯苯、甲氧基苯等的Friedel2Crafts反应,产率等于用分子溶剂的最好文献值,产物选择性很好。
离子液体在其他反应如催化Bigineli反应、羰基化反应、酯化反应、异构化[4]、Knoevenagal和Ronbinson 关环反应、氧化还原反应[5]、有机金属反应[6]、烯烃的选择氢化[7]、区域选择烷基化[8]等反应中都得到了广泛的应用。
邓友全等人[9]用离子液体负载碱性催化剂催化活化CO2,与胺类化合物反应,制备了二取代脲及异氰酸酯,以无毒的温室气体CO2为羰化剂取代光气和一氧化碳等剧毒羰化剂,使生产过程成为安全的“绿色过程”,并且为CO2的利用提供了新的途径,有利于减少温室效应,保护环境。
同时,由于离子液体可以重复使用,将有可能降低异氰酸酯的生产成本。
他们在离子液体[BuPy] [PF4]中以五氯化磷为催化剂实现了环己酮肟的Beckmann重排,有很好的转化率和选择性,解决了工业生产已内酰胺使用发烟硫酸造成的设备腐蚀、环境污染等问题。
1.2在聚合反应中的应用
由于阴离子为AlCl4-, PF6-或BF4-的离子液体与过渡金属具有弱配位作用,此类离子液体
作为烯烃低聚的反应介质,克服了过渡金属催化剂在有机溶剂中溶解性差的缺点。
Ma等人[10]在离子液体[emim]Cl-AlCl3 中用Cp2TiCl2为催化剂,AlCl3-xRx (R=Me, Et)为助催化剂催化乙烯聚合。
Carlin等人在[emim]Cl-AlCl3烷基铝组成的离子液体中,研究了TiCl4催化乙烯聚合,当AlCl3的摩尔分数为0152时, 得到熔点为120~130℃的聚乙烯,而通常高相对分子质量的聚乙烯的熔点在136℃左右,所以可以认为乙烯在离子液体中发生了低聚反应。
Wikes研究小组利用离子液体作催化剂低聚化丙烯的研究表明: [emin] Cl、[bmim]Cl及[bmim][Cl-AlCl3-EtAlCl2]等均可作为溶剂,使从丙烯到己烯的异构体在Ni(Ⅱ)络合物的催化下进行二聚, IFP公司在此基础上开发的正丁烯二聚新工艺,已完成中试,正准备工业示范。
1.3在催化反应中的应用
Zhang等讨论了离子液体在燃料油中进行氧化脱硫的应用[11],他们以离子液体[ emim]BF4和[ bmim]PF6 代替传统溶剂来萃取燃料油中的含硫化合物,同时在离子液体中进行化学氧化以达到脱硫的目的。
这种将溶剂萃取和化学氧化两个除硫步骤“一锅法”进行的方法,提高了脱硫效率,还避免了使用有机溶剂所造成的污染及安全问题。
邓友全等人还将离子液体应用于清洁汽油的生产。
他们以氯铝酸离子液体为催化剂,在温和的反应条件下,通过催化烷基化和异构化较好地降低汽油中烯烃和苯的含量;利用非酸性的离子液体作催化合成了汽油添加剂甲基叔丁基醚。
寇元等人对功能化酸性离子液体进行了研究,用Hammett指示剂测量了AlCl3 类离子液体的酸性。
在异丁烷/丁烯烷基化反应中应用酸性离子液体,避免了生产高辛烷值汽油添加剂时存在的废酸排放等问题,这些都为清洁汽油的生产开辟了一条新的途径。
2、在电化学方面的应用
离子液体完全是由离子构成的,是电化学工作者良好的研究对象,可应用于电解、电镀、电池、光电池等领域。
Fuller等人[12]在室温离子液体1-乙基-3-甲基咪唑四氟化硼([emim]BF4)中研究了二茂铁、四硫富瓦烯的电氧化行为,结果表明,二茂铁和四硫富瓦烯在[ emim]BF4 中可形成可逆程度很高的氧化还原对,是一种极为卓越的可适用于电化学合成的溶剂。
金属在离子液体中电极的沉积要比水溶液中所需的电位低,这方面首先研究的是铝的电镀,然后是银的电沉积,大量银沉积过程的电流效率几乎都为100%。
控制电压、电流密度、离子浓度等,可在一个较宽范围内获得确定组成的金属或合金。
随着化石型能源储量的减少和环境保护力度的加大,锂离子电池这一绿色能源越来越受到人们的关注,目前锂离子电池所使用的有机电解质溶液存在易燃、易爆等安全隐患,离子液体由于具有蒸气压低、无可燃性、导电性高等优点,有望在彻底解决锂离子电池的安全性问题上发挥重要作用。
实验表明[13],离子液体1, 2-二甲基-4-氟吡唑四氟化硼(DMFPBF4) 的热稳定温度在300℃,可在一个宽的温度范围内和锂稳定共存,而且DMFPBF4/LiBF4的电化学窗口大于4V,以它为电解液的LiMn2O4/Li电池显示了较高的充放电循环效率( >96%)。
不挥发、高电导率的离子液体替代有机电解质溶液用于染料敏化电池中,也提高了电池寿命和稳定性。
