乘法公式--培优
(完整版)整式的乘法与因式分解培优
第二章 整式的乘法【知识点归纳】1.同底数幂相乘, 不变, 相加。
a n.a m = (m,n 是正整数)2.幂的乘方, 不变, 相乘。
(a n )m = (m,n 是正整数)3.积的乘方,等于把 ,再把所得的幂 。
(ab)n = (n 是正整数)4.单项式与单项式相乘,把它们的 、 分别相乘。
5.单项式与多项式相乘,先用单项式 ,再把所得的积 ,a (m+n )=6.多项式与多项式相乘,先用一个多项式的每一项分别乘 ,再把所得的积 ,(a+b )(m+n )= 。
7.平方差公式,即两个数的 与这两个数的 的积等于这两个数的平方差(a+b )(a-b )=8.完全平方公式,即两数和(或差)的平方,等于它们的 ,加(或减)它们的积的 。
(a+b )2= ,(a-b )2= 。
9.公式的灵活变形:(a+b )2+(a-b )2= ,(a+b )2-(a-b )2= , a 2+b 2=(a+b )2- ,a 2+b 2=(a-b )2+ ,(a+b )2=(a-b )2+ , (a-b )2=(a+b )2- 。
【例1】若代数式22(26)(2351)x ax y bx x y +-+--+-的值与字母x 的取值无关,求代数式234a -+22212(3)4b a b --的值【例2】已知两个多项式A 和B ,43344323,321,n n n A nx x x x B x x x nx x +-+=+-+-=-++--试判断是否存在整数n ,使A B -是五次六项式?【例3】已知,,x y z 为自然数,且x y <,当1999,2000x y z x +=-=时,求x y z ++的所有值中最大的一个是多少?【例4】如果代数式535ax bx cx ++-当2x =-时的值为7,那么当2x =时,该式的值是 .【例5】已知a 为实数,且使323320a a a +++=,求199619971998(1)(1)(1)a a a +++++的值.【例6】(1)已知2x+2=a ,用含a 的代数式表示2x ;(2)已知x=3m +2,y=9m +3m ,试用含x 的代数式表示y .【例7】我们知道多项式的乘法可以利用图形的面积进行解释,如(2a+b )(a+b )=2a 2+3ab+b 2就能用图1或图2等图形的面积表示:(1)请你写出图3所表示的一个等式: . (2)试画出一个图形,使它的面积能表示:(a+b )(a+3b )=a 2+4ab+3b 2.【例8】归纳与猜想:(1)计算:①(x﹣1)(x+1)= ;②(x﹣1)(x2+x+1)= ;③(x﹣1)(x3+x2+x+1)= ;(2)根据以上结果,写出下列各式的结果.①(x﹣1)(x6+x5+x4+x3+x2+x+1)= ;②(x﹣1)(x9+x8+x7+x6+x5+x4+x3+x2+x+1)= ;(3)(x﹣1)(x n﹣1+x n﹣2+x n﹣3+…+x2+x+1)= (n为整数);(4)若(x﹣1)•m=x15﹣1,则m= ;(5)根据猜想的规律,计算:226+225+…+2+1.【例9】认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…下面我们依次对(a+b)n展开式的各项系数进一步研究发现,n取正整数时可以单独列成表中的形式:上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;(2)推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).课后作业:1、若0352=-+y x ,求y x 324⋅的值。
初一数学培优:乘法公式的正应用与逆应用
数学思想方法是在数学知识的学习过程中,形成具有独特的解决问题的策略和方法.数学知识的学习是数学思想方法形成的基础,而数学思想对数学知识的学习、理解以及解决问题具有指导意义.本讲主要学习几个重要的数学思想:“正”、“逆”互化、归纳类比、整体代入、分类讨论、配方构造、待定系数的数学思想方法.【点拨】正向应用多项式乘法公式,观察每个乘积的结果,得出规律【解答】【反思与小结】对于结论探究问题,一般利用“特殊——一般——特殊”的规律,观察最初的结论,从而找到规律,再进行证明。
本例观察最初的两个等式或三个等式,猜想规律,再进行证明。
【点拨】对于(1)能否利用例1的结论进行计算与化简?对于(2)、(3)如何将其转化成例1的形式从而应用例1的公式进行解答.【解答】【点拨】“分析法”要求的式子值,要对所求的式子进行通分变形,也要对已知的式子进行变形,变形成次数相同的式子,带入解决。
【解答】【反思与小结】分析法主要是从结论出发,逆向推理,通过分析要得到结论,需要怎样的条件,从而逐步接近已知条件的分析过程。
本例要得到,就要得到,观察已知条件,怎样得到?需要将与的两边分别次方和次方,从而得出解答。
【点拨】思考一:能否从一个因数开始逐步应用“不完全归纳”进行解答?思考二:观察每个因式的特点,能否“正”或“逆”用平方差公式?应用公式后根据每个因数的特点进行解答?【解答】【反思与小结】应用不完全归纳法需要大胆猜想,小心验证与证明。
本例既可以根据各因数的特点利用乘法交换律和结合律进行组合解决,又可以利用不完全归纳法进行归纳探究。
【点拨】能否通过“正”或“逆”用公式化简所求的代数式,然后再证明呢?这也是求代数式的值的常用办法。
【证明】【证明】【点拨】“分析法”思考一:要求代数式的值,观察已知条件,能否用含x的一次代数式分别表示出所求式子中的每一项,再进行化简求解呢?这种“各个击破”的方法是解决此问题的关键。
思考二:要求代数式的值,能否将已知的条件作为一个整体代入求解?这种整体代入的方法也是一种常用方法。
整式乘法乘法公式培优
第二课 整式乘法——乘法公式培优一、平方差②(2)(2)x y x y -+-- ②11()()22a b a b --- ③(2)(2)a b c a b c +---=④(23)(23)a b c a b c ---+- ⑤22(34)(34)a b a b --+=2、已知:12345671234569A =⨯,21234568B =,比较A 、B 的大小,则A B .3、(1)计算:2481631111111(1)(1)(1)(1)(1)222222++++++= .(2)2481632(51)(51)(51)(51)(51)(51)++++++=(3)222222111111(1)(1)(1)(1)(1)(1)234201620172018---⋯⋯---=二、利用完全平方公式计算:1、(1)()223x - (2)()243x y + (3)()2mn a -(4)()225xy x + (5)()221n n +- (6)(a -b +c )22、(1)22411_________24x x ⎛⎫+=++ ⎪⎝⎭ (2)()22_______p pq -+=三、混合运算(1)1(3x m +2y n +4)(3x m +2y n -4) (2)(m+n )(m -n )(m 2-n 2)(3)(x+2y)(x 2-2xy+4y 2) (4)(3x+2)2-(3x -2)2+(3x+2)2(3x -2)2(5)(2x+3)2-2(2x+3)(3x-2)+(3x-2)2(6)22(23)(46)(23)(23)x y x y x y x y -+-+++(7)(2x+3y)2(2x-3y)2(8)(3x+2)2-(3x-5)2(9)(x 2+x+6)(x 2-x+6) (10)(9-a 2)2-(3-a)(3-a)(9+a)2(11)(a+b-c)(a-b+c)-(a-b-c)(a+b+c) (12)x 2–(x+y)(x –y)(13) (14))(15) (16)(a -2b +3c )2-(a +2b -3c )2.(17)(2x +y -z +5)(2x -y +z +5) (18) 22)231()231(y x y x --+-(19)()()()()x z x xz z x z x xz z +-+-++222222四、配方1.(1)若292(3)16x k x +-+是完全平方式,则k 的值为 (2)如果26x x k -+是完全平方式,则k 的值为 (3)若22(1)4x k x -++是完全平方式,则k 的值为(4)若29(1)4x k x -++是完全平方式,则k 的值为(5)若多项式224(2)9x k xy y --+是完全平方式,则k 的值是 .⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+4428y x y x ()()22875875c b a c b a +---+2.已知:a ,b ,c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++的值.3、实数a ,b ,c 满足2617a b +=-,2823b c +=-,2214c a +=,则a b c ++的值。
乘法公式知识讲解
乘法公式知识讲解乘法公式是指在数学中用于求解乘法运算的规则。
它们是数学中最基本也是最重要的公式之一,常用于求解各种复杂的乘法运算,可以大大简化计算过程。
在这篇文章中,我将详细介绍乘法公式的相关知识,并为大家提供一些实例来帮助理解。
首先,我们来讨论最基本的乘法公式,即两个数的乘法。
设有两个数a和b,它们的乘积可以表示为a × b或ab。
在乘法中,我们通常使用乘号(×)或圆点(·)来表示乘法运算。
下面是一些常见的乘法公式:1.乘法交换律:a×b=b×a乘法交换律表示,两个数相乘的结果与两个数的顺序无关。
例如,3×4=4×3=122.乘法结合律:(a×b)×c=a×(b×c)乘法结合律表示,三个数相乘的结果与它们的运算顺序无关。
例如,(2×3)×4=2×(3×4)=243.数值相同的乘法:a×a=a^2数值相同的乘法表示,一个数与其自身相乘的结果可以用该数的平方来表示。
例如,4×4=4^2=16接下来,我们将进一步讨论乘法公式的应用。
1.乘法分配律:a×(b+c)=(a×b)+(a×c)乘法分配律是乘法中的一个重要规则。
它表示一个数乘以两个数的和等于该数分别乘以这两个数后的和。
例如,2×(3+4)=(2×3)+(2×4)=142.幂与乘法:a^m×a^n=a^(m+n)幂与乘法表示,两个具有相同底数的幂相乘,底数不变,指数相加。
例如,2^3×2^4=2^(3+4)=2^7=1283.倒数乘法:a×(1/a)=1倒数乘法表示一个数与其倒数相乘的结果等于1、例如,5×(1/5)=14.零乘法:a×0=0零乘法表示任何数与0相乘的结果都是0。
培优七年级第17讲——乘法公式
17 乘法公式只有通过数学,我们才能彻底了解科学的精髓.至有在数学中,我们才能发现科学规律的高度简洁性、严格性和抽象性.任何科学教育如果不以数学为出发点,则其基础势必有缺陷。
-------科姆特知识纵横乘法公式是在多项式乘法的基础上,将多项式乘法的一半法则应用一一些特殊形式的多项式相乘,出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用。
在学习乘法公式时,应该做到以下几点:1.熟悉每个公式的结构特征,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题求解例1 (1) 在2004、2005、2006、2007这四个数中,不能表示为两个整数平方差是______.(第10届江苏竞赛题)(2) 已知(2000-a)(1998-a)=1999,那么, = _________.(重庆竞赛题) 思路点拨:(1),m+n,m-n的奇偶性相同,这是解本例题的基础。
(2)视(2000-a)•(1998-a)为整体,•由平方和想到完全平方公式及其变形例2 (1) 已知a、b、c满足,,,则a+b+c 的值等于( ).A. 2B. 3C. 4D.5(2) a、b、b不全为0, 满足a+b+c=0,,称使得恒成立的正整数n为”好数”,则不超过2007的正整数中”好数”的个数为( )A. 2B. 1004C. 20006D. 2007思路点拨:对于(1) ,由条件等式联想到完全平方式,解题的关键是整体考虑;对于(2) , 由条件出发,探求a,b,c之间的关系。
例3 观察下列算式(1) 1x3-;(2)2x4-(3)3x5-(4)__________________________;……..(1) 请你按照以上规律写出第四个算式.(2) 把这个规律用含字母的式子表示出来.(3) 你认为(2)中所写出的式子一定成立吗?并说明理由(2011年湖南省益阳市考题) 思路点拨: 从特殊情形归纳一般结论,并证明这个结论例4 已知a+b=1, 求。
