备战中考数学备考之初中数学 旋转压轴突破训练∶培优篇含答案(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战中考数学备考之初中数学旋转压轴突破训练∶培优篇含答案(1)
一、旋转
1.如图所示,
(1)正方形ABCD及等腰Rt△AEF有公共顶点A,∠EAF=90°,连接BE、DF.将Rt△AEF绕点A旋转,在旋转过程中,BE、DF具有怎样的数量关系和位置关系?结合图(1)给予证明;
(2)将(1)中的正方形ABCD变为矩形ABCD,等腰Rt△AEF变为Rt△AEF,且AD=kAB,
AF=kAE,其他条件不变.(1)中的结论是否发生变化?结合图(2)说明理由;
(3)将(2)中的矩形ABCD变为平行四边形ABCD,将Rt△AEF变为△AEF,且
∠BAD=∠EAF=a,其他条件不变.(2)中的结论是否发生变化?结合图(3),如果不变,直接写出结论;如果变化,直接用k表示出线段BE、DF的数量关系,用a表示出直线BE、DF 形成的锐角β.
【答案】(1)DF=BE且DF⊥BE,证明见解析;(2)数量关系改变,位置关系不变,即DF=kBE,DF⊥BE;(3)不改变.DF=kBE,β=180°-α
【解析】
【分析】
(1)根据旋转的过程中线段的长度不变,得到AF=AE,又∠BAE与∠DAF都与∠BAF互余,所以∠BAE=∠DAF,所以△FAD≌△EAB,因此BE与DF相等,延长DF交BE于G,根据全等三角形的对应角相等和四边形的内角和等于360°求出∠EGF=90°,所以DF⊥BE;(2)等同(1)的方法,因为矩形的邻边不相等,但根据题意,可以得到对应边成比例,所以△FAD∽△EAB,所以DF=kBE,同理,根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EHF=90°,所以DF⊥BE;
(3)与(2)的证明方法相同,但根据相似三角形的对应角相等和四边形的内角和等于360°求出∠EAF+∠EHF=180°,所以DF与BE的夹角β=180°﹣α.
【详解】
(1)DF与BE互相垂直且相等.
证明:延长DF分别交AB、BE于点P、G
在正方形ABCD和等腰直角△AEF中
AD=AB,AF=AE,
∠BAD=∠EAF=90°
∴∠FAD =∠EAB ∴△FAD ≌△EAB ∴∠AFD =∠AEB ,DF =BE ∵∠AFD+∠AFG =180°, ∴∠AEG+∠AFG =180°, ∵∠EAF =90°,
∴∠EGF =180°﹣90°=90°, ∴DF ⊥BE
(2)数量关系改变,位置关系不变.DF =kBE ,DF ⊥BE . 延长DF 交EB 于点H ,
∵AD =kAB ,AF =kAE ∴AD k AB =,AF
k AE
= ∴
AD AF
AB AE
= ∵∠BAD =∠EAF =a ∴∠FAD =∠EAB ∴△FAD ∽△EAB

DF AF
k BE AE == ∴DF =kBE
∵△FAD ∽△EAB , ∴∠AFD =∠AEB , ∵∠AFD+∠AFH =180°, ∴∠AEH+∠AFH =180°, ∵∠EAF =90°,
∴∠EHF =180°﹣90°=90°, ∴DF ⊥BE
(3)不改变.DF =kBE ,β=180°﹣a . 延长DF 交EB 的延长线于点H ,
∵AD =kAB ,AF =kAE ∴AD k AB =,AF
k AE = ∴
AD AF
AB AE
= ∵∠BAD =∠EAF =a ∴∠FAD =∠EAB ∴△FAD ∽△EAB

DF AF
k BE AE == ∴DF =kBE
由△FAD ∽△EAB 得∠AFD =∠AEB ∵∠AFD+∠AFH =180° ∴∠AEB+∠AFH =180°
∵四边形AEHF 的内角和为360°, ∴∠EAF+∠EHF =180° ∵∠EAF =α,∠EHF =β ∴a+β=180°∴β=180°﹣a 【点睛】
本题(1)中主要利用三角形全等的判定和性质以及正方形的性质进行证明;(2)(3)利用相似三角形的判定和性质证明,要解决本题,证明三角形全等和三角相似是解题的关键,也是难点所在.