离子液体也同样能应用于太阳能电池和电容器方面。
中国科学院有机固体重点实验室研究了离子液体在电致发光电化学电池(LEC)中的应用。
他们通过改变烷基链长度调节离子液体的熔点,分别制备出熔点为60、70和80℃的离子液体,应用这些离子液体为离子载体制备出室温准冷冻p- i- n结电致发光器件,提高了器件的发光响应速度。
在CO2羰基合成研究中,通常是CO2 与环氧化物在过渡金属催化剂作用下发生反应,但这种方法存在催化剂的溶解性差、对空气不稳定、难以循环使用以及有机溶剂污染等不足。
邓友全等成功地实现了在离子液体中电化学活化CO2,于室温、常压、无催化剂条件下与环氧化
合物反应,合成了环状碳酸酯。
3、在分离过程中的应用
传统的液-液分离过程中经常使用有机溶剂-水两相体系,要去除有毒、易燃且具有挥发性的有机相,使安全措施投入增高,有机残留物带来的环境污染问题也限制了它的进一步应用。
离子液体对有机物、无机物的溶解度高,蒸气压低,与许多有机溶剂不混溶,它已成为新型的液-液萃取剂。
Jonathan等人以甲基咪唑类离子液体作为萃取剂对多种有机物进行了萃取[14],结果发现,有机物在离子液体-水体系中的分配系数一般比在正辛醇-水体系中低一个数量级,这说明离子液体中带电荷基团浓度高,整体具有较强的极性,它既可以作为氢键的给予体,又可以作为氢键的接受体而与许多物质形成氢键,而且正负离子电荷的静电作用也使其能够溶解许多化合物,非一般传统溶剂可比。
Visser等人合成了含异喹啉类阳离子的离子液体,实验结果表明,由于比咪唑有更强的芳香性和疏水性,它们在芳香族化合物的萃取分离方面有很好的应用前景[15]。
离子液体还可用于生物技术中的分离提取, 以其独特的性能解决了淀粉改性研究面临的溶解性差的难题, 促进了淀粉的结构修饰研究, 使很多功能性官能团以各种方式引入淀粉, 从而形成如醚化淀粉、接枝共聚淀粉等多种淀粉衍生物,使其拥有更多更好的性能, 可以来取代由石油产品合成的难以降解的一些高聚物。
离子液体还可作为纤维素的直接溶剂, 能最大限度的保留天然纤维素的特性, 并可通过水、乙醇、丙酮等溶剂将溶解的纤维素析出。
离子液体能溶解许多化合物, 且不像极性有机溶剂那样易使酶失活, 许多酶在离子液体中的稳定性高于有机溶剂中, 因而它们作为绿色反应介质成为酶催化反应的溶剂。
4、在材料科学方面的应用
刘维民等人制备了多种咪唑啉类离子液体作为润滑剂,他们发现烷基咪唑四氟硼酸盐离子液体对钢/钢、钢/铝、钢/铜、钢/单晶硅、钢/陶瓷以及陶瓷/陶瓷等体系具有良好的减阻抗磨和高承载能力,是一种极具发展前途的多功能润滑材料。
石油基润滑剂通常难以满足低倾点、高黏度指数、高热氧化稳定性、低挥发性等性能要求,离子液体具有的特点与理想润滑剂所期望的性能极为吻合,在空间技术、信息技术、精密机械等领域有良好应用前景。
离子液体兼有透光和导电的特性,使其可能成为一类新型的软光学材料。
Seddon等利用过渡金属电子密集特性,将适当的阳离子和富电子的SnBr6阴离子结合,构成一类具有高折光率的液体,用于一些特定矿物的组成鉴定。
Wilkes等合成了一系列含硫阴离子的离子液体,这些离子液体显示出很强的三阶非线性光学行为,在非线性光学材料及全光器件方面有潜在的用途[16]。
澳大利亚的研究人员发现,离子液体可以极大地提高人造肌肉的功能(如肌肉的伸缩力量)。
利用溶解性能独特的醚键功能化的咪唑盐离子液体,还可以处理核苷等生物大分子,这为某些抗癌药物的寻找和合成提供了很好的思路。
英国研究人员将憎水性离子液体用作一些药物的储存剂,构成可控药物释放系统。
通过调整烷基咪唑阳离子上烷基侧链的长短,可调控药物释放速率。
5、结束语
离子液体本身独特的理化特性, 使它在电化学、化学、萃取分离等领域具有较大的应用价值, 同时其种类繁多, 可以根据不同需要改变阴阳离子来调节理化性质, 达到不同的应用目的, 在科学界和工业生产中将发挥巨大的作用。
目前离子液体的研究和开发存在着实验数据缺乏、价格昂贵、某些离子液体本身有毒且
难降解等问题, 因此如何降低成本, 设计合成更多对环境友好的离子液体, 成为挑战性的课题, 需要近一步的深入研究。
参考文献
[1] Earle M J, Seddon K R. Ionic liquid. Green solvents for the future [J]. Pure Appl Chem, 2000, 72(7):1391- 1398.