第一节 整式乘法及应用-学而思培优
第一节整式乘法及应用-学而思培优第一节整式乘法及应用一、课标导航二、核心纲要1.幂的运算性质1) 同底数幂的乘法同底数的幂相乘,底数不变,指数相加。
即:$a^m \cdota^n = a^{m+n}$。
(其中$m,n$都是正整数)特别地,$a^m \cdot a^{-n} = \dfrac{a^m}{a^n}$。
注:①此性质可推广到三个或三个以上同底数幂相乘,如:$a\cdot a\cdot a = a^3$。
②此性质可以逆用,即$a^{m+n} = a^m \cdot a^n$。
③当幂的指数为1时,可省略不写,但是不能认为没有,如:$a\cdot a = a^2$。
2) 幂的乘方幂的乘方,底数不变,指数相乘。
即:$(a^m)^n =a^{mn}$。
注:此性质可以逆用,即:$a^{mn} = (a^m)^n$。
3) 积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即:$(ab)^n = a^n b^n$。
($n$是正整数)注:①此性质可推广到多个因数的积的乘方,即:$(abc)^n = a^n b^n c^n$。
②此性质可以逆用:$abc = (abc)^1 = a^1 b^1 c^1$。
2.整式乘法法则1) 单项式与单项式相乘系数、同底数幂分别相乘作为积的因式,只有一个单项式里含有的字母,则连同它的指数作为积的一个因式。
如$2abc\cdot3ab = 6a^2 b^2 c$。
注:①此法则适合多个单项式相乘;②用法则解题时,可分三步计算:第一步:将系数相乘;第二步:将相同字母相乘;第三步:将单独的单项式写在积中。
2) 单项式与多项式相乘单项式分别与多项式中的每一项相乘,然后把所得的积相加,即:$m(a+b+c) = ma+mb+mc$,其中$m$为单项式,$a+b+c$为多项式。
3) 多项式与多项式相乘将一个多项式中的每一个单项式分别与另一个多项式中的每一个单项式相乘,然后把积相加,即:a+b)(c+d) = ac+ad+bc+bd$。
苏科版七年级数学下册《乘法公式》综合培优测试卷【含答案】
苏科版七年级数学下册《乘法公式》综合培优测试卷一.选择题1.下列不能用平方差公式直接计算的是( )A.(﹣m+n)(m﹣n)B.(﹣m﹣n)(﹣m+n)C.(x+2)(x﹣2)D.(﹣2x+y)(2x+y)2.已知a2﹣b2=8,b﹣a=2,则a+b等于( )A.﹣8B.8C.﹣4D.43.若x2+(k﹣1)x+4是一个完全平方式,则常数k的值为( )A.5B.5或3C.﹣3D.5或﹣34.已知x﹣y=3,xy=2,则(x+y)2的值等于( )A.12B.13C.14D.175.一个正方形的边长为a,若边长增加3,则其面积增加了( )A.9B.(a+3)2C.6a+9D.a2+326.从前,一位农场主把一块边长为a米(a>4)的正方形土地租给租户张老汉,第二年,他对张老汉说:“我把这块地的一边增加4米,相邻的另一边减少4米,变成长方形土地继续租给你,租金不变,你也没有吃亏,你看如何?”如果这样,你觉得张老汉的租地面积会( )A.没有变化B.变大了C.变小了D.无法确定7.若,则下列a,b,c的大小关系正确的是( )A.b<a<c B.a<b<c C.a<c<b D.c<b<a8.现有甲、乙、丙三种不同的长方形纸片若干张(边长如图).小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,他选取甲纸片1张,再取乙纸片4张,还需要取丙纸片的张数为( )A.1B.2C.3D.4二.填空题9.= .10.如图,正方形ABCD与正方形CEFG的面积之差是6,那么S阴= .11.当m﹣n=﹣5,mn=2时,则代数式(m﹣n)2﹣4mn= .12.已知a=﹣2+3b,则代数式a2﹣6ab+9b2的值为 .13.一个正方形的边长增加3cm,它的面积就增加99cm2,这个正方形的边长为 .14.如图,正方形ABCD被分成两个小正方形和两个长方形,如果两个小正方形的面积分别是6cm2和2cm2,那么两个长方形的周长和为 cm.15.已知m+n=3,m﹣n=2,则m2﹣n2= .三.解答题16.计算:.17.已知ab=3,a﹣b=4,求2a2+7ab+2b2的值.18.计算(2m﹣n)2﹣(m+2n)(m﹣2n).19.计算:(2x﹣3y+z)(2x+3y﹣z).20.阅读材料:若满足(8﹣x)(x﹣6)=﹣3,求(8﹣x)2+(x﹣6)2的值.解:设8﹣x=a,x﹣6=b,则(8﹣x)(x﹣6)=ab=﹣3,a+b=8﹣x+x﹣6=2.所以(8﹣x)2+(x﹣6)2=a2+b2=(a+b)2﹣2ab=22﹣2×(﹣3)=10.请仿照上例解决下面的问题:(1)问题发现:若x满足(3﹣x)(x﹣2)=﹣10,求(3﹣x)2+(x﹣2)2的值;(2)类比探究:若x满足(2022﹣x)2+(2021﹣x)2=2020.求(2022﹣x)(2021﹣x)的值;(3)拓展延伸:如图,正方形ABCD和正方形和MFNP重叠,其重叠部分是一个长方形,分别延长AD、CD,交NP和MP于H、Q两点,构成的四边形NGDH和MEDQ 都是正方形,四边形PQDH是长方形.若正方形ABCD的边长为x,AE=10,CG=20,长方形EFGD的面积为200.求正方形MFNP的面积(结果必须是一个具体数值).21.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,然后将剩余部分拼成图2所示长方形.(1)上述操作能验证的等式是 .A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2﹣ab=a(a﹣b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2﹣4y2=18,x﹣2y=,求x+2y.②计算:(1﹣)×(1﹣)×(1﹣)×……×(1﹣)×(1﹣).22.【探究】如图①,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成图②的长方形(1)请你分别表示出这两个图形中阴影部分的面积 (2)比较两图的阴影部分面积,可以得到乘法公式: (用字母表示)【应用】请应用这个公式完成下列各题①已知4m2﹣n2=12,2m+n=4,则2m﹣n的值为 ②计算:(2a+b﹣c)(2a﹣b+c)【拓展】①(2+1)(22+1)(24+1)(28+1)…(232+1)+1结果的个位数字为 ②计算:1002﹣992+982﹣972+…+42﹣32+22﹣12参考答案一.选择题1.解:A、(﹣m+n)(m﹣n)不能用平方差公式计算,故选项符合题意;B、(﹣m﹣n)(﹣m+n)能用平方差公式计算,故选项不符合题意;C、(x+2)(x﹣2)能用平方差公式计算,故选项不符合题意;D、(﹣2x+y)(2x+y)能用平方差公式计算,故选项不符合题意.故选:A.2.解:∵a2﹣b2=(a+b)(a﹣b)=8,b﹣a=2,∴a+b=﹣4,故选:C.3.解:∵x2+(k﹣1)x+4是一个完全平方式,∴k﹣1=±4,解得:k=5或﹣3,故选:D.4.解:∵x﹣y=3,xy=2,∴(x+y)2=(x﹣y)2+4xy=9+8=17,故选:D.5.解:根据题意可得,(a+3)2﹣a2=a2+6a+9﹣a2=6a+9.故选:C.6.解:原来租的土地面积:a2(平方米).现在租的土地面积:(a+4)(a﹣4)=a2﹣16(平方米).∵a2>a2﹣16.∴张老汉的租地面积会减少.故选:C.7.解:∵a=20220=1,b=(2022+1)×(2022﹣1)﹣20222=20222﹣1﹣20222=﹣1,c=(﹣×)2022×=(﹣1)2022×=,∴b<a<c,故选:A.8.解:∵取甲纸片1张,取乙纸片4张,∴面积为a2+4b2,∵小明要用这三种纸片紧密拼接成一个没有缝隙的大正方形,丙纸片的面积为ab,∴还需4张丙纸片,即a2+4b2+4ab=(a+2b)2,故选:D.二.填空题9.解:==﹣,故答案为:﹣.10.解:设正方形ABCD的边长分别为a和b,由题意得:b2﹣a2=6.由图形可得:S阴=a(b﹣a)+(b2﹣ab)=ab﹣a2+b2﹣ab=(b2﹣a2)=×6=3.故答案为:311.解:原式=(﹣5)2﹣4×2=25﹣8=17,故答案为:17.12.解:∵a=﹣2+3b,∴a﹣3b=﹣2,∴a2﹣6ab+9b2=(a﹣3b)2=(﹣2)2=4,故答案为:4.13.解:设这个正方形的边长为xcm,根据题意得:(x+3)2=x2+99,∴x2+6x+9=x2+99,∴6x=90∴x=15.故答案为:15cm.14.解:根据题意可得,面积分别是6cm2和2cm2的小正方形边长为cm和cm,则两个长方形的周长为(4+4)cm.故答案为:4+4.15.解:m2﹣n2=(m+n)(m﹣n)=3×2=6.故答案为:6.三.解答题16.解:原式===.17.解:a2+b2=(a﹣b)2+2ab=42+2×3=22,2a2+7ab+2b2=2(a2+b2)+7ab=2×22+7×3=44+21=65.18.解:原式=4m2﹣4mn+n2﹣(m2﹣4n2)=4m2﹣4mn+n2﹣m2+4n2=3m2﹣4mn+5n2.19.解:(2x﹣3y+z)(2x+3y﹣z)=[2x﹣(3y﹣z)][2x+(3y﹣z)]=(2x)2﹣(3y﹣z)2=4x2﹣9y2+6yz﹣z2.20.解:(1)设3﹣x=a,x﹣2=b,则a+b=(3﹣x)+(x﹣2)=1,由完全平方公式可得a2+b2=(a+b)2﹣2ab=12﹣2×(﹣10)=21,即:(3﹣x)2+(x﹣2)2的值为21;(2)设2022﹣x=a,2021﹣x=b,则a﹣b=1,a2+b2=2020,由完全平方公式可得ab==,即:(2022﹣x)(2021﹣x)的值为;(3)设DE=a,DG=b,则a=x﹣10,b=x﹣20,a﹣b=10,又由ab=200,∴正方形MFNP的面积为:(a+b)2=(a﹣b)2+4ab=102+4×200=900.21.解:(1)根据阴影部分的面积相等得出:a2﹣b2=(a+b)(a﹣b).故选:B.(2)①∵x2﹣4y2=18,x﹣2y=3,∴x+2y=(x2﹣4y2)÷(x﹣2y)=18÷3=6;②原式=(1﹣)×(1+)×(1﹣)×(1+)×……×(1﹣)×(1+)=××××……××=×=.22.解:(1)图①按照正方形面积公式可得:a2﹣b2;图②按照长方形面积公式可得:(a+b)(a﹣b).故答案为:a2﹣b2;(a+b)(a﹣b).(2)令(1)中两式相等可得:(a+b)(a﹣b)=a2﹣b2故答案为:(a+b)(a﹣b)=a2﹣b2.【应用】①∵4m2﹣n2=12,2m+n=4,4m2﹣n2=(2m+n)(2m﹣n)∴(2m﹣n)=12÷4=3故答案为:3.②(2a+b﹣c)(2a﹣b+c)=[2a+(b﹣c)][2a﹣(b﹣c)]=4a2﹣(b﹣c)2=4a2﹣b2+2bc﹣c2【拓展】①原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1=(22﹣1)(22+1)(24+1)(28+1)…(232+1)+1=(24﹣1)(24+1)(28+1)…(232+1)+1=(28﹣1)(28+1)…(232+1)+1=(216﹣1)…(232+1)+1=264﹣1+1=264∵2的正整数次方的尾数为2,4,8,6循环,64÷4=16故答案为:6.②原式=(100+99)(100﹣99)+(98+97)(98﹣97)+…+(4+3)(4﹣3)+(2+1)(2﹣1)=100+99+98+97+…+4+3+2+1=5050。
初二数学知识点专题讲解与练习2---乘法公式(培优版)
A.正数
B.负数
C.非负数
D.可正可负
.若 则 的值是( ) 9 x − y = 2, x2 + y2 = 4, x1992 + y1992
.A 4
.B 19922
.C 21992
.D 41992
3/9
(“希望杯”邀请赛试题)
10.某校举行春季运动会时,由若干名同学组成一个 8 列的长方形队列.如果原队列中增加 120 人,就能
例 4 71 提示:由 a+b=1, a2 + b2 =2 得 ab=- 1 ,利用 an+1 + bn+1 =( an + bn )(a+
8
2
b)-ab( an−1 + bn−1 )可分别求得 a3 + b3 = 5 ,a4 + b4 = 7 ,a5 + b5 = 19 ,a6 + b6 = 26 ,a7 +
对于(2),由条件等式联想到完全平方式,解题的切入点是整体考虑.