2.如图1,在□ABCD 中,AB =6,∠B = (60°<≤90°). 点E 在BC 上,连接AE ,把△ABE 沿AE 折叠,使点B 与AD 上的点F 重合,连接EF . (1)求证:四边形ABEF 是菱形;
(2)如图2,点M 是BC 上的动点,连接AM ,把线段AM 绕点M 顺时针旋转得到线段MN ,连接FN ,求FN 的最小值(用含的代数式表示).
【答案】(1)详见解析;(2)FE·sin(-90°)
【解析】
【分析】
(1)由四边形ABCD是平行四边形得AF∥BE,所以∠FAE=∠BEA,由折叠的性质得
∠BAE=∠FAE,∠BEA=∠FEA,所以∠BAE=∠FEA,故有AB∥FE,因此四边形ABEF是平行四边形,又BE=EF,因此可得结论;
(2)根据点M在线段BE上和EC上两种情况证明∠ENG=90°-,利用菱形的性质得到∠FEN=-90°,再根据垂线段最短,求出FN的最小值即可.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠FAE=∠BEA,
由折叠的性质得∠BAE=∠FAE,∠BEA=∠FEA, BE=EF,
∴∠BAE=∠FEA,
∴AB∥FE,
∴四边形ABEF是平行四边形,
又BE=EF,
∴四边形ABEF是菱形;
(2)①如图1,当点M在线段BE上时,在射线MC上取点G,使MG=AB,连接GN、EN.
∵∠AMN=∠B=,∠AMN+∠2=∠1+∠B
∴∠1=∠2
又AM=NM,AB=MG
∴△ABM≌△MGN
∴∠B=∠3,NG=BM
∵MG=AB=BE
∴EG=AB=NG
∴∠4=∠ENG= (180°-)=90°-
又在菱形ABEF中,AB∥EF
∴∠FEC=∠B=
∴∠FEN=∠FEC-∠4=- (90°-)=-90°
②如图2,当点M在线段EC上时,在BC延长线上截取MG=AB,连接GN、EN.
同理可得:∠FEN=∠FEC-∠4=- (90°-)=-90°
综上所述,∠FEN=-90°
∴当点M在BC上运动时,点N在射线EH上运动(如图3)
当FN⊥EH时,FN最小,其最小值为FE·sin(-90°)
【点睛】
本题考查了菱形的判定与性质以及求最短距离的问题,解题的关键是分类讨论得出∠FEN =-90°,再运用垂线段最短求出FN的最小值.
3.平面上,Rt△ABC与直径为CE的半圆O如图1摆放,∠B=90°,AC=2CE=m,BC=n,半圆O交BC边于点D,将半圆O绕点C按逆时针方向旋转,点D随半圆O旋转且∠ECD始终等于∠ACB,旋转角记为α(0°≤α≤180°)
(1)当α=0°时,连接DE,则∠CDE=°,CD=;
(2)试判断:旋转过程中
BD
AE
的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;
(4)若m =6,n =42,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.
【答案】(1)90°,2n ;(2)无变化;(3)1255
;(4)BD=210或21143. 【解析】
试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CE
CB CA
=即可解决问题.②求出BD 、AE 即可解决问题.
(2)只要证明△ACE ∽△BCD 即可.
(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.
(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =1
2
n .故答案为90°,
1
2
n . ②如图2中,当α=180°时,BD =BC +CD =
32n ,AE =AC +CE =32m ,∴BD AE =n m
.故答案为n
m
. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC n
CE AC m
==,∴△ACE ∽△BCD ,∴
BD BC n
AE AC m
==.
(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB 22AC BC -.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,
∴AE =2
2
AB BE +=2263+=35,由(2)可知△ACE ∽△BCD ,∴
BD BC
AE AC
=,∴
35=810,∴BD =1255.故答案为125
5
. (4)∵m =6,n =42,∴CE =3,CD =22,AB =22CA BC -=2,①如图5中,当α=90°
时,半圆与AC 相切.在Rt △DBC 中,BD =22BC CD +=224222+()()
=210. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于
M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,,∴AM =5,AE =
2
2
AM ME +=57,由(2)可知
DB AE =22,∴BD =2114
. 故答案为210或
2114
3

点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.
4.已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作 EF ⊥BD 交 BC 于 F ,连接 DF ,G 为 DF 中点,连接 EG ,CG . (1) 求证:EG =CG ;
(2) 将图①中△BEF 绕 B 点逆时针旋转 45∘,如图②所示,取 DF 中点 G ,连接 EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3) 将图①中△BEF 绕 B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).
