2020-2021备战中考数学相似的综合热点考点难点含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021备战中考数学相似的综合热点考点难点含答案解析
一、相似
1.如图,在一块长为a(cm),宽为b(cm)(a>b)的矩形黑板的四周,镶上宽为x(cm)的木板,得到一个新的矩形.
(1)试用含a,b,x的代数式表示新矩形的长和宽;
(2)试判断原矩形的长、宽与新矩形的长、宽是不是比例线段,并说明理由.
【答案】(1)解:由原矩形的长、宽分别为a(cm),b(cm),木板宽为x(cm),
可得新矩形的长为(a+2x)cm,宽为(b+2x)cm
(2)解:假设两个矩形的长与宽是成比例线段,则有,
由比例的基本性质,得ab+2bx=ab+2ax,∴2(a-b)x=0.
∵a>b,
∴a-b≠0,
∴x=0,
又∵x>0,
∴原矩形的长、宽与新矩形的长、宽不是比例线段.
【解析】【分析】(1)根据已知,观察图形,可得出新矩形的长和宽。

(2)假设两个矩形的长与宽是成比例线段,列出比例式,再利用比例的性质得出x=0,即可判断。

2.如图,M为等腰△ABD的底AB的中点,过D作DC∥AB,连结BC;AB=8cm,DM=4cm,DC=1cm,动点P自A点出发,在AB上匀速运动,动点Q自点B出发,在折线BC﹣CD上匀速运动,速度均为1cm/s,当其中一个动点到达终点时,它们同时停止运动,设点P运动t(s)时,△MPQ的面积为S(不能构成△MPQ的动点除外).
(1)t(s)为何值时,点Q在BC上运动,t(s)为何值时,点Q在CD上运动;
(2)求S与t之间的函数关系式;
(3)当t为何值时,S有最大值,最大值是多少?
(4)当点Q在CD上运动时,直接写出t为何值时,△MPQ是等腰三角形.
【答案】(1)解:过点C作CE⊥AB,垂足为E,如图1,
∵DA=DB,AM=BM,
∴DM⊥AB.
∵CE⊥AB,

∴CE∥DM.
∵DC∥ME,CE∥DM,
∴四边形DCEM是矩形,
∴CE=DM=4,ME=DC=1.
∵AM=BM,AB=8,
∴AM=BM=4.
∴BE=BM−ME=3.

∴CB=5.
∵当t=4时,点P与点M重合,不能构成△MPQ,
∴t≠4.
∴当且t≠4(s)时,点Q在BC上运动;当 (s)时,点Q在CD上运动.
(2)解:①当0<t<4时,点P在线段AM上,点Q在线段BC上,
过点Q作QF⊥AB,垂足为F,如图2,
∵QF⊥AB,CE⊥AB,

∴QF∥CE.
∴△QFB∽△CEB.

∵CE=4,BC=5,BQ=t,


∵PM=AM−AP=4−t,

②当时,点P在线段BM上,点Q在线段BC上,过点Q作QF⊥AB,垂足为F,如图3,
∵QF⊥AB,CE⊥AB,

∴QF∥CE.
∴△QFB∽△CEB.

∵CE=4,BC=5,BQ=t,


∵PM=AP−AM=t−4,

③当时,点P在线段BM上,点Q在线段DC上,过点Q作QF⊥AB,垂足为F,如图4,
此时QF=DM=4.
∵PM=AP−AM=t−4,

综上所述:当0<t<4时当时, 当时,S=2t−8.
(3)解:①当0<t<4时,
∵ 0<2<4,
∴当t=2时,S取到最大值,最大值为
②当时, 对称轴为x=2.