[2] Abbott A P, Capper G, Davies D L, et al. Quaternary ammonium zinc-or tin-containing ionic liquids: water insensitive, recyclable catalysts for Diels2Alder reactions [J]. Green Chem, 2002, 4(1):24- 26.
[3] Howarth J, Dallas A. Moisture stable ambient temperature ionic liquids: solvents for the new millennium. 1. theHeck reaction[J].Molecules, 2000, 5:851- 855.
[4] 顾彦龙,彭家建,乔琨,等. 室温离子液体及其在催化和有机合成中的应用[J]. 化学进展, 2003, (3):222- 241.
[5] 张所波,丁孟贤,高连勋. 离子液体在有机反应中的应用[J].有机化学, 2002, 22(3):159- 163.
[6] 孙学文,赵锁奇,王仁安. 离子液体在石油化工中的应用[J].石油化工, 2002, 31(10):855- 857.
[7] Dupont J, Suarez P A Z, Umpierre A P, et al. Pd(Ⅱ) 2dissolved in ionic liquids: a recyclable catalytic system for the selective biphasic hydrogenation of dienes tomonoenes [J]. J Braz Chem Soc, 2000, 11(3):293- 297.
[8] 阎立峰,朱清时. 离子液体及其在有机合成中应用[J]. 化学通报, 2001, (11):673- 679.
[9] Shi F, Peng J J, DengY Q. Highly efficient ionic liquid-mediated palladium complex catalyst system for the oxidative carbonylation of amines[J]. J Catal, 2003, 219(2):372- 375.
[10] Ma M, Johnson K E. Carbocation formation by selected hydrocarbons in trimethylsulfonium bromide2AlCl3/AlBr32HBr ambient temperature molten salts[J]. J Am Chem Soc, 1995, 117(5):1508- 1513.
[11] Zhang S G, ZhangZC. Novel properties of ionic liquids in selective sulfur removal fromfuels at room temperature[J]. Green Chem, 2002, 4:376- 379.
[12] Fuller J, Carlin R T, O steryoung R A. The room temperature ionic liquid 1-ethyl-3-methyl-imidazoliumtetrafluoroborate: electrochemical couples and physical properties[J]. J Elect-rochem Soc, 1997, 144(11):3881- 3885.
[13] 孙茜,刘元兰,陆嘉星. 离子液体在电化学中的应用[J].化学通报, 2003, (2):112- 114.
[14] Huddleston J G, Willauer H D, Swatloski R P, et al. Room temperature ionic liquids as novel media for“clean”liquid-liquid extraction [J]. Chem Commun, 1998, (16):1765- 1766.
[15] 杨雅立,王晓化,寇元,等.不断壮大的离子液体家族[J].化学进展,2003,15(6):471-476.
[16]顾彦龙,石峰,邓友全. 室温离子液体:一类新型的软介质和功能材料[J]. 科学通报, 2004, 49(6):515- 521.。