【答案】解:(1)CG=EG
(2)(1)中结论没有发生变化,即EG=CG.
证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.
在△DAG与△DCG中,
∵ AD=CD,∠ADG=∠CDG,DG=DG,
∴△DAG≌△DCG.
∴ AG=CG.
在△DMG与△FNG中,
∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,
∴△DMG≌△FNG.
∴ MG=NG
在矩形AENM中,AM=EN.
在Rt△AMG 与Rt△ENG中,
∵ AM=EN, MG=NG,
∴△AMG≌△ENG.
∴ AG=EG
∴ EG=CG.
(3)(1)中的结论仍然成立.
【解析】
试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.
(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明
△AMG≌△ENG,得出AG=EG;最后证出CG=EG.
(3)结论依然成立.还知道EG⊥CG;
试题解析:
解:(1)证明:在Rt△FCD中,
∵G为DF的中点,
∴,
同理,在Rt△DEF中,,
∴CG=EG;
(2)(1)中结论仍然成立,即EG=CG;
连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:
在△DAG与△DCG中,
∵AD=CD,∠ADG=∠CDG,DC=DC,
∴△DAG≌△DCG,
∴AG=CG,
在△DMG与△FNG中,
∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,
∴△DMG≌△FNG,
∴MG=NG,
在矩形AENM中,AM=EN.,
在Rt△AMG与Rt△ENG中,
∵AM=EN,MG=NG,
∴△AMG≌△ENG,
∴AG=EG,
∴EG=CG,
(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。

过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N,如图所示:
由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,
又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC
∵∠FEC+∠BEC=90°,
∴∠FEC+∠FEM=90°,即∠MEC=90°,
∴△MEC是等腰直角三角形,
∵G为CM中点,
∴EG=CG,EG⊥CG。

【点睛】本题解题关键是作出辅助线,且利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质,难度较大。

5.如图所示,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC的延长线交BD于点P.
(1)把△ABC绕点A旋转到图1,BD,CE的关系是(选填“相等”或“不相等”);简要说明理由;
(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD=,简要说明计算过程;
(3)在(2)的条件下写出旋转过程中线段PD的最小值为,最大值为.
【答案】(1)BD,CE的关系是相等;(2
5
34
17
20
34
17
3)1,7
【解析】
分析:(1)依据△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA,∠BAD=∠CAE,DA=EA,进而得到△ABD≌△ACE,可得出BD=CE;
(2)分两种情况:依据∠PDA=∠AEC,∠PCD=∠ACE,可得△PCD∽△ACE,即可得到
PD AE =
CD
CE
,进而得到
5
34
17
;依据∠ABD=∠PBE,∠BAD=∠BPE=90°,可得
△BAD∽△BPE,即可得到PB BE
AB BD
,进而得出
6
34
34

20
34
17
(3)以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.分两种情况进行讨论,即可得到旋转过程中线段PD的最小值以及最大值.
详解:(1)BD,CE的关系是相等.
理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,
∴BA=CA,∠BAD=∠CAE,DA=EA,
∴△ABD ≌△ACE ,
∴BD=CE ;
故答案为相等.
(2)作出旋转后的图形,若点C 在AD 上,如图2所示:
∵∠EAC=90°,
∴CE=2234AC AE +=,
∵∠PDA=∠AEC ,∠PCD=∠ACE , ∴△PCD ∽△ACE ,
∴PD CD AE CE
=, ∴PD=
53417; 若点B 在AE 上,如图2所示:
∵∠BAD=90°,
∴Rt △ABD 中,2234AD AB +=,BE=AE ﹣AB=2,
∵∠ABD=∠PBE ,∠BAD=∠BPE=90°,
∴△BAD ∽△BPE ,
∴PB BE AB BD
=,即334PB =, 解得63434
, ∴3463434203417, 53417203417
(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD
的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.
如图3所示,分两种情况讨论:
在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.
①当小三角形旋转到图中△ACB的位置时,
在Rt△ACE中,22
-,
53
在Rt△DAE中,22
+=
5552
∵四边形ACPB是正方形,
∴PC=AB=3,
∴PE=3+4=7,
在Rt△PDE中,2250491
-=-=,
DE PE
即旋转过程中线段PD的最小值为1;
②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,
此时,DP'=4+3=7,
即旋转过程中线段PD的最大值为7.