∴当x>2时,S随着t的增大而增大,
∴当t=5时,S取到最大值,最大值为
③当时,S=2t−8.
∵2>0,
∴S随着t的增大而增大,
∴当t=6时,S取到最大值,最大值为2×6−8=4.
综上所述:当t=6时,S取到最大值,最大值为4
(4)解:当点Q在CD上运动即时,如图5,
则有,即
∵MP=t−4<6−4,即MP<2,
∴QM≠MP,QP≠MP.
若△MPQ是等腰三角形,则QM=QP.
∵QM=QP,QF⊥MP,
∴MF=PF=12MP.
∵MF=DQ=5+1−t=6−t,MP=t−4,

解得:
∴当t= 秒时,△MPQ是等腰三角形
【解析】【分析】(1)过点C作CE⊥AB于E,结合题中条件得出四边形DCEM是矩形,结合矩形性质和勾股定理求出BC的长,最后考虑不能构成△MPQ,即可解决问题。

(2)由于点P、Q的位置不一样,导致PM、QF的长度不一样,所以S与t的函数关系式不同,所以分三种情况讨论①当0<t<4时②当 4 < t ≤ 5 时③当 5 < t ≤ 6 时。

(3)利用二次函数性质和一次函数性质分别求出最大值,然后比较得出最后结论。

(4)根据等腰三角形性质及题中条件易得QM≠MP,QP≠MP,所以当△MPQ是等腰三角形时,只有QM=QP.利用它建立关于t的等量关系,解出t即可
3.如图,抛物线y=x2+bx+c经过B(-1,0),D(-2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q、P.
(1)求抛物线的解析式;
(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?
【答案】(1)解:把B(﹣1,0),D(﹣2,5)代入,得:
,解得:,∴抛物线的解析式为:
(2)解:存在点P,使∠APB=90°.
当y=0时,即x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴OB=1,OA=3.
设P(m,m2﹣2m﹣3),则﹣1≤m≤3,PH=﹣(m2﹣2m﹣3),BH=1+m,AH=3﹣m,∵∠APB=90°,PH⊥AB,∴∠PAH=∠BPH=90°﹣∠APH,∠AHP=∠PHB,∴△AHP∽△PHB,
∴,∴PH2=BH•AH,∴[﹣(m2﹣2m﹣3)]2=(1+m)(3﹣m),解得m1= ,m2= ,∴点P的横坐标为:或
(3)解:如图,过点D作DN⊥x轴于点N,
则DN=5,ON=2,AN=3+2=5,∴tan∠DAB= =1,∴∠DAB=45°.过点D作DK∥x 轴,则∠KDQ=∠DAB=45°,DQ= QG.
由题意,动点M运动的路径为折线BQ+QD,运动时间:t=BQ+ DQ,∴t=BQ+QG,即运动的时间值等于折线BQ+QG的长度值.
由垂线段最短可知,折线BQ+QG的长度的最小值为DK与x轴之间的垂线段.
过点B作BH⊥DK于点H,则t最小=BH,BH与直线AD的交点,即为所求之Q点.
∵A(3,0),D(﹣2,5),∴直线AD的解析式为:y=﹣x+3,∵B点横坐标为﹣1,∴y=1+3=4,∴Q(﹣1,4).
【解析】【分析】(1)把点B,D的坐标代入二次函数中组成二元一次方程组,解方程组
即可得到抛物线的解析式;(2)先按照存在点P使∠APB=90°,先根据抛物线的解析式求得点A,B的坐标,设出点P的坐标,根据点P的位置确定m的取值范围,再证△AHP∽△PHB,从而得到PH2=BH•AH,即可列出关于m的方程,解方程即可得到m即点P的横坐标,且横坐标在所求范围内,从而说明满足条件的点P存在;(3)先证明∠DAB=45°,从而证得DQ= 2 QG,那么运动时间t值等于折线BQ+QG的长度值,再结合垂线段最短确定点Q的位置,再求得点Q的坐标即可.
4.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:
(1)求证:△BEF∽△DCB;
(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;
(3)当t为何值时,△PQF为等腰三角形?试说明理由.
【答案】(1)解:∵四边形ABCD是矩形,
∴ AD∥BC,
在中,
∵别是的中点,
∴EF∥AD,
∴ EF∥BC,