1/9
【例 3】计算下列各题: ( ) ; 1 6(7 +1)(72 +1)(74 +1)(78 +1) +1
(天津市竞赛试题)
( ) ; 2 1.234 52 + 0.765 52 + 2.469× 0.765 5
(“希望杯”邀请赛试题)
3.13 4.156 5.D
6.C 提示:(x+y)(x-y)=2009=7×7×41 有 6 个正因数,分别是 1,7,41,49,287 和 2009,因此对应的方程组为: x + y = −1,−7,−41,−49,−287,−2009,1,7,41,49,287,2009; x − y = −2009,−287,−49,−41,−7,−1,2009,287,49,41,7,1. 故(x,y)共有 12 组不同的表示. 7.B 8.C 9.提示:不存在符合条件的整数对(m,n),因为 1954 不能被 4 整除.
浙教版七年级培优第21讲乘法公式
第21讲 乘法公式【思维入门】1.下列运算正确的是( )A .2x 2·x 2=2x B.⎝ ⎛⎭⎪⎫-12a 2b 3=-16a 6b 3 C .3x 2+2x 2=5x 2 D .(x -3)2=x 2-92.若a +b =22,ab =2,则a 2+b 2的值为( )A .6B .4C .3 2D .2 3 3.已知x 2+2mx +9是完全平方式,则m 的值为( )A .1B .3C .-3D .±34.已知a -b =-3,(a +b )2=5,求a 2+b 2=____. 5.先化简,再求值:(x +2)2-(x +1)(x -1),其中x =1.【思维拓展】6.已知a +1a =10,则a -1a 的值为 ( )A. 6B .- 6C .± 6D .无法确定7.已知x (x -1)-(x 2-y )=-2,则x 2+y 22-xy 的值是____.8.图9-21-1是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的出现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行数字正好对应了()a +b n(n 为自然数)的展开式中a 按次数从大到小排列的项的系数,例如()a +b 2=a 2+2ab +b 2展开式中的系数1,2,1恰好对应图中第三行的数字;再如()a +b 3=a 3+3a 2b +3ab 2+b 3展开式中的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出()a -b 4的展开式为____.图9-21-19.已知a-b=3,b-c=2,a2+b2+c2=1,求ab+bc+ca的值.10.利用我们学过的知识,可以得到下面形式优美的等式:a2+b2+c2-ab-bc-ac=12[(a-b)2+(b-c)2+(c-a)2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.(1)请你检验这个等式的正确性;(2)若a=2 017,b=2 018,c=2 019,你能很快求出a2+b2+c2-ab-bc-ac的值吗?【思维升华】11.将2 013表示成两个三位的正整数的平方差,这两个三位数中较大的一个是()A.671 B.337 C.183 D.10712.已知非负实数x,y,z满足x+y+z=1,则t=2xy+yz+2zx的最大值为()A.47 B.59 C.916 D.122513.如图9-21-2,若将左边正方形剪成四块,恰能拼成右边的矩形,设a=1,则这个正方形的面积为()图9-21-2A.(1+2)2 B.1+52C.3+52 D.7+35214.已知a+b=4,a2+b2=12,则a5+b5=____.15.已知正整数a,b满足(a+b)2=a3+b3,试求a,b的值.16.一幢33层的大楼里有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2层至第33层的每一层.问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从梯梯上楼)第21讲乘法公式【思维入门】1.下列运算正确的是( C )A .2x 2·x 2=2x B.⎝ ⎛⎭⎪⎫-12a 2b 3=-16a 6b 3 C .3x 2+2x 2=5x 2 D .(x -3)2=x 2-92.若a +b =22,ab =2,则a 2+b 2的值为( B )A .6B .4C .3 2D .2 3 3.已知x 2+2mx +9是完全平方式,则m 的值为( D )A .1B .3C .-3D .±34.已知a -b =-3,(a +b )2=5,求a 2+b 2=__7__. 【解析】 ∵a -b =-3,∴(a -b )2=9, 即a 2-2ab +b 2=9,① ∵(a +b )2=5, ∴a 2+2ab +b 2=5,② ①+②得2(a 2+b 2)=14, 解得a 2+b 2=7.5.先化简,再求值:(x +2)2-(x +1)(x -1),其中x =1. 解:(x +2)2-(x +1)(x -1) =x 2+4x +4-(x 2-1) =x 2+4x +4-x 2+1 =4x +5.当x =1时,原式=4×1+5=9.【思维拓展】6.已知a +1a =10,则a -1a 的值为( C )A. 6B .- 6C .± 6D .无法确定7.已知x (x -1)-(x 2-y )=-2,则x 2+y22-xy 的值是__2__.【解析】 由x (x -1)-(x 2-y )=-2可知x -y =2,则x 2+y 22-xy =(x -y )22=222=2.8.图9-21-1是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的出现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行数字正好对应了()a +b n(n 为自然数)的展开式中a 按次数从大到小排列的项的系数,例如()a +b 2=a 2+2ab +b 2展开式中的系数1,2,1恰好对应图中第三行的数字;再如()a +b 3=a 3+3a 2b +3ab 2+b 3展开式中的系数1,3,3,1恰好对应图中第四行的数字.请认真观察此图,写出()a -b 4的展开式为__a 4-4a 3b +6a 2b 2-4ab 3+b 4__.图9-21-19.已知a -b =3,b -c =2,a 2+b 2+c 2=1,求ab +bc +ca 的值. 解:∵a -b =3,b -c =2,∴a -c =5,∴分别两边平方后展开得:a 2+b 2-2ab =9,b 2+c 2-2bc =4,a 2+c 2-2ac =25, ∴2(a 2+b 2+c 2)-2(ab +bc +ac )=38, ∵a 2+b 2+c 2=1, ∴ab +bc +ca =-18.10.利用我们学过的知识,可以得到下面形式优美的等式:a 2+b 2+c 2-ab -bc -ac =12[(a -b )2+(b -c )2+(c -a )2],该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美. (1)请你检验这个等式的正确性;(2)若a=2 017,b=2 018,c=2 019,你能很快求出a2+b2+c2-ab-bc-ac的值吗?解:(1)左边=a2+b2+c2-ab-bc-ac=12(2a2+2b2+2c2-2ab-2bc-2ac)=12(a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)=12[(a-b)2+(b-c)2+(c-a)2],∴左边=右边,即这个等式是正确的;(2)当a=2 017,b=2 018,c=2 019时,a2+b2+c2-ab-bc-ac=12[(a-b)2+(b-c)2+(c-a)2]=12[(2 017-2 018)2+(2 018-2 019)2+(2 019-2 017)2]=12×(1+1+4)=3.【思维升华】11.将2 013表示成两个三位的正整数的平方差,这两个三位数中较大的一个是(B)A.671 B.337 C.183 D.107【解析】2 013=a2-b2=(a-b)(a+b),由于a和b都是3位数,所以a+b>100+100=200,又2 013=3×11×61,所以a+b只能是11×61=671,因此a-b=3,a+b=671,a=337,b=334,较大的是337.12.已知非负实数x,y,z满足x+y+z=1,则t=2xy+yz+2zx的最大值为(A)A.47 B.59 C.916 D.1225【解析】 t =2xy +yz +2zx =2x (y +z )+yz ≤2x (y +z )+14(y +z )2, 2x (1-x )+14(1-x )2=-74x 2+32x +14 =-74⎝ ⎛⎭⎪⎫x -372+47.易知当x =37,y =z =27时,t =2xy +yz +2zx 取得最大值47.13.如图9-21-2,若将左边正方形剪成四块,恰能拼成右边的矩形,设a =1,则这个正方形的面积为( D)图9-21-2A .(1+2)2B.1+52C.3+52D.7+3 52【解析】 根据图形和题意,得(a +b )2=b (a +2b ), 其中a =1,则方程是(1+b )2=b (1+2b ), 解得b =5+12,所以正方形的面积为⎝⎛⎭⎪⎫1+5+122=7+352.14.已知a +b =4,a 2+b 2=12,则a 5+b 5=__464__. 【解析】 ∵a +b =4,∴a 2+b 2+2ab =16, 又a 2+b 2=12,∴2ab =4,∴ab =2. ∴(a +b )(a 2+b 2)=4×12=48, ∴a 3+b 3+ab (a +b )=48,∴a 3+b 3=48-ab (a +b )=48-2×4=40.∵ab=2,∴(ab)2=4,∴(a2+b2)2=144,∴a4+b4+2(ab)2=144,∴a4+b4=144-2(ab)2=136,∴(a+b)(a4+b4)=4×136,∴a5+b5+ab(a3+b3)=544,∴a5+b5=544-ab(a3+b3)=544-2×40=544-80=464.15.已知正整数a,b满足(a+b)2=a3+b3,试求a,b的值.解:由已知得a2-ab+b2=a+b,则(a-b)2+(a-1)2+(b-1)2=2.因为a,b均为正整数,故a-1≥0,b-1≥0.(1)当a=b时,(a-1)2+(b-1)2=2,即a=b=2;(2)当a≠b时,(a-b)2=1,从而(a-1)2=1且(b-1)2=0或者(a-1)2=0且(b-1)2=1,所以a=2,b=1或者a=1,b=2.综上所述,所求a,b的值是:a=b=2或者a=2,b=1或者a=1,b=2.16.一幢33层的大楼里有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中某一层停一次,对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2层至第33层的每一层.问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从梯梯上楼)解:由题意易知,这32个人恰好是第2层至第33层各住1人,对于每个乘电梯上、下楼的人,他所住的层数一定不小于直接上楼的人所住的层数.事实上,设住s层的人乘电梯,而住在t层的人直接上楼,s<t,交换两人的上楼方式,其余的人不变,则不满意的总分减少.设电梯停在第x层,在第1层有y人没有乘电梯即直接上楼,那么不满意的总分为:s =3[1+2+3+…+(33-x )]+3(1+2+…+y )+[1+2+…+(x -y -2)] =3(33-x )(34-x )2+3y (y +1)2+(x -y -2)(x -y -1)2=2x 2-(y +102)x +2y 2+3y +1 684 =2⎝ ⎛⎭⎪⎫x -y +10242+18(15y 2-180y +3 068) =2⎝ ⎛⎭⎪⎫x -y +10242+158(y -6)2+316≥316. 又当x =27,y =6时,s =316,故当电梯停在第27层时,不满意的总分最小,最小值为316.。