故答案为1,7.
点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.
6.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM 上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.
(1)如图1,猜想:△CDE的形状是三角形.
(2)请证明(1)中的猜想
(3)设OD=m,
①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.
②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.
【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.
【解析】
【分析】
(1)由旋转的性质猜想结论;
(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;
(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到
C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;
②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;
b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;
c)当6<m<10时,此时不存在;
d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.
【详解】
(1)等边;
(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE 是等边三角形.
(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,
∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,
∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD3,∴△BDE的最小周长=CD3;
②存在,分四种情况讨论:
a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;
b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.
∵∠CEB=∠CDA,∴∠CDA=30°.
∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;
c)当6<m<10时,由∠DBE=120°>90°,∴此时不存在;
d)当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,
∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14.
综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.
【点睛】
本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.
7.如图1,在Rt△ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt△ADE的外部作Rt△ABC,∠BAC=90°,连接BE、CD.
(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;
(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt△ADE绕着点A顺时针旋转锐角α,得到图3,连接BD、CE.
①求证:△ABE∽△ACD;
②计算:BD2+CE2的值.
【答案】(1)BE=CD,BE⊥CD,理由见角;(2)①证明见解析;②BD2+CE2=170.
【解析】
【分析】
(1)结论:BE=CD,BE⊥CD;只要证明△BAE≌△CAD,即可解决问题;
(2)①根据两边成比例夹角相等即可证明△ABE∽△ACD.
②由①得到∠AEB=∠CDA.再根据等量代换得到∠DGE=90°,即DG⊥BE,根据勾股定理得到BD2+CE2=CB2+ED2,即可根据勾股定理计算.
【详解】
(1)结论:BE=CD,BE⊥CD.
理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.
∵∠CAB=∠EAD=90°,∴∠CAD=∠BAE.
在△CAD和△BAE中,∵
AB AC
BAE CAD
AE AD
=


∠=∠

⎪=

,∴△CAD≌△BAE,∴CD=BE,
∠ACD=∠ABE.
∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°,∴∠CGF=90°,∴BE⊥CD.(2)①设AE与CD于点F,BE与DC的延长线交于点G,如图3.
∵∠CABB=∠EAD=90°,∴∠CAD=∠BAE.
∵CA=3,AB=5,AD=6,AE=10,∴
AE
AB
=
AD
AC
=2,∴△ABE∽△ACD;
②∵△ABE∽△ACD,∴∠AEB=∠CDA.
∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°,∴DG⊥BE,∴∠AGD=∠BGD=90°,∴CE2=CG2+EG2,BD2=BG2+DG2,∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.
【点睛】
本题是几何综合变换综合题,主要考查了图形的旋转变换、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理的综合运用,运用类比,在变化中发现规律是解决问题的关键.
8.如图1.在△ABC 中,∠ACB =90°,点P 为△ABC 内一点.
(1)连接PB 、PC ,将△BCP 沿射线CA 方向平移,得到△DAE ,点B 、C 、P 的对应点分别为点D 、A 、E ,连接CE .
①依题意,请在图2中补全图形;
②如果BP ⊥CE ,AB +BP =9,CE =33,求AB 的长.
(2)如图3,以点A 为旋转中心,将△ABP 顺时针旋转60°得到△AMN ,连接PA 、PB 、PC ,当AC =4,AB =8时,根据此图求PA +PB +PC 的最小值.
【答案】⑴①见解析,②AB =6;⑵47.
【解析】
分析:(1)①根据题意补全图形即可;
②连接BD 、CD .根据平移的性质和∠ACB =90°,得到四边形BCAD 是矩形,从而有CD =AB ,设CD =AB =x ,则PB =DE =9x -, 由勾股定理求解即可;
(2)当C 、P 、M 、N 四点共线时,PA +PB +PC 最小.由旋转的性质和勾股定理求解即可.
详解:(1)①补全图形如图所示;
②如图:连接BD 、CD .
∵△BCP 沿射线CA 方向平移,得到△DAE ,
∴BC ∥AD 且BC =AD ,PB =DE .
∵∠ACB =90°,
∴四边形BCAD 是矩形,∴CD =AB ,设CD =AB =x ,则PB =9x -,
DE =BP =9x -,
∵BP ⊥CE ,BP ∥DE ,∴DE ⊥CE ,
∴222CE DE CD +=,∴(()22
2339x x +-=,
x=,即AB=6;
∴6
(2)如图,当C、P、M、N四点共线时,PA+PB+PC最小.