(2)解:如图1,过点Q作于,
∴QM∥BE,


∴(舍)或秒
(3)解:当点Q在DF上时,如图2,

∴ .
当点Q在BF上时,,如图3,


时,如图4,


时,如图5,


综上所述,t=1或3或或秒时,△PQF是等腰三角形
【解析】【分析】(1)根据题中的已知条件可得△BEF和△DCB中的两角对应相等,从而可证△BEF∽△DCB;(2)过点Q作QM⊥EF 于M ,先根据相似三角形的预备定理可证△QMF ∽△BEF;再由△QM F ∽△BEF可用含t的代数式表示出QM的长;最后代入三角形的面积公式即可求出t的值。

(3)由题意应分两种情况:(1)当点Q在DF上时,因为∠PFQ为钝角,所以只有PF = QF 。

(2)当点Q在BF上时,因为没有指明腰和底,所以有 PF=QF;PQ = FQ;PQ = PF 三种情况,因此所求的t值有四种结果。

5.如图,已知二次函数y=ax2+ x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)请直接写出二次函数y=ax2+ x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请直接写出此时点N的坐标;
(4)若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.
【答案】(1)解:∵A(0,4),∴c=4,,把点C坐标(8,0)代入解析式,得:a=-
,∴二次函数表达式为;
(2)解:令y=0,则解得,x1=8,x2="-2" ,∴点B的坐标为(-2,0),由已知可得,在Rt△AOB中,AB----2=BO2+AO2=22+42=20,在Rt△AOC中AC----2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB----2+ AC----2=20+80=102=BC2,∴△ABC是直角三角形;
(3)解:由勾股定理先求出AC,AC= ,①在x轴负半轴,当AC=AN 时,NO=CO=8,∴此时N(-8,0);②在x轴负半轴,当AC=NC时,NC=AC= ,
∵CO=8,∴NO= -8,∴此时N(8- ,0);③在x轴正半轴,当AN=CN时,设CN=x,则AN=x,ON=8-x,在Rt△AON中,+ = ,解得:x=5,∴ON=3,∴此时N(3,0);④在x轴正半轴,当AC=NC时,AC=NC= ,∴ON= +8,∴此时N(+8,0);综上所述:满足条件的N点坐标是(-8,0)、(8- ,0)、(3,0)、(8+ ,0);
(4)解:设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,
∴MD∥OA,∴△BMD∽△BAO,,∵MN∥AC,∴,∴,∵OA=4,BC=10,BN=n+2,∴MD= (n+2),∵S△AMN= S△ABN- S△BMN=
=- +5,∵- <0,∴n=3时,S有最大值,∴当△AMN面积最大时,N点坐标为(3,0).
【解析】【分析】(1)用待定系数法可求二次函数的解析式;
(2)因为抛物线交x轴于B、C两点,令y=0,解关于x的一元二次方程可得点B的坐标,然后计算AB、BC、AC的长,用勾股定理的逆定理即可判断;
(3)由(2)可知AC的长,由题意可知有4种情况:①在x轴负半轴,当AC=AN时;
②②在x轴负半轴,当AC=NC时;③在x轴正半轴,当AN=CN时;④在x轴正半轴,当AC=NC时;结合已知条件易求解;
(4)设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,由平行于三角形一边的直线和其他两边所构成的三角形与原三角形相似可得△BMD∽△BAO,于是有比
例式,根据平行线分线段成比例定理可得,所以,将已知线段代入比例式可将MD用含n的代数式表示出来,根据三角形的构成可得S△AMN= S△ABN- S△BMN=
⋅ BN⋅OA−BN⋅MD,将BN、MD代入可得关于n的二次函数,配成顶点式根据二次函数的性质即可求解。