整式的乘法培优
整式的乘法培优一、知识梳理1、⑴幕的运算性质:①同底数幕的乘法:②幕的乘方:③积的乘方:⑵性质的逆用:2、单项式乘单项式的法则:3、单项式乘多项式的法则:4、多项式乘多项式的法则:二、例题精讲:1、同底数幕的乘法n a (n 为奇数)n a (n为偶数);乘方的符号法则:n n(n为偶数)。
x y (n 为奇数)x y例1、计算: 1 25 2 3 2 2 2 b 2b3b23 x y 2y x 3公式的逆用:例2、⑴已知x m 3,x n4,求x m n 的值2、幕的乘方例1、 计算下列各式2 33 2⑴X 2X 32m 22m 132 a a2 33 43 a ba b公式的逆用:例 2、⑴若 2a3,2b5,则 23a 2b; m 1m14⑵右3 927 3 ,则m=o⑵化简:2 201520143、积的乘方 例1、计算⑴2x 3y 4z222 4⑵ 3m n 2mn 2512 312 2 2⑵(y ) (4X y ) ( x y )公式的逆用4、单项式乘单项式 例1、 计算下列各题22 3 2⑴ x y ( xy )3 25⑶ 3x 33x 5x2x 2例1、 计算小2015220141已知: 2na,b n4n3,求ab 的值。
(2)7x(2x 1) 3x(4 x 1)2x(x 3) 15、单项式乘多项式 例1 :计算下列各题2 2(1) 8m(m 3m 4) m (m 3)2 2例2、若3a a 2 0,求5+2 a 6a 的值。
6、多项式乘多项式 例、计算:28xy 2x1xy2x 3⑴(x+y)(x 2-xy+y 2)⑵ a 2 2b 2a 2b2ab(1) (3a 3b 2)( 2-a 3b 3c)7 33ab ( 4a)21 2 2 1 3 (6) (3x 2 ?y ?y 2) ( -xy)3- 2 2 2 33(2) ( -xyz) -x 2y 2 ( -yz 3)2 3 53 22(3) 5a b ( 3b)( 6ab) ( ab)(5) a -(a b) -(a b) -(a 2b)3 2 6三、巩固练习 1、计算下列各题:|x 2y ( 52 0.5xy) (2x)3 xy 3⑺(x+2y)(5a+3b) ⑻(x+3y+4)(2x-y)2化简求值:2 2 2 ⑴ m (m + 4) + 2m(m — 1) — 3m(m 2+ m — 1),其中 m =—52 2 3⑵ x(x — 4) — (x + 3)(x — 3x + 2) — 2x(x — 2),其中 x =2 2 33、已知多项式(x + px + q)(x — 3x + 2)的结果中不含x项和x2项,求p和q的值.。
2023年初中数学培优竞赛讲座第讲乘法公式
第十八讲 乘法公式乘法公式是在多项式乘法的基础上,将多项式乘法的一般法则应用于一些特殊形式的多项式相乘,得出的既有特殊性、又有实用性的具体结论,在复杂的数值计算,代数式的化简求值、代数式的恒等变形、代数等式的证明等方面有着广泛的应用,在学习乘法公式时,应当做到以下几点:1.熟悉每个公式的结构特性,理解掌握公式;2.根据待求式的特点,模仿套用公式;3.对公式中字母的全面理解,灵活运用公式;4.既能正用、又可逆用且能适当变形或重新组合,综合运用公式.例题【例1】 (1)已知两个连续奇数的平方差为2023,则这两个连续奇数可以是 .(江苏省竞赛题)(2)已知(2023一a)(1998一a)=1999,那么(2023一a)2+(1998一a)2= . (重庆市竞赛题) 思绪点拨 (1)建立两个连续奇数的方程组;(2)视(2023一a)·(1998一a)为整体,由平方和想到完全平方公式及其变形.注:公式是如何得出来的?一种是由已知的公式,通过推导,得到一些新的公式;另一种是从大量的特殊的数量关系入手,并用字母表达数来揭示一类数量关系的一般规律—一公式.从特殊到一般的过程是人类结识事物的一般规律,而观测、发现、归纳是发现数学规律最常用的方法. 乘法公式常用的变形有:(1)ab b a b a 2)(222 ±=+,2)()(2)()(222222b a b a b a b a ab --+=+-+=. (2)222222)()(b a b a b a +=-++;(3) ab b a b a 4)()(22=--+; (4)4)()(22b a b a ab --+=,)(2)(2222ac bc ab c b a c b a ++-++=++ 【例2】 若x 是不为0的有理数,已知)12)(12(22+-++=x x x x M ,)1)(1(22+-++=x x x x N ,则M 与N 的大小是( ) A .M>N B . M<N C . M=N D .无法拟定 思绪点拨 运用乘法公式,在化简M 、N 的基础上,作差比较它们的大小.【例3】 计算:(1)6(7十1)(72十1)(74十1)(78十1)+1; (天津市竞赛题)(2)1.345×0.345×2.69—1.3452一1.345×0.3452. (江苏省竞赛题)思绪点拨 若按部就班计算,显然较繁.能否用乘法公式,简化计算,关键是对待求式恰当变形,使之符合乘法公式的结构特性,对于(2),由于数字之间有联系,可用字母表达数(称为换元),将数值计算转化为式的计算,更能反映问题的本质特性.【例4】 (1)已知x 、y 满足x 2十y 2十45=2x 十y ,求代数式y x xy +的值. (“希望杯”邀请赛试题) (2)整数x ,y 满足不等式y x y x 22122+≤++,求x+y 的值. (第14届“希望杯”邀请赛试题)(3)同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:第一次提价的百分率为a ,第二次提价的百分率为b ,乙商场:两次提价的百分率都是2b a +(a>0,b>o),丙商场:第一次提价的百分率为b ,第二次提价的百分率为a ,则哪个商场提价最多?说明理由. (河北省竞赛题)思绪点拔 对于(1),(2)两个未知数一个等式或不等式,须运用特殊方法与手段方能求出x 、y 的值,由平方和想到完全平方公式及其逆用,解题的关键是拆项与重组;对于(3)把三个商场经两次提价后的价格用代数式表达,作差比较它们的大小.注: 有些问题经常不能直接使用公式,而需要发明条件,使之符合乘法公式的特点,才干使用公式.常见的方法是:分组、结合,拆添项、字母化等.完全平方公式逆用可得到两个应用广泛的结论: (1)0)(2222≥±=+±b a b ab a ;揭示式子的非负性,运用非负数及其性质解题. (2)ab b a 222≥+应用于代数式的最值问题.代数等式的证明有以下两种基本方法:(1) 由繁到简,从一边推向另一边; (2)相向而行,寻找代换的等量.【例5】 已知a 、b 、c 均为正整数,且满足222c b a =+,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数.思绪点拨 从222c b a =+的变形入手;222b c a -=,运用质数、奇偶数性质证明.学力训练1.观测下列各式:(x 一1)(x+1)=x 2一l ;(x 一1)(x 2+x+1)=x 3一1;(x 一1)(x 3十x 2+x+1)=x 4一1.根据前面的规律可得(x 一1)(x n +x n-1+…+x+1)= . (武汉市中考题) 2.已知052422=+-++b a b a ,则ba b a -+= . (杭州市中考题) 3.计算:(1)1.23452+0.76552+2.469×0.7655: ;(2)19492一19502+19512一19522+…+19972一19982+19992 = ; (3)2199919991999199719991998222-+ .4.如图是用四张全等的矩形纸片拼成的图形,请运用图中空白部分的面积的不同表达方法写出一个关于a 、b 的恒等式 . (大原市中考题)5.已知51=+a a ,则2241aa a ++= . (菏泽市中考题) 6.已知5,3-=+=-cb b a ,则代数式ab a bc ac -+-2的值为( ).A .一15B .一2C .一6D .6 (扬州市中考题) 7.乘积)200011)(199911()311)(211(2222----等于( ). A .20001999 B .20002001 C .40001999 D .40002001 (重庆市竞赛题) 8.若4,222=+=-y x y x ,则20022002y x +的值是( ).A .4B .20232C . 22023D .420239.若01132=+-x x ,则441xx +的个位数字是( ). A .1 B .3 C . 5 D .710.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是( ).A .))((22b a b a b a -+=-B .2222)(b ab a b a ++=+C .2222)(b ab a b a +-=-D .222))(2(b ab a b a b a -+=-+ (陕西省中考题)11.(1)设x+2z =3z ,判断x 2一9y 2+4z 2+4xz 的值是不是定值?假如是定值,求出它的值;否则请说明理由.(2)已知x 2一2x=2,将下式先化简,再求值:(x —1)2+(x+3)(x 一3)+(x 一3)(x 一1). (上海市中考题)12.一个自然数减去45后是一个完全平方数,这个自然数加上44后仍是一个完全平方数,试求这个自然数.13.观测:2514321=+⋅⋅⋅21115432=+⋅⋅⋅21916543=+⋅⋅⋅……(1)请写出一个具有普遍性的结论,并给出证明;(2)根据(1),计算2023×2023×2023×2023+1的结果(用一个最简式子表达). (黄冈市竞赛题)14.你能不久算出19952吗?为了解决这个问题,我们考察个位上的数字为5的自然数的平方,任意一个个位数为5的自然数可写成l0n+5(n 为自然数),即求(10n+5)2的值,试分析 n=1,n=2,n =3……这些简朴情形,从中探索其规律,并归纳猜想出结论.(1)通过计算,探索规律.152225可写成100×1×(1+1)+25;252=625可写成100×2×(2+1)+25;352=1225可写成100× 3×(3+1)+25;452=2025可写成100×4×(4+1)+25;……752=5625可写成 ;852=7225可写成 .(2)从第(1)题的结果,归纳、猜想得(10n+5)2= .(3)根据上面的归纳猜想,请算出19952= . (福建省三明市中者题)15.已知014642222=+-+-++z y x z y x ,则z y x ++= . (天津市选拔赛试题)16.(1)若x+y =10,x 3+y 3=100,则x 2+y 2= .(2)若a-b=3,则a 3-b 3-9ab = .17.1,2,3,……,98共98个自然数中,可以表达成两整数的平方差的个数是 . (初中数学联赛)18.已知a-b=4,ab+c 2+4=0,则a+b=( ). A .4 B .0 C .2 D .一219.方程x 2-y 2=1991,共有( )组整数解. A .6 B .7 C .8 D .920.已知a 、b 满足等式)2(4,2022a b y b a x -=++=,则x 、y 的大小关系是( ).A .x ≤yB .x ≥yC .x<yD .x>y (大原市竞赛题)21.已知a=1999x+2023,b =1999x+2023,c =1999x+2023,则多项式a 2+b 2+c 2一ab —bc-ac 的值为( ).A .0B .1C .2D .3 (全国初中数学竞赛题)22.设a+b=1,a 2+b 2=2,求a 7+b 7的值. (西安市竞赛题)23.已知a 满足等式a 2-a-1=0,求代数式487-+a a 的值. (河北省竞赛题)24.若b a y x +=+,且2222b a y x +=+,求证:1997199719971997b a y x+=+. (北京市竞赛题)25.有l0位乒乓球选手进行单循环赛(每两人间均赛一场),用xl ,y 1顺次表达第一号选手胜与负的场数;用x 2,y 2顺次表达第二号选手胜与负的场数;……;用x 10、y 10顺次表达十号选手胜与负的场数.求证:21022212102221y y y x x x +++=+++ .26.(1)请观测: 222233*********,335112225,351225,525====写出表达一般规律的等式,并加以证明.(2)26=52+12,53=72+22,26×53=1378,1378=372+32.任意挑选此外两个类似26、53的数,使它们能表达成两个平方数的和,把这两个数相乘,乘积仍然是两个平方数的和吗?你能说出其中的道理吗?注:有人称这样的数“不变心的数”.数学中有许多美妙的数,通过度析,可发现其中的奥秘.瑞士数学家欧拉曾对26(2)的性质作了更进一步的推广.他指出:可以表达为四个平方数之和的甲、乙两数相乘,其乘积仍然可以表达为四个平方数之和.即(a 2+b 2+c 2十d 2)(e 2+f 2+g 2+h 2)=A 2+B 2+C 2+D 2.这就是著名的欧拉恒等式.第十八讲 乘法公式参考答案。