由旋转可得:△AMN≌△APB,∴PB=MN.
易得△APM、△ABN都是等边三角形,∴PA=PM,
∴PA+PB+PC=PM+MN+PC=CN,
∴BN=AB=8,∠BNA=60°,∠PAM=60°,
∴∠CAN=∠CAB+∠BAN=60°+60°=120°,
∴∠CBN=90°.
在Rt△ABC中,易得:2222
-=-=,
BC AB AC
=8443
∴在Rt△BCN中,22486447
=+=+=.
CN BC BN
点睛:本题属于几何变换综合题,主要考查了旋转和平移的性质、全等三角形的判定与性质、矩形的性质以及勾股定理的综合应用,解决问题的关键是作辅助线构造等边三角形和全等三角形,依据图形的性质进行计算求解.
9.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.
(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;
②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.
(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.
(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=1
2
,求BE2+DG2的值.
【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.
【解析】
分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;
②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;
(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;
(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.
详解:(1)①BG⊥DE,BG=DE;
②∵四边形ABCD和四边形CEFG是正方形,
∴BC=DC,CG=CE,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG≌△DCE,
∴BG=DE,∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG⊥DE.
(2)∵AB=a,BC=b,CE=ka,CG=kb,
∴BC CG b
DC CE a
==,
又∵∠BCG=∠DCE,
∴△BCG∽△DCE,
∴∠CBG=∠CDE,
又∵∠CBG+∠BHC=90°,
∴∠CDE+∠DHG=90°,
∴BG⊥DE.
(3)连接BE、DG.
根据题意,得AB=3,BC=2,CE=1.5,CG=1,
∵BG⊥DE,∠BCD=∠ECG=90°
∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.
点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.
10.在正方形ABCD中,连接BD.
(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.
(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.
①依题意补全图1;
②用等式表示线段BM、DN和MN之间的数量关系,并证明.
(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF 分别与BD交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)
【答案】(1)45°;(2)①补图见解析;②BM、DN和MN之间的数量关系是
BM2+MD2=MN2,证明见解析;(3)答案见解析.
【解析】
(1)利用等腰直角三角形的性质即可;
(2)依题意画出如图1所示的图形,根据性质和正方形的性质,判断线段的关系,再利用勾股定理得到FB2+BM2=FM2,再判断出FM=MN即可;
(3)利用△CEF周长是正方形ABCD周长的一半,判断出EF=EG,再利用(2)证明即可.解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,
∵AE⊥BD,∴∠ABE=∠BAE=45°,
(2)①依题意补全图形,如图1所示,
②BM、DN和MN之间的数量关系是BM2+MD2=MN2,
将△AND绕点D顺时针旋转90°,得到△AFB,
∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,
∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,
∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,
在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,
∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,
∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠FAM=45°,∴∠FAM=∠E1AB1,
∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,
∵FB2+BM2=FM2,∴DN2+BM2=MN2,
(3)如图2,
将△ADF绕点A顺时针旋转90°得到△ABG,∴DF=GB,
∵正方形ABCD的周长为4AB,△CEF周长为EF+EC+CF,
∵△CEF周长是正方形ABCD周长的一半,∴4AB=2(EF+EC+CF),∴2AB=EF+EC+CF
∵EC=AB﹣BE,CF=AB﹣DF,∴2AB=EF+AB﹣BE+AB﹣DF,∴EF=DF+BE,
∵DF=GB,∴EF=GB+BE=GE,由旋转得到AD=AG=AB,
∵AM=AM,∴△AEG≌△AEF,∠EAG=∠EAF=45°,和(2)的②一样,得到
DN2+BM2=MN2.
“点睛”此题是四边形综合题,主要考查了正方形的性质、旋转的性质,三角形的全等,判断出(△AFN≌△ANM,得到FM=MM),是解题的关键.
11.(1)观察猜想
如图(1),在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点.以点D为顶点作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG,则线段BG和AE的数量关系是
_____;
(2)拓展探究
将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.
(3)解决问题
若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,直接写出AF的值.
【答案】(1)BG=AE.
(2)成立.
如图②,
连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.…………………………………………7分
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.
正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=
【解析】
解:(1)BG=AE.
(2)成立.