6.如图,△ABC内接于⊙O,且AB=AC.延长BC到点D,使CD=CA,连接AD交⊙O于点E.
(1)求证:△ABE≌△CDE;
(2)填空:
①当∠ABC的度数为________时,四边形AOCE是菱形;
②若AE=6,BE=8,则EF的长为________.
【答案】(1)证明:∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD.
∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC.
∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS)
(2)60;
【解析】【解答】解:(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;
理由是:连接AO、OC.
∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°.
∵∠ABC=60,∴∠AEC=120°=∠AOC.
∵OA=OC,∴∠OAC=∠OCA=30°.
∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°.
∵∠ACB=∠CAD+∠D.
∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°﹣120°﹣30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形.
∵OA=OC,∴▱AOCE是菱形;
②由(1)得:△ABE≌△CDE,∴BE=DE=8,AE=CE=6,∴∠D=∠EBC.
∵∠CED=∠ABC=∠ACB,∴△ECD∽△CFB,∴ = .
∵∠AFE=∠BFC,∠AEB=∠FCB,∴△AEF∽△BCF,∴ = ,∴EF= =

故答案为:①60°;② .
【分析】(1)由题意易证∠ABC=∠ACB,AB=CD;再由四点共圆和已证可得∠ABC=∠ACB=∠AEB,∠CED=∠AEB,则利用AAS可证得结论;
(2)①连接AO、CO.宪政△ABC是等边三角形,再证明四边形AOCE是平行四边形,又AO=CO可得结论;
②先证△ECD∽△CFB,可得EC:ED=CF:BC=6:8;再证△AEF∽△BCF,则AE:EF=BC:CF,从而求出EF.
7.
(1)【探索发现】如图1,是一张直角三角形纸片,,小明想从中剪出一个以为内角且面积最大的矩形,经过多次操作发现,当沿着中位线DE、EF剪下时,所得的矩形的面积最大,随后,他通过证明验证了其正确性,并得出:矩形的最大面积与原三角形面积的比值为________.
(2)【拓展应用】如图2,在中,,BC边上的高,矩形PQMN 的顶点P、N分别在边AB、AC上,顶点Q、M在边BC上,求出矩形PQMN面积的最大值用含a、h的代数式表示;
(3)【灵活应用】如图3,有一块“缺角矩形”ABCDE,,,,,小明从中剪出了一个面积最大的矩形为所剪出矩形的内角,直接写出该矩形的面积.
【答案】(1)
(2)解:,
∽,
,可得,
设,由,
当时,最大值为 .
(3)解:如图,过DE上的点P作于点G,延长GP交AE延长线于点I,过点P 作于点H,
则四边形AHPI和四边形BGPH均为矩形,
设,则,
,,,,
,,
由∽知,
即,得,

则矩形BGPH的面积,
当时,矩形BGPH的面积取得最大值,最大值为567.
【解析】【解答】(1)解:、ED为中位线,
,,,,
又,
四边形FEDB是矩形,
则,
故答案为:;
【分析】(1)由中位线知EF= BC、ED= AB、由可得;(2)由△APN∽△ABC知,可得PN=a- ,设PQ=x,由S矩形PQMN=PQ•PN=
,据此可得;(3)结合图形过DE上的点P作PG⊥BC于点G,延长GP交AE延长线于点I,过点P作PH⊥AB,设PG=x,知PI=28-x,由△EIP∽△EKD知
,据此求得EI= ,PH= ,再根据矩形BGPH的面积S=
可得答案.
8.如图1,在△ABC中,点DE分别在AB、AC上,DE∥BC,BD=CE,
(1)求证:∠B=∠C,AD=AE;
(2)若∠BAC=90°,把△ADE绕点A逆时针旋转到图2的位置,点M,P,N分别为DE,DC,BC的中点,连接MN,PM,PN.①判断△PMN的形状,并说明理由;________②把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN的最大面积为________ 。

【答案】(1)证明:∵DE∥BC,∴,∵BD=CE,∴AB=AC,∴∠B=∠C,AB﹣BD=AC﹣CD,∴AD=AE,即:∠B=∠C,AD=AE
(2)解:△PMN是等腰直角三角形,
理由:∵点P,M分别是CD,DE的中点,
∴PM= CE,PM∥CE,
∵点N,M分别是BC,DE的中点,
∴PN= BD,PN∥BD,
∵BD=CE,∴PM=PN,∴△PMN是等腰三角形,
∵PM∥CE,∴∠DPM=∠DCE,
∵PN∥BD,∴∠PNC=∠DBC,
∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,
∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB +∠ABD+∠DBC=∠ACB+∠ABC,
∵∠BAC=90°,∴∠ACB+∠ABC=90°,
∴∠MPN=90°,∴△PMN是等腰直角三角形