小学五年级数学培优计划
小学五年级数学培优计划一、五年级数学知识框架。
1. 小数乘法和除法。
- 小数乘法:- 意义:与整数乘法意义相同,是求几个相同加数和的简便运算。
例如,0.5×3表示3个0.5相加的和。
- 计算方法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
如2.5×1.2,先算25×12 = 300,因数共有两位小数,所以结果是3.00即3。
- 小数除法:- 除数是整数的小数除法:按照整数除法的法则去除,商的小数点要和被除数的小数点对齐。
如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。
例如,5.6÷7 = 0.8。
- 除数是小数的小数除法:先移动除数的小数点,使它变成整数;除数的小数点向右移动几位,被除数的小数点也向右移动几位(位数不够的,在被除数的末尾用0补足);然后按照除数是整数的小数除法进行计算。
如3.6÷0.9,把0.9变成9,3.6变成36,计算36÷9 = 4。
2. 简易方程。
- 用字母表示数:- 可以表示数、数量关系、运算定律和计算公式等。
例如,用a表示正方形的边长,那么正方形的周长C = 4a,面积S=a²。
- 方程的意义:含有未知数的等式叫做方程。
如2x+3 = 7是方程,而3 + 5 = 8不是方程。
- 等式的性质:- 等式两边同时加上或减去同一个数,等式仍然成立。
例如,若a=b,那么a + c=b + c,a - c=b - c。
- 等式两边同时乘或除以同一个不为0的数,等式仍然成立。
如,若a=b,那么ac = bc(c≠0),a÷c=b÷c(c≠0)。
- 解方程:- 利用等式的性质求出方程中未知数的值的过程。
例如,解方程2x+3 = 7,首先等式两边同时减去3得到2x = 4,然后等式两边同时除以2,解得x = 2。
3. 多边形的面积。
- 平行四边形的面积:- 公式:S = ah(a表示底,h表示高)。
乘法公式培优专题-2
现在出发,准备好了吗?提问开始,你们都要回答。
跟上节奏,启动查克拉。
ARE YOU READY?LET‘S GO!初中数学竞赛专题——乘法公式石狮一中黄约翰一、内容提要1.乘法公式也叫做简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式就是最常用、最基礎的公式,并且可以由此而推导出其他公式。
完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a-b)=a2-b2立方和(差)公式:(a±b)(a2 ab+b2)=a3±b33.公式的推广:①多项式平方公式:(a+b+c+d)2=a2+b2+c2+d2+2ab+2ac+2ad+2bc+2bd+2cd即:多项式平方等于各项平方和加上每两项积的2倍。
②二项式定理:(a±b)3=a3±3a2b+3ab2±b3(a±b)4=a4±4a3b+6a2b2±4ab3+b4)(a±b)5=a5±5a4b+10a3b2 ±10a2b3+5ab4±b5)…………注意观察右边展开式的项数、指数、系数、符号的规律③由平方差、立方和(差)公式引伸的公式(a+b)(a3-a2b+ab2-b3)=a4-b4(a+b)(a4-a3b+a2b2-ab3+b4)=a5+b5(a+b)(a5-a4b+a3b2-a2b3+ab4-b5)=a6-b6…………注意观察左边第二个因式的项数、指数、系数、符号的规律在正整数指数的条件下,可归纳如下:设n为正整数(a+b)(a2n-1-a2n-2b+a2n-3b2-…+ab2n-2-b2n-1)=a2n-b2n(a+b)(a2n-a2n-1b+a2n-2b2-…-ab2n-1+b2n)=a2n+1+b2n+1类似地:(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)=a n-b n4.公式的变形及其逆运算由(a+b)2=a2+2ab+b2得a2+b2=(a+b)2-2ab由(a+b)3=a3+3a2b+3ab2+b3=a3+b3+3ab(a+b) 得a3+b3=(a+b)3-3ab(a+b)5. 由公式的推广③可知:当n为正整数时a n-b n能被(a-b)整除,a2n+1+b2n+1能被(a+b)整除,a2n-b2n能被(a+b)及(a-b)整除。
乘法公式培优辅导讲义
乘法公式培优训练题型一:a±型1.已知x2﹣3x+1=0,则= .2.若a2+=14,则a+﹣5的值为.3.已知a+=7,则a3+的值是.4.已知=3,则= .5.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;(2)应用:已知x﹣,求x2+的值;(3)拓展:代数式x2+是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.题型二:换元,整体思想1.已知a+b=4,则= .2.已知(2017﹣a)2+(2016﹣a)2=1,则(2017﹣a)(2016﹣a)= .3.已知(2017﹣A)2(2015﹣A)2=2016,则(2017﹣A)2+(2015﹣A)2的值为.4.计算(1﹣﹣)(++)﹣(1﹣﹣﹣)(+)的结果是.5.计算(a1+a2+…+an﹣1)(a2+a3+…+an﹣1+an)﹣(a2+a3+…+an﹣1)(a1+a2+…+an)= .题型三、添与凑1.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?2.化简:6(7+1)(72+1)(74+1)(78+1)(716+1)+1= .3.计算下列各式:(1)1﹣= ;(2)(1﹣)(1﹣)= ;(3)(1﹣)(1﹣)(1﹣)= ;(4)请你根据上面算式所得的简便方法计算下式:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)…(1﹣)4.(1)计算:(a﹣1)(a+1)= ;(a﹣1)(a2+a+1)= ;(a﹣1)(a3+a2+a+1)= ;(2)由上面的规律我们可以猜想,得到:(a﹣1)(a2017+a2016+a2015+a2014+…+a2+a+1)= ;(3)利用上面的结论,求下列各式的值.①22017+22016+22015+22014+…+22+2+1 ②52017+52016+52015+52014+…+52+5+1.题型四、化简求值1.已知代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2(1)当x=1,y=3时,求代数式的值;(2)当4x=3y,求代数式的值.3.已知a2+2a﹣2=0,求代数式(3a+2)(3a﹣2)﹣2a(4a﹣1)的值.3.(1)已知a2+b2=3,a﹣b=1,求(2﹣a)(2﹣b)的值.(2)设b=ma(a≠0),是否存在实数m,使得(2a﹣b)2﹣(a﹣2b)(a+2b)+4a(a+b)能化简为12a2?若能,请求出满足条件的m值;若不能,请说明理由.4.计算:(1)(﹣48a6b5c)÷(24ab4)•(﹣a5b2);(2)已知x m=3,x n=2,求x2m﹣3n的值;(3)已知6x=5y,求代数式(x﹣3y)2﹣(x﹣y)(x+y)﹣5y2的值.题型五、综合运用1.如果等式x2+3x+2=(x﹣1)2+B(x﹣1)+C恒成立,其中B,C为常数,B+C= .2.已知长方形的周长为16cm,它两邻边长分别为xcm,ycm,且满足(x﹣y)2﹣2x+2y+1=0,求其面积.3.两个不相等的实数a,b满足a2+b2=5.(1)若ab=2,求a+b的值;(2)若a2﹣2a=m,b2﹣2b=m,求a+b和m的值.4.已知|x﹣y+1|与x2+8x+16互为相反数,求x2+2xy+y2的值.5.将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=ad ﹣bc.上述记号叫做2阶行列式,若=8.求x的值.6.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子.(1)图1是由几个面积不等的小正方形与小长方形拼成的一个边长为a+b+c的正方形,试用不同的方法计算这个正方形的面积,你发现了什么结论?请写出来.(2)图2是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连结BD、BF,若两正方形的边长满足a+b=10,ab=20,试求阴影部分的面积.7.图1是一个长为2m,宽为2n的长方形纸片(其中m>n),先用剪刀沿图中虚线剪开成四块完全相同的小长方形,然后拼成如图2所示的大正方形.(1)请用两种不同方法表示图2中阴影部分的面积:①;②.(2)写出关于(m+n)2,(m﹣n)2,mn的一个等式.(3)若m+n=10,mn=20,求图2中阴影部分的面积.8.从边长为a的正方形剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是(请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)若x2﹣9y2=12,x+3y=4,求x﹣3y的值;(3)计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)9.有一系列等式:1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+1=292=(42+3×4+1)2…(1)根据你的观察、归纳、发现的规律,写出8×9×10×11+1的结果(2)试猜想n(n+1)(n+2)(n+3)+1是哪一个数的平方,并予以证明.10.(1)已知a+b=3,ab=﹣2,求代数式(a﹣b)2的值.(2)已知a、b满足(2a+2b+3)(2a+2b﹣3)=55,求a+b的值.11.如图①,长方形的两边长分别为m+1,m+7;如图②,长方形的两边长分别为m+2,m+4.(其中m为正整数)(1)图①中长方形的面积S1= ;图②中长方形的面积S2=比较:S1S2(填“<”、“=”或“>”)(2)现有一正方形,其周长与图①中的长方形周长相等,则①求正方形的边长(用含m的代数式表示);②试探究:该正方形面积S与图①中长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.(3)在(1)的条件下,若某个图形的面积介于S1、S2之间(不包括S1、S2)并且面积为整数,这样的整数值有且只有10个,求m的值.12.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.26.已知x、y互为相反数,且(x+3)2﹣(y+3)2=6,求x、y的值.2017年12月02乘法公式培优训练参考答案与试题解析一.选择题(共11小题)1.已知x2﹣3x+1=0,则= 7 .【解答】解:∵x2﹣3x+1=0,∴x+=3,∴(x+)2=x2++2=9,∴x2+=7.故答案为:7.2.化简:6(7+1)(72+1)(74+1)(78+1)(716+1)+1= 732.