如图②,连接AD.
∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.
(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]
因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.
若BC=DE=2,则AD=1,EF=2.
在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.
∴AF=.
即在正方形DEFG旋转过程中,当AE为最大值时,AF=.
12.(特例发现)如图1,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q.求证:EP=FQ.
(延伸拓展)如图2,在△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB,AC为直角边,向△ABC外作Rt△ABE和Rt△ACF,射线GA交EF于点H.若AB=kAE,AC=kAF,请思考HE与HF之间的数量关系,并直接写出你的结论.
(深入探究)如图3,在△ABC中,G是BC边上任意一点,以A为顶点,向△ABC外作任
意△ABE和△ACF,射线GA交EF于点H.若∠EAB=∠AGB,∠FAC=∠AGC,AB=kAE,
AC=kAF,上一问的结论还成立吗?并证明你的结论.
(应用推广)在上一问的条件下,设大小恒定的角∠IHJ分别与△AEF的两边AE、AF分别交于点M、N,若△ABC为腰长等于4的等腰三角形,其中∠BAC=120°,且
∠IHJ=∠AGB=θ=60°,k=2;
求证:当∠IHJ在旋转过程中,△EMH、△HMN和△FNH均相似,并直接写出线段MN的最小值(请在答题卡的备用图中补全作图).
【答案】(1)证明参见解析;(2)HE=HF;(3)成立,证明参见解析;(4)证明参见解析,MN最小值为1.
【解析】
试题分析:(1)特例发现:易证△AEP≌△BAG,△AFQ≌△CAG,即可求得EP=AG,
FQ=AG,即可解题;(2)延伸拓展:过点E、F作射线GA的垂线,垂足分别为P、Q.易证△ABG∽△EAP,△ACG∽△FAQ,得到PE=AG,FQ=AG,∴PE=FQ,然后证明
△EPH≌△FQH,即可得出HE=HF;(3)深入探究:判断△PEA∽△GAB,得到PE=AG,
△AQF∽△CGA,FQ=,得到FQ=AG,再判断△EPH≌△FQH,即可得出HE=HF;(4)应用推广:由前一个结论得到△AEF为正三角形,再依次判断△MHN∽△HFN∽△MEH,即可得出结论.
试题解析:(1)特例发现,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,
∵∠EPA=∠AGB,AE=AB,∴△PEA≌△GAB,∴PE=AG,同理,△QFA≌△GAC,
∴FQ=AG,∴PE=FQ;
(2)延伸拓展,如图:
∵∠PEA+∠PAE=90°,∠GAB+∠PAE=90°,∴∠PEA=∠GAB,∴∠EPA=∠AGB,
∴△PEA∽△GAB,∴,∵AB=kAE,∴,∴PE=AG,同理,
△QFA∽△GAC,∴,∵AC=kAF,∴FQ=AG,∴PE=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(3)深入探究,如图2,
在直线AG上取一点P,使得∠EPA═∠AGB,作FQ∥PE,∵∠EAP+∠BAG=180°﹣∠AGB,∠ABG+∠BAG=180°﹣∠AGB,∴∠EAP=∠ABG,∵∠EPA=∠AGB,∴△APE∽△BGA,
∴,∵AB=kAE,∴PE=AG,由于∠FQA=∠FAC=∠AGC=180°﹣∠AGB,同理可得,
△AQF∽△CGA,∴,∵AC=kAF,∴FQ=AG,∴EP=FQ,∵EP∥FQ,
∴∠EPH=∠FQH,∵∠PHE=∠QHF,∴△EPH≌△FQH,∴HE=HF;
(4)应用推广,如图3,
在前面条件及结论,得到,点H是EF中点,∴AE=AF,∵∠EAB=∠AGB,
∠FAC=∠AGC∴∠EAB+∠FAC=180°∴∠EAF=360°﹣(∠EAB+∠FAC)﹣∠BAC=60°,∴△AEF 为正三角形.又H为EF中点,∴∠EHM+∠IHJ=120°,∠IHJ+∠FHN=120°,
∴∠EHM=∠FHN .∵∠AEF=∠AFE ,∴△HEM ∽△HFN ,∴
,∵EH=FH ,∴,且∠MHN=∠HFN=60°,∴△MHN ∽△HFN ,∴△MHN ∽△HFN ∽△MEH ,在△HMN 中,∠MHN=60°,根据三角形中大边对大角,∴要MN 最小,只有△HMN 是等边三角形,∴∠AMN=60°,∵∠AEF=60°,MN ∴MN ∥EF ,∵△AEF 为等边三角形,∴MN 为△AEF 的中位线,∴MN min =EF=×2=1.