【解析】【解答】解:②由①知,△PMN是等腰直角三角形,PM=PN= BD,∴PM最大时,△PMN面积最大,∴点D在AB的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大
= PM2= ×72= .
【分析】(1)根据平行线分线段成比例定理及BD=CE可得AB=AC,进而可得AD=AE,由等边
对等角可得∠B=∠C.(2)①由中位线定理可得PM=CE,PM//CE,PN=BD,PN//BD,由BD=CE 可得PN=PM.由两直线平行同位角相等可得∠DPM=∠DCE,∠PNC=∠DBC,利用三角形的外角的性质和等量代换可得∠MPN=∠ABC+∠ACB=∠BAC=90°,所以△PMN是等腰直角三角形。

②当PN最大时,△PMN的面积最大,当点D在AB的延长线上时,PN最大,
PN=BD=7,根据三角形的面积计算公式可得结论。

9.如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C (0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
(1)求抛物线的解析式及点D的坐标;
(2)当△CMN是直角三角形时,求点M的坐标;
(3)试求出AM+AN的最小值.
【答案】(1)解:把A(﹣3,0),C(0,4)代入y=ax2﹣5ax+c得,解得,
∴抛物线解析式为y=﹣ x2+ x+4;
∵AC=BC,CO⊥AB,
∴OB=OA=3,
∴B(3,0),
∵BD⊥x轴交抛物线于点D,
∴D点的横坐标为3,
当x=3时,y=﹣ ×9+ ×3+4=5,
∴D点坐标为(3,5)。

(2)解:在Rt△OBC中,BC= =5,
设M(0,m),则BN=CM=4﹣m,CN=5﹣(4﹣m)=m+1,
∵∠MCN=∠OCB,
∴当时,△CMN∽△COB,则∠CMN=∠COB=90°,
即,解得m= ,此时M点坐标为(0,);
当时,△CMN∽△CBO,则∠CNM=∠COB=90°,
即,解得m= ,此时M点坐标为(0,);
综上所述,M点的坐标为(0,)或(0,)。

(3)解:连接DN,AD,如图,
∵AC=BC,CO⊥AB,
∴OC平分∠ACB,
∴∠ACO=∠BCO,
∵BD∥OC,
∴∠BCO=∠DBC,
∵DB=BC=AC=5,CM=BN,
∴△ACM≌△DBN,
∴AM=DN,
∴AM+AN=DN+AN,
而DN+AN≥AD(当且仅当点A、N、D共线时取等号),
∴DN+AN的最小值=AD= ,
∴AM+AN的最小值为.
【解析】【分析】(1)将A(﹣3,0),C(0,4)代入函数解析式构造方程组解出a,c 的值可得抛物线解析式;由AC=BC,CO⊥AB,根据等腰三角形的“三线合一”定理,可得OB=OA=3,而BD⊥x轴交抛物线于点D,则D点的横坐标为3,当x=3时求得y的值,即可得点D的坐标。

(2)当△CMN是直角三角形时,有两种情况:∠CMN=90°,或∠CNM=90°,则可得
△CMN∽△COB,或△CMN∽△CBO,由对应边成比例,设M(0,m),构造方程解答即可。

(3)求AM+AN的最小值,一般有两种方法:解析法和几何法;解析法:用含字母的函数关系式表示出AM+AN的值,根据字母的取值范围和函数的最值来求;几何法:将点A,M,N三点移到一条直线上;此题适用于几何法:观察图象不难发现,AC=BD=5,CM=BN,且∠BCO=∠DBC,连接AD,可证得△ACM≌△DBN,则AM=DN,而DN+AN≥AD (当且仅当点A、N、D共线时取等号),求AD的长即可。