【解答】解:原式=(7﹣1)(7+1)(72+1)(74+1)(78+1)(716+1)+1=(72﹣1)(72+1)(74+1)(78+1)(716+1)+1=(74﹣1)(74+1)(78+1)(716+1)+1=(78﹣1)(78+1)(716+1)+1=(716﹣1)(716+1)+1=732﹣1+1=732.故答案为:7323.已知(2017﹣a)2+(2016﹣a)2=1,则(2017﹣a)(2016﹣a)= 0 .【解答】解:∵(2017﹣a)2+(2016﹣a)2=1,∴[(2017﹣a)﹣(2016﹣a)]2+2(2017﹣a)(2016﹣a)=1,即1+2(2017﹣a)(2016﹣a)=1,∴2(2017﹣a)(2016﹣a)=0,∴(2017﹣a)(2016﹣a)=0,故答案为:0.4.若a2+=14,则a+﹣5的值为﹣1或﹣9 .【解答】解:∵a2+=14,∴a2+2+=14+2,即=16,∴a+=±4,∴a+﹣5=﹣1或﹣9,故答案为:﹣1或﹣9.5.已知a+b=4,则= 8 .【解答】解:=(a2+2ab+b2)=(a+b)2=×42=8.故答案是:8.6.已知=3,则= 119 .【解答】解:,=119,故答案为:119.7.已知(2017﹣A)2(2015﹣A)2=2016,则(2017﹣A)2+(2015﹣A)2的值为4+24.【解答】解:设x=2017﹣A,y=2015﹣A,∴x2y2=2016,∴xy=±12,∴x﹣y=2∴x2+y2=(x﹣y)2+2xy=4±24∵x2+y2≥0,∴x2+y2=4+24∴(2017﹣A)2+(2015﹣A)2=4+24故答案为:4+248.已知a+=7,则a3+的值是322 .【解答】解:∵a+=7,∴(a+)2=49,∴a2++2=49,∴a2+=47,∴a3+=(a+)(a2﹣1+)=7×46=322.故答案为:322.9.如果等式x2+3x+2=(x﹣1)2+B(x﹣1)+C恒成立,其中B,C为常数,B+C= 11 .【解答】解:∵x2+3x+2=(x﹣1)2+B(x﹣1)+C=x2+(B﹣2)x+1+C恒成立,∴B﹣2=3,1+C=2,∴B=5,C=6,故B+C=11.故答案为:11.10.计算(1﹣﹣)(++)﹣(1﹣﹣﹣)(+)的结果是.【解答】解:(1﹣﹣)(++)﹣(1﹣﹣﹣)(+)=(1﹣﹣)×(+)+(1﹣﹣)×﹣(1﹣﹣)×(+)﹣(﹣)×(+)=(1﹣﹣)×+×(+)=(1﹣﹣++)×=.故答案为:.11.计算(a1+a2+…+an﹣1)(a2+a3+…+an﹣1+an)﹣(a2+a3+…+an﹣1)(a1+a2+…+an)=a 1an.【解答】解:设x=a1+a2+…+an,y=a2+a3+…+an﹣1,则原式=(x﹣an )(y+an)﹣yx=xy+xan ﹣any﹣an2﹣xy=an (x﹣y)﹣an2=an [(a1+a2+…+an)﹣(a2+a3+…+an﹣1)]﹣an2=an (a1+an)﹣an2=a1an ,故答案为:a1an .二.选择题(共16小题)12.已知长方形的周长为16cm,它两邻边长分别为xcm,ycm,且满足(x﹣y)2﹣2x+2y+1=0,求其面积.【解答】解:由题意得:2(x+y)=16,解得:x+y=8①;∵(x﹣y)2﹣2x+2y+1=(x﹣y)2﹣2(x﹣y)+1=(x﹣y﹣1)2=0,∴x﹣y=1②.联立①②成方程组,解得:,∴长方形面积S=xy=×=cm2.答:长方形的面积为cm2.13.两个不相等的实数a,b满足a2+b2=5.(1)若ab=2,求a+b的值;(2)若a2﹣2a=m,b2﹣2b=m,求a+b和m的值.【解答】解:(1)∵a2+b2=5,ab=2,∴(a+b)2=a2+2ab+b2=5+2×2=9,∴a+b=±3;(2)∵a2﹣2a=m,b2﹣2b=m,∴a2﹣2a=b2﹣2b,a2﹣2a+b2﹣2b=2m,∴a2﹣b2﹣2(a﹣b)=0,∴(a﹣b)(a+b﹣2)=0,∵a≠b,∴a+b﹣2=0,∴a+b=2,∵a2﹣2a+b2﹣2b=2m,∴a2+b2﹣2(a+b)=2m,∵a2+b2=5,∴5﹣2×2=2m,解得:m=,即a+b=2,m=.14.已知|x﹣y+1|与x2+8x+16互为相反数,求x2+2xy+y2的值.【解答】解:∵|x﹣y+1|与x2+8x+16互为相反数,∴|x﹣y+1|与(x+4)2互为相反数,即|x﹣y+1|+(x+4)2=0,∴x﹣y+1=0,x+4=0,解得x=﹣4,y=﹣3.当x=﹣4,y=﹣3时,原式=(﹣4﹣3)2=49.15.将4个数a b c d排成两行,两列,两边各加一条竖直线记成,定义=ad ﹣bc.上述记号叫做2阶行列式,若=8.求x的值.【解答】解:根据题意化简=8,得:(x+1)2﹣(1﹣x)2=8,整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,即4x=8,解得:x=2.16.把几个图形拼成一个新的图形,再通过图形面积的计算,常常可以得到一些有用的式子.(1)图1是由几个面积不等的小正方形与小长方形拼成的一个边长为a+b+c的正方形,试用不同的方法计算这个正方形的面积,你发现了什么结论?请写出来.(2)图2是将两个边长分别为a和b的正方形拼在一起,B、C、G三点在同一直线上,连结BD、BF,若两正方形的边长满足a+b=10,ab=20,试求阴影部分的面积.【解答】解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac(2)∵a+b=10,ab=20,=a2+b2﹣(a+b)•b﹣a2=a2+b2﹣ab=(a+b)2﹣ab=×102﹣×∴S阴影20=50﹣30=20.17.图1是一个长为2m,宽为2n的长方形纸片(其中m>n),先用剪刀沿图中虚线剪开成四块完全相同的小长方形,然后拼成如图2所示的大正方形.(1)请用两种不同方法表示图2中阴影部分的面积:①(m﹣n)2;②(m+n)2﹣4mn .(2)写出关于(m+n)2,(m﹣n)2,mn的一个等式(m+n)2=(m﹣n)2+4mn .(3)若m+n=10,mn=20,求图2中阴影部分的面积.【解答】解:(1)图2中阴影部分的面积:①(m﹣n)2;②(m+n)2﹣4mn;故答案为:(m﹣n)2;(m+n)2﹣4mn;(2)关于(m+n)2,(m﹣n)2,mn的一个等式:(m+n)2=(m﹣n)2+4mn;故答案为:(m+n)2=(m﹣n)2+4mn;(3)∵m+n=10,mn=20,∴图2中阴影部分的面积为:(m+n)2﹣4mn=102﹣4×20=20.18.对于算式2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1.(1)计算出算式的结果;(2)结果的个位数字是几?【解答】解:(1)原式=(3﹣1)×(3+1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(32﹣1)×(32+1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(34﹣1)×(34+1)×(38+1)×(316+1)×(332+1)+1=(332﹣1)×(332+1)+1=364;②∵31=3,32=9,33=27,34=8135=243,36=729,…∴每3个数一循环,∵64÷3=21…1,∴364的个位数字是3.19.计算下列各式:(1)1﹣= ;(2)(1﹣)(1﹣)= ;(3)(1﹣)(1﹣)(1﹣)= ;(4)请你根据上面算式所得的简便方法计算下式:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)…(1﹣)【解答】解:(1)1﹣=;(2))(1﹣)(1﹣)=;(3)原式=;故答案为;;;(4)原式=•••…•=.20.从边长为a的正方形剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是 B (请选择正确的一个)A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)若x2﹣9y2=12,x+3y=4,求x﹣3y的值;(3)计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣)【解答】解:(1)根据阴影部分面积相等可得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)∵x2﹣9y2=12,∴x2﹣9y2=(x+3y)(x﹣3y)=12,∵x+3y=4,∴x﹣3y=3;(3)原式====.21.有一系列等式:1×2×3×4+1=52=(12+3×1+1)22×3×4×5+1=112=(22+3×2+1)23×4×5×6+1=192=(32+3×3+1)24×5×6×7+1=292=(42+3×4+1)2…(1)根据你的观察、归纳、发现的规律,写出8×9×10×11+1的结果892(2)试猜想n(n+1)(n+2)(n+3)+1是哪一个数的平方,并予以证明.【解答】解:(1)根据观察、归纳、发现的规律,得到8×9×10×11+1=(82+3×8+1)2=892;故答案为:892;(2)依此类推:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2,理由如下:等式左边=(n2+3n)(n2+3n+2)+1=n4+6n3+9n2+2n2+6n+1=n4+6n3+11n2+6n+1,等式右边=(n2+3n+1)2=(n2+1)2+2•3n•(n2+1)+9n2=n4+2n2+1+6n3+6n+9n2=n4+6n3+11n2+6n+1,左边=右边.22.(1)已知a+b=3,ab=﹣2,求代数式(a﹣b)2的值.(2)已知a、b满足(2a+2b+3)(2a+2b﹣3)=55,求a+b的值.【解答】解:(1)∵a+b=3,ab=﹣2,∴(a﹣b)2=(a+b)2﹣4ab=32﹣4×(﹣2)=17;(2)(2a+2b+3)(2a+2b﹣3)=55,4(a+b)2﹣9=55,(a+b)2=16,a+b==±4.23.如图①,长方形的两边长分别为m+1,m+7;如图②,长方形的两边长分别为m+2,m+4.(其中m为正整数)(1)图①中长方形的面积S1= m2+8m+7 ;图②中长方形的面积S2= m2+6m+8比较:S1>S2(填“<”、“=”或“>”)(2)现有一正方形,其周长与图①中的长方形周长相等,则①求正方形的边长(用含m的代数式表示);②试探究:该正方形面积S与图①中长方形面积S1的差(即S﹣S1)是一个常数,求出这个常数.(3)在(1)的条件下,若某个图形的面积介于S1、S2之间(不包括S1、S2)并且面积为整数,这样的整数值有且只有10个,求m的值.【解答】解:(1)图①中长方形的面积S1=(m+7)(m+1)=m2+8m+7,图②中长方形的面积S2=(m+4)(m+2)=m2+6m+8,比较:∵S1﹣S2=2m﹣1,m为正整数,m最小为1,∴2m﹣1≥1>0,∴S1>S2;(2)①2(m+7+m+1)÷4=m+4;②S﹣S1=(m+4)2﹣(m2+8m+7)=9定值;(3)由(1)得,S1﹣S2=2m﹣1,∴当10<2m﹣1≤11时,∴<m≤6,∵m为正整数,∴2m﹣1=11,m=6.故答案为:m2+8m+7,m2+6m+8,>.24.(1)计算:(a﹣1)(a+1)= a2﹣1 ;(a﹣1)(a2+a+1)= a3﹣1 ;(a﹣1)(a3+a2+a+1)= a4﹣1 ;(2)由上面的规律我们可以猜想,得到:(a﹣1)(a2017+a2016+a2015+a2014+…+a2+a+1)= a2018﹣1 ;(3)利用上面的结论,求下列各式的值.①22017+22016+22015+22014+…+22+2+1②52017+52016+52015+52014+…+52+5+1.【解答】解:(1)(a﹣1)(a+1)=a2﹣1;(a﹣1)(a2+a+1)=a3﹣1;(a﹣1)(a3+a2+a+1)=a4﹣1;故答案为:a2﹣1;a3﹣1;a4﹣1;(2)由上面的规律我们可以猜想,得到:(a﹣1)(a2017+a2016+a2015+a2014+…+a2+a+1)=a2018﹣1;故答案为:a2018﹣1;(3)理利用上面的结论,求下列各式的值.