考点:1.几何变换综合题;2.三角形全等及相似的判定性质.
13.正方形ABCD 中,点E 、F 分别是边AD 、AB 的中点,连接EF .
(1)如图1,若点G 是边BC 的中点,连接FG ,则EF 与FG 关系为: ;
(2)如图2,若点P 为BC 延长线上一动点,连接FP ,将线段FP 以点F 为旋转中心,逆时针旋转90°,得到线段FQ ,连接EQ ,请猜想BF 、EQ 、BP 三者之间的数量关系,并证明你的结论.
(3)若点P 为CB 延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF 、EQ 、BP 三者之间的数量关系: .
【答案】(1)证明见解析(2)BF+EQ=BP (3)BF+BP=EQ
【解析】
试题分析:(1)EF 与FG 关系为垂直且相等(EF=FG 且EF ⊥FG ).证明如下: ∵点E 、F 、G 分别是正方形边AD 、AB 、BC 的中点,
∴△AEF 和△BGD 是两个全等的等腰直角三角形.
∴EF=FG ,∠AFE=∠BFG=45°.∴∠EFG=90°,即EF ⊥FG .
(2)取BC 的中点G ,连接FG ,则由SAS 易证△FQE ≌△FPG ,从而EQ=GP ,因此)EF 2BP EQ =-.
(3)同(2)可证△FQE ≌△FPG (SAS ),得EQ=GP ,因此,
))EF GF 2BG 2GP BP 2EQ BP ===-=-.
14.(1)发现
如图,点A 为线段BC 外一动点,且BC a =,AB b =.
填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)
(2)应用
点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .
①找出图中与BE 相等的线段,并说明理由;
②直接写出线段BE 长的最大值.
(3)拓展
如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.
【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22)
【解析】
【分析】
(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;
(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论.
【详解】
解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,
∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ;
(2)①CD=BE ,
理由:∵△ABD 与△ACE 是等边三角形,
∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°,
∴∠BAD+∠BAC=∠CAE+∠BAC ,
即∠CAD=∠EAB ,
在△CAD 与△EAB 中,
AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩
=== , ∴△CAD ≌△EAB ,
∴CD=BE ;
②∵线段BE 长的最大值=线段CD 的最大值,
由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上,
∴最大值为BD+BC=AB+BC=4;
(3)∵将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,
则△APN 是等腰直角三角形,
∴PN=PA=2,BN=AM ,
∵A 的坐标为(2,0),点B 的坐标为(5,0),
∴OA=2,OB=5,
∴AB=3,
∴线段AM 长的最大值=线段BN 长的最大值,
∴当N 在线段BA 的延长线时,线段BN 取得最大值,
最大值=AB+AN ,
∵22,
∴最大值为2+3;
如图2,过P 作PE ⊥x 轴于E ,
∵△APN是等腰直角三角形,
∴PE=AE=2,
∴OE=BO-AB-AE=5-3-2=2-2,
∴P(2-2,2).
【点睛】
考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.
15.如图,点P是正方形ABCD内一点,点P到点A,B和D的距离分别为1,22,10.△ADP沿点A旋转至△ABP′,连接PP′,并延长AP与BC相交于点Q.
(1)求证:△APP′是等腰直角三角形;
(2)求∠BPQ的大小.
【答案】(1)证明见解析;(2)∠BPQ=45°.
【解析】
【分析】
(1)根据旋转的性质可知,△APD≌△AP′B,所以AP=AP′,∠PAD=∠P′AB,因为
∠PAD+∠PAB=90°,所以∠P′AB+∠PAB=90°,即∠PAP′=90°,故△APP′是等腰直角三角
形;
(2)根据勾股定理逆定理可判断△PP′B是直角三角形,再根据平角定义求出结果.
【详解】
(1)证明:∵四边形ABCD为正方形,
∴AB=AD,∠BAD=90°,
∵△ADP沿点A旋转至△ABP′,
∴AP=AP′,∠PAP′=∠DAB=90°,
∴△APP′是等腰直角三角形;
(2)∵△APP′是等腰直角三角形,
∴22,∠APP′=45°,。

相关文档
最新文档