10.已知顶点为抛物线经过点,点 .
(1)求抛物线的解析式;
(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;
(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.
【答案】(1)解:把点代入,
解得:a=1,
∴抛物线的解析式为:或 .
(2)解:设直线AB解析式为:y=kx+b,代入点A、B的坐标得:

解得:,
∴直线AB的解析式为:y=-2x-1,
∴E(0,-1),F(0,- ),M(- ,0),
∴OE=1,FE= ,
∵∠OPM=∠MAF,
∴当OP∥AF时,△OPE∽△FAE,

∴OP= FA= ,
设点P(t,-2t-1),
∴OP= ,
化简得:(15t+2)(3t+2)=0,
解得,,
∴S△OPE= ·OE· ,
当t=- 时,S△OPE= ×1× = ,
当t=- 时,S△OPE= ×1× = ,
综上,△POE的面积为或 .
(3)Q(- ,).
【解析】【解答】(3)解:由(2)知直线AB的解析式为:y=-2x-1,E(0,-1),
设Q(m,-2m-1),N1(n,0),
∴N(m,-1),
∵△QEN沿QE翻折得到△QEN1
∴NN1中点坐标为(,),EN=EN1,
∴NN1中点一定在直线AB上,
即 =-2× -1,
∴n=- -m,
∴N1(- -m,0),
∵EN2=EN12,
∴m2=(- -m)2+1,
解得:m=- ,
∴Q(- ,).
【分析】(1)用待定系数法将点B点坐标代入二次函数解析式即可得出a值.
(2)设直线AB解析式为:y=kx+b,代入点A、B的坐标得一个关于k和b的二元一次方程组,解之即可得直线AB解析式,根据题意得E(0,-1),F(0,- ),M(- ,0),根
据相似三角形的判定和性质得OP= FA= ,设点P(t,-2t-1),根据两点间的距离公式即可求得t值,再由三角形面积公式△POE的面积.
(3)由(2)知直线AB的解析式为:y=-2x-1,E(0,-1),设Q(m,-2m-1),N1(n,0),从而得N(m,-1),根据翻折的性质知NN1中点坐标为(,)且在直线AB上,将此中点坐标代入直线AB解析式可得n=- -m,即N1(- -m,0),再根据翻折的性质和两点间的距离公式得m2=(- -m)2+1,解之即可得Q点坐标.
11.如图1,在△ABC中,在BC边上取一点P,在AC边上取一点D,连AP、PD,如果△APD是等腰三角形且△ABP与△CDP相似,我们称△APD是AC边上的“等腰邻相似三角形”.
(1)如图2,在△ABC中AB=AC,∠B=50°,△APD是AB边上的“等腰邻相似三角形”,且AD=DP,∠PAC=∠BPD,则∠PAC的度数是________;
(2)如图3,在△ABC中,∠A=2∠C,在AC边上至少存在一个“等腰邻相似△APD”,请画出一个AC边上的“等腰邻相似△APD”,并说明理由;
(3)如图4,在Rt△ABC中AB=AC=2,△APD是AB边上的“等腰邻相似三角形”,请写出AD长度的所有可能值.
【答案】(1)30°
(2)解:如图3中,△APD是AC边上的“等腰邻相似三角形”,
理由:作∠BAC的平分线AP交BC于P,作PD∥AB交AC于D,
∴∠BAP=∠PAD=∠DPA,∠CPD=∠B,
∴DP=DA,
∵∠CAB=2∠C,
∴∠BAP =∠C,
∴△APD是等腰三角形且△APB与△CDP相似,
∴△APD是AC边上的“等腰邻相似三角形”
(3)解:如图3′中,当DA=DP时,设∠APD=∠DAP=x,
①若∠BPD=∠CAP=90°-x,∠BDP=∠CPA=2x,
∴90°-x+2x+x=180°,
∴x=45°,
∴三角形都是等腰直角三角形,易知AD=1;
②若∠PDB=∠CAP时,设∠APD=∠DAP=x,
得到∠PDB=∠CAP=2x,易知x=30°,
设AD=a,则AP=
∵△BPD∽△CPA,
∴,即,
解得,
如图4中,当PA=PD时,易知∠PDB是钝角,∠CAP是锐角,
∴∠PDB=∠CPA,则△BPD≌△CPA,
设AD=a,则BD=2-a,,AC=2,