①22017+22016+22015+22014+…+22+2+1=(2﹣1)×(22017+22016+22015+22014+…+22+2+1)=22018﹣1;②52017+52016+52015+52014+…+52+5+1=(5﹣1)×(52017+52016+52015+52014+…+52+5+1)=×(52018﹣1).25.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.【解答】解:(1)x2+2y2﹣2xy+4y+4=x2﹣2xy+y2+y2+4y+4=(x﹣y)2+(y+2)2=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴x y=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<9.26.已知x、y互为相反数,且(x+3)2﹣(y+3)2=6,求x、y的值.【解答】解:∵x、y互为相反数,∴y=﹣x,∴(x+3)2﹣(y+3)2,=(x+3)2﹣(﹣x+3)2,=x2+6x+9﹣x2+6x﹣9,=6,即12x=6,解得x=,∴y=﹣x=﹣.故答案为:x、y的值分别是,﹣.27.(1)猜想:试猜想a2+b2与2ab的大小关系,并说明理由;(2)应用:已知x﹣,求x2+的值;(3)拓展:代数式x2+是否存在最大值或最小值,不存在,请说明理由;若存在,请求出最小值.【解答】解:(1)猜想a2+b2≥2ab,理由为:∵a2+b2﹣2ab=(a﹣b)2≥0,∴a2+b2≥2ab;(2)把x﹣=5两边平方得:(x﹣)2=x2+﹣2=25,则x2+=27;(3)x2+≥2,即最小值为2.三.解答题(共4小题)28.已知代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2(1)当x=1,y=3时,求代数式的值;(2)当4x=3y,求代数式的值.【解答】解:原式=x2﹣4xy+y2﹣(x2﹣y2)﹣2y2=﹣4xy+3y2(1)当x=1,y=3时,原式=﹣12+3×9=﹣12+27=15(2)当4x=3y时,原式=﹣y(4x﹣3y)=029.已知a2+2a﹣2=0,求代数式(3a+2)(3a﹣2)﹣2a(4a﹣1)的值.【解答】解:(3a+2)(3a﹣2)﹣2a(4a﹣1)=9a2﹣4﹣8a2+2a=a2+2a﹣4,当a2+2a﹣2=0,即a2+2a=2时,原式=2﹣4=﹣2.30.(1)已知a2+b2=3,a﹣b=1,求(2﹣a)(2﹣b)的值.(2)设b=ma(a≠0),是否存在实数m,使得(2a﹣b)2﹣(a﹣2b)(a+2b)+4a (a+b)能化简为12a2?若能,请求出满足条件的m值;若不能,请说明理由.【解答】解:(1)把a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,把a2+b2=3代入得:3﹣2ab=1,即ab=1,∵(a+b)2=a2+b2+2ab=3+2=5,∴a+b=±,则原式=4﹣(a+b)+ab=5±;(2)原式=4a2﹣4ab+b2﹣a2+4b2+4a2+4ab=7a2+5b2,当b=±a时,原式=12a2,则m=±1.31.计算:(1)(﹣48a6b5c)÷(24ab4)•(﹣a5b2);(2)已知x m=3,x n=2,求x2m﹣3n的值;(3)已知6x=5y,求代数式(x﹣3y)2﹣(x﹣y)(x+y)﹣5y2的值.【解答】解:(1)(﹣48a6b5c)÷(24ab4)•(﹣a5b2)=﹣2a5bc•(﹣a5b2)=a10b3c(2)∵x m=3,x n=2,∴x2m﹣3n=(x m)2÷(x n)3=32÷23=(3)(x﹣3y)2﹣(x﹣y)(x+y)﹣5y2 =x2﹣6xy+9y2﹣x2+y2﹣5y2=5y2﹣6xy=y(5y﹣6x)∵6x=5y,∴原式=y×0=0.。
专题02 乘法公式重难点题型专训(11大题型+15道拓展培优)(原卷版)
专题02 乘法公式重难点题型专训(11大题型+15道拓展培优)【题型目录】题型一 运用平方差公式进行运算题型二 平方差公式与几何图形题型三 运用完全平方公式进行运算题型四 通过完全平方公式变形求值题型五 求完全平方公式中的字母系数题型六 完全平方式在几何图形中的应用题型七 整式的混合运算题型八 乘法公式中的多结论问题题型九 乘法公式的相关计算题型十 乘法公式中的“知二求三”题型十一 乘法公式与几何图形的综合应用【知识梳理】知识点一、平方差公式平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.特别说明:在这里,既可以是具体数字,也可以是单项式或多项式.抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型:(1)位置变化:如利用加法交换律可以转化为公式的标准型(2)系数变化:如(3)指数变化:如(4)符号变化:如(5)增项变化:如(6)增因式变化:如知识点二、完全平方公式完全平方公式:两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.特别说明:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形:22()()a b a b a b +-=-b a ,()()a b b a +-+(35)(35)x y x y +-3232()()m n m n +-()()a b a b ---()()m n p m n p ++-+2244()()()()a b a b a b a b -+++()2222a b a ab b +=++2222)(b ab a b a +-=-【经典例题一【例1A.【变式训练】1.(2023(+(21)4.(2024上·广东湛江·八年级校考期末)观察下列计算∶()()22a b a b a b -+=-()()2233a b a ab b a b -++=-()()322344a ab ab a b b b a +++=--(1)猜想∶ ()()1211n n a a a a ---++++=L _______________________.(其中n 为正整数,且2n ³);(2)利用(1)猜想的结论计算∶ 109873222222221++++++++L ;【经典例题二 平方差公式与几何图形】【例2】(2023下·甘肃兰州·七年级统考期中)下面给出的三幅图都是将阴影部分通过割,拼,形成新的图形,其中不能验证平方差公式的是( )A .①B .②③C .①③D .③【变式训练】1.(2023上·吉林白城·八年级统考期末)如图,从边长为()3a +的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线剪开后又拼成如图的长方形(不重叠,无缝隙),则拼成的长方形的另一边的长为( )A .26a +B .22a +C .6a +2.(2023上·河南周口·八年级校联考阶段练习)有正方形纸片A 3.(2024上·云南玉溪·八年级统考期末)如图甲所示,边长为乙是由图甲中阴影部分拼成的一个长方形,设图甲中阴影部分面积为(1)请直接用含a 和b 的代数式表示达).(2)试利用这个公式计算:112æ-çè(1)上述操作能验证的等式是_______.(请选择正确的一个)A .()()22=a b a b a b -+-;B .22a ab -+(2)请应用(1)中的等式完成下列各题:①2202320242022-´;【经典例题三【例则2a +【变式训练】1.(2023·A .(1)如图所示图形可验证的等式是:(2)计算:2+´+2.23 4.463.77(3)运用(1)中的等式,若x【经典例题四【例4【变式训练】1.(2024(1)观察图2,请你直接写出下列三个代数式:(a+(2)晓晓同学利用上面的纸片拼出了一个面积为2a _______.(3)根据(1)题中的等量关系,解决如下问题:数学思考:利用图形推导的数学公式解决问题(1)已知7a b +=,12ab =,求22a b +的值;(2)已知()()202420222023x x --=,求()()2220242022x x -+-的值.拓展运用:如图3,点C 是线段AB 上一点,以AC ,BC 为边向两边作正方形【经典例题五【例5( )【变式训练】1.(2024整式B ,使得2A B =,则称A 完全平方式.例如()242a a =,()242a a =,()2244121a a a -+=-,则4a ,2441a a -+均为完全平方式.(1)下列各式中是完全平方式的是 (只填序号).①6a ;②22a ab b ++;③21025x x --;④269m m ++(2)将(1)中所选的完全平方式写成一个整式的平方的形式.(3)若2x x m ++是完全平方式,求m 的值.4.(2023上·山西晋中·九年级统考期中)阅读与思考如果一个多项式()20,0ax bx c a c ++>>是完全平方式,那么它的各项系数a ,b ,c 之间存在着怎样的关系呢?围绕这个问题,小丽同学所在的小组进行了如下探究,请你加入他们的探究并补全探究过程:探究完全平方式各项系数的关系举例探究:将下列各式因式分解:()22211x x x ++=+;2816x x -+= ;24129x x -+= ;观察发现:观察以上三个多项式的系数,我们发现:224110-´´=;()2841160--´´=;()2124490--´´=;归纳猜想:若多项式()200,0ax bx c a c ++=>>是完全平方式,猜想:系数a ,b ,c 之间存在的关系式为 ;验证结论:请你写出一个不同于上面出现的完全平方式,并用此式验证你猜想的结论:解决问题:若多项式()()()26261n x n x n +++++是一个完全平方式,利用你猜想的结论求出n 的值.【经典例题六【例6已知大正方形的面积是【变式训练】1.(2021划出长方形(1)你认为图②中阴影部分的正方形的边长等于_______.(2)请用两种不同的方法列代数式表示图②中阴影部分的面积方法①___________;方法②__________.(3)观察图②,试写出()2m n +,()2m n -,mn 这三个代数式之间的等量关系(1)代数式241x x -+有最 (填大或小)值,这个值(2)解决实际问题:在紧靠围墙的空地上,利用围墙及一段长为计一个尽可能大的花圃,如图设长方形一边长度为【经典例题七【例7A .2b a =B .3b a =【变式训练】1.(2022上·重庆北碚·九年级西南大学附中校考开学考试)设()()22@x y x y x y =+--,则下列结论:①若@0x y =,则x ,y 均为0;②()@@@x y z x y x z +=+;③存在实数x ,y ,满足22@5x y x y =+;④设x ,y 是矩形的长和宽,若矩形的周长固定,则当x y =时,@x y 最大.其中正确的个数( )A .4个B .3个C .2个D .1个2.(2022·河北保定·校考模拟预测)已知222810x x -=,则()()()212111x x x ---++= 3.(2024上·四川成都·八年级校考期末)(1)先化简,再求值:2()()()()x y x x y x y x y +-++-+,其中2x =-,1y =-.(2)已知260m m --=,求2(2)(2)(4)m n m n n m +-+-的值.4.(2024上·福建莆田·八年级统考期末)庆祝元旦期间,张老师出了一道“年份题”:计算22222023202320242024+´+的算术平方根.张老师提示可将上述问题一般化为:计算2222(1)(1)n n n n ++++的算术平方根(n 为正整数),然后对n 进行特殊化:当1n =时,222221122(121)+´+=´+,当2n =时,222222233(231)+´+=´+,当3n =时,222223344(341)+´+=´+,……(1)根据以上规律,请直接写出22222023202320242024+´+的算术平方根;(按规律写出结果即可,不必计算)(2)根据以上等式规律,请写出第n 个等式,并验证其正确性;(3)某同学将上述问题更一般化为:计算2222n n m m ++的算术平方根,并猜想22222()n n m m nm m n ++=+-,【经典例题八【例82x,第二项是【变式训练】1.(2023①不存在这样的实数【经典例题九【例9(1)(x【变式训练】1.(2023【经典例题十【例10(1)2x【变式训练】1.(20233ab =Q ,2225225619a b ab \+=-=-=.()2222a b a b ab \+=+-.5a b +=Q ,3ab =,2225619a b \+=-=.请你参照上面两种解法中的一种,解答以下问题.(1)已知1a b -=,229a b +=,求ab 的值;(2)已知14a a +=,求21a a æö-ç÷èø的值.3.(2023上·福建厦门·八年级厦门市第十中学校考期中)已知4m n -=-,2mn =,求下列代数式的值.(1)22m n +(2)()()11m n +-4.(2023上·广西南宁·八年级广西大学附属中学校考期中)阅读下列材料并解答下面的问题:利用完全平方公式()2222a b a ab b ±=±+,通过配方可对22a b +进行适当的变形,如:()2222a b a b ab +=+-或()2222a b a b ab +=-+,从而使某些问题得到解决.例:已知5,3+==a b ab ,求22a b +的值.解:()2222252319a b a b ab +=+-=-´=.通过对例题的理解解决下列问题:(1)已知2,3a b ab -==,求22a b +的值;(2)若16a a +=,求221a a+的值;(3)若n 满足()()22202420231n n -+-=,求式子()()20242023n n --的值.【经典例题十一【例11A 种纸片是边长为【发现】(1)根据图2,写出一个我们熟悉的数学公式 ;【应用】(2)根据(1)中的数学公式,解决如下问题:①已知:7a b +=,22a b 29+=,求ab 的值;【变式训练】1.(2023的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由(1)若用不同的方法计算这个边长为(2)若实数a,b,c满足3.(2023上·湖北武汉·七年级统考期中)问题呈现数学运用:如图,分别以a ,b ,m ,n 为边长作正方形,已知m n >且满足①222224a m abmn b n -+=与②2222216b m abmn a n ++=.若图4中阴影部分的面积为3,图5中梯形ABCD 的面积为5,则图5阴影部分的面积是______.(直接写出结果).【拓展培优】1.(2024A .①②B .①③C .①②③D .①②④6.(2023·江苏泰州·统考一模)已知()()2022202448x x --=,则代数式2(2023)x -的值为 7.(2024上·湖北随州·八年级统考期末)如果()2221914a b a b +=+=,,则()2a b -= .9.(2023上·江苏南通·八年级统考期中)请同学们运用公式题:已知,,a b c 满足2226a b c ++=10.(2024上·湖南湘西·八年级统考期末)完全平方公式(2)利用等量关系解决下面的问题:①5a b -=,6ab =-,求()2a b +和22a b +的值;②已知13x x -=,求441x x +的值.根据上面灰太狼的解题思路与方法,请解决下列问题:(1)①若4mn =,22m n +②若6x y +=,22x y +=③若6a b +=,4ab =,则。
14.2乘法公式培优练习人教版2024—2025八年级上册
14.2乘法公式培优练习人教版2024—2025八年级上册一、夯实基础1.下列各式不能用平方差公式计算的是()A.(y+2x)(2x﹣y)B.(﹣x﹣3y)(x+3y)C.(2x2﹣y2)(2x2+y2)D.(4a+b)(4a﹣b)2.在运用乘法公式计算(2x﹣y+3)(2x+y﹣3)时,下列变形正确的是()A.[(2x﹣y)+3][(2x+y)﹣3]B.[(2x﹣y)+3][(2x﹣y)﹣3]C.[2x﹣(y+3)][2x+(y﹣3)]D.[2x﹣(y﹣3)][2x+(y﹣3)] 3.已知x﹣y=5,则x2﹣y2﹣10y的值是()A.10B.15C.20D.254.若a﹣b=2,则式子a2﹣b2﹣4a的值等于.5.已知x2+2(m﹣1)x+9是一个完全平方式,则m的值为6.若多项式4x2﹣(k﹣1)xy+25y2是关于x、y的完全平方式,则k的值为()A.21B.19C.21或﹣19D.﹣21或19 7.已知实数a,b满足,则3a2+4b2+1012a﹣2024b+1的值是()A.65B.105C.115D.20258.已知关于x的整式9x2+(2k﹣1)x+4是某个关于x的整式的平方,求k的值.二、能力提升(一)利用乘法公式计算1.计算:(a+2b﹣3c)(a﹣2b﹣3c).2.计算:(x+2y﹣3z)(2y+3z+x).3.求不等式(3x﹣4)(3x+4)<9(x+2)2+21的负整数解.4.计算:(a+1)2(a﹣1)2(a2+1)2.5.计算.6.用简便算法计算.(1)20242﹣2025×2023;(2)4+4×196+982.(二)乘法公式的变形1.已知(a﹣b)2=25,ab=﹣6,求下列各式的值.(1)a2+b2;(2)a4+b4.2.若m﹣2n=﹣1,求代数式m2﹣4n2+4n的值.3.已知a2﹣4a﹣1=0.(1)求的值;(2)求的值.4.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.5.已知,求xy的值.6.已知:m,n为非负整数,且m2﹣n2=11,求m,n的值.7.已知x2﹣4y+y2+8x+20=0,求xy的值.8.已知a+b=2,b+c=17,求2a2+3b2+3c2+2ab+4bc﹣2ac=.9.完全平方公式经过适当的变形,可以解决很多数学问题.例如:若a+b=3,ab=1求a2+b2的值.解:因为a+b=3,ab=1所以(a+b)2=9,2ab=2所以a2+b2+2ab=9,所以a2+b2=7.根据上面的解题思路与方法解决下列问题:(1)若a﹣b=﹣5,ab=3,则a2+b2=.(2)若(a+b)2=17,(a﹣b)2=13求a2+b2的值.(3)已知x2+3x﹣1=0,求的值.10.我们学过很多数学公式不仅保持了结构的对称性,还体现了数学的和谐、简洁美.根据你所学的知识解决下列问题:①若a=2023,b=2024,c=2025,求出a2+b2+c2﹣ab﹣bc﹣ac的值;②若a2+b2+c2=89,a+b+c=9,求出ab+bc+ac的值.三、乘法公式与几何图形结合1.我们知道,利用图形的面积能解释与得出代数恒等式,请你解答下列问题:(1)如图,根据3个正方形和6个长方形的面积之和等于大正方形ABCD的面积.可以得到代数恒等式:(a+b+c)2=.(2)若n、t满足:(n﹣2024)2+(2026﹣12n)2+(n+1)2=t2+2t﹣18,(n ﹣2024)(2026﹣2n)+(n﹣2024)(n+1)+(2026﹣2n)(n+1)=1﹣t,求t 的值.2.现有若干个正方形纸片,从中任取两个大小不等的正方形如图摆放,A、D、E三点在一条直线上,(1)如图①,AE=m,CG=n,这两个正方形的面积之和是.(用m、n的代数式表示)(2)如图②,如果大正方形ABCD和小正方形DEFG的面积之和是5,图中阴影部分的面积为2,求(mn)2是多少?(3)如图③,大正方形ABCD和小正方形DEFG的面积之和是25,AE的长度等于7,图中阴影部分的面积是.(4)如图④,正方形ABCD和正方形DEFG的边长分别为a、b(a>b),如果a+b=8,ab=6,求图中阴影部分面积之和是多少?3.在“综合与实践”课上,老师准备了如图1所示的三种卡片,甲、乙两位同学拼成了如图2、图3所示的正方形.(1)【理解探究】①观察图2,用两种不同方式表示阴影部分的面积可得到(a+b)2,2ab,a2+b2之间的等量关系式:.②观察图3,用两种不同方式表示阴影部分的面积可得到等量关系式:.(2)【类比应用】根据(1)中的等量关系,解决如下问题:已知m+n=5,m2+n2=20,求mn 和(m﹣n)2的值.(3)【拓展升华】如图4,在△BCE中,∠BCE=90°,CE=8,点Q是边CE上的点,在边BC 上取一点M,使BM=EQ,设BM=x(x>0),分别以BC,CQ为边在△BCE 外部作正方形ABCD和正方形COPQ,连接BQ,若CM=3,△BCQ的面积等于,直接写出正方形ABCD和正方形COPQ的面积和:.4.两个边长分别为a和b的正方形如图放置(图1),其未叠合部分(阴影)面积为S1;若再在图1中大正方形的右下角摆放一个边长为b的小正方形(如图2),两个小正方形叠合部分(阴影)面积为S2.(1)用含a,b的代数式分别表示S1、S2;(2)若a+b=10,ab=20,求S1+S2的值;(3)当S1+S2=30时,求出图3中阴影部分的面积S3.5.数与形是数学研究的两大部分,它们间的联系称为数形结合,整式乘法中也可以利用图形面积来论证数量关系,现用砖块相同的面(如材料图,长为a,宽为b的小长方形)拼出以下图形,延长部分边框,则把这些拼图置于如图所示的正方形或大长方形内,请解答下列问题.(1)图1中空白面积为S1,根据图形中的数量关系,用含a、b的式子表示S1;(2)图3中空白面积为S3,根据图形中的数量关系,用含a、b的式子表示S3;(3)图1,图2中空白部分面积S1、S2分别为19、68,求ab值.6.【教材原题】观察图①,用等式表示图中图形的面积的运算为.【类比探究】观察图②,用等式表示图中阴影部分图形的面积和为.【应用】(1)根据图②所得的公式,若a+b=10,ab=5,则a2+b2=.(2)若x满足(11﹣x)(x﹣8)=2,求(11﹣x)2+(x﹣8)2的值.【拓展】如图③,某学校有一块梯形空地ABCD,AC⊥BD于点E,AE=DE,BE=CE.该校计划在△AED和△BEC区域内种花,在△CDE和△ABE的区域内种草.经测量种花区域的面积和为,AC=7,直接写出种草区域的面积和.7.我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)若xy=7,x+y=5,直接写出x2+y2的值;(2)若x(3﹣x)=4,则x2+(x﹣3)2=;(3)两块完全相同的特制直角三角板(∠AOB=∠COD=90°)如图2所示放置,其中A,O,D在一直线上,连接AC,BD,若AD=16,S△AOC +S△BOD=60,求一块三角板的面积.。
乘法公式(1)平方差公式同步培优题典(解析版)
专题4.8乘法公式(1)平方差公式姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•娄星区期末)下列算式中能用平方差公式计算的是()A.(2x+y)(2y﹣x)B.(x﹣y)+(y﹣x)C.(3a﹣b)(﹣3a+b)D.(﹣m+n)(﹣m﹣n)【分析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.【解析】A、(2x+y)(2y﹣x),不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;B、(x﹣y)+(y﹣x)=﹣(x﹣y)(x﹣y),不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;C、(3a﹣b)(﹣3a+b)=﹣(3a﹣b)(3a﹣b),不符合平方差公式的特点,不能用平方差公式计算,故本选项不符合题意;D、(﹣m+n)(﹣m﹣n)符合平方差公式的特点,能用平方差公式计算,故本选项符合题意.故选:D.2.(2020春•文山州期末)下列各式中不能用平方差公式计算的是()A.(x+y)(x﹣y)B.(﹣x+y)(﹣x﹣y)C.(x+y)(﹣x﹣y)D.(x+y)(﹣x+y)【分析】能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反,对各选项分析判断后利用排除法.【解析】A、(x+y)(x﹣y)符合