解得a= ,
如图5中,当AP=AD时,设∠APD=∠ADP=x,则∠DAP=180°-2x,易知∠PDB为钝角,∠CAP为锐角,
∴∠PDB=∠CPA=180°-x,∠CAP=90°-∠DAP=90°-(180°-2x)=2x-90°,
在△APC中,2x-90°+180°-x+45°=180°,
解得x=45°,不可能成立.
综上所述.AD的长为1或或
【解析】【解答】(1)解:如图2中,
∵AB=AC,DA=DP,
∴∠B=∠C,∠DAP=∠DPA,
∵∠PAC=∠BPD,
∴∠APC=∠BDP=∠DAP+∠DPA,
∵∠APC=∠B+∠BAP,
∴∠B=∠PAB=50°,
∵∠BAC=180°−50°−50°=80°,
∴∠PAC=30°
故答案为30°
【分析】(1)根据等边对等角和三角形外角的性质证明∠B=∠PAB即可解决问题.(2)如图3中,作∠BAC的平分线AP交BC于P,作PD∥AB交AC于D,根据平行线的性质和角平分线定义可得∠BAP=∠PAD=∠DPA,∠CPD=∠B,结合∠A=2∠C可证△APD是等腰三角形且△APB与△CDP相似,即可解决问题.(3)分三种情形讨论:如图3′中,当DA=DP时;如图4中,当PA=PD时;如图5中,当AP=AD时;分别求解即可解决问题.
12.抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
(1)求这条抛物线的表达式;
(2)求∠ACB的度数;
(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DE⊥AC,当△DCE与△AOC相似时,求点D的坐标.
【答案】(1)解:当x=0,y=3,
∴C(0,3)
设抛物线的解析式为y=a(x+1)(x- ).
将c(0,3)代入得:- a=3,解得a=2,
∴抛物线的解析式为y=-2x2+x+3
(2)解:过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N。

∵OC=3,AO=1,
∴tan∠CAO=3,
∴直线AC的解析式为y=3x+3.
∵AC⊥BM,
∴BM的一次项系数为。

设BM的解析式为y= +b,将点B的坐标代入得:,解得b= 。

∴BM的解析式为y= .
将y=3x+3与y= 联立解得:x= ,y= .
∴MC=BM= =
∴∆MCB为等腰直角三角形。

∴∠ACB=45º.
(3)解:如图2所示,延长CD,交x轴于点F,
∵∠ACB=45º,点D是第一象限抛物线上一点,
∴∠ECD>45º.
又∵∆DCE与∆AOC相似,∠AOC=∠DEC=90º,
∴∠CAO=∠ECD.
∴CF=AF.
设点F的坐标为(a,0),则(a+1)2=32+a2,解得a=4.
∴F(4,0).
设CF的解析式为y=kx+3,将F(4,0)代入得4k+3=0,解得k= 。

∴CF的解析式为y= x+3.
将y= x+3与y=-2x2+x+3联立,解得x=0(舍去)或x= .
将x= 代入y= x+3得y= .
∴D(,)
【解析】【分析】(1)易求得C的坐标,利用交点式设出解析式,再把C的坐标代入可求出;
(2)过点B作BM⊥AC,垂足为M,过点M作MN⊥OA,垂足为N.由tan∠CAO=3先求出直线AC的解析式,从而求出BM的解析式,两个解析式联立求出M的坐标,再由两点之间的距离求出MC=BM,进而得出∆MCB的形状,求出答案;
(3)延长CD,交x轴于点F,由∆DCE与∆AOC相似可得出CF=AF,利用勾股定理求出F的坐标,由待定系数法求出CF的解析式,再与二次函数的解析式联立求出D的坐标.。

相关文档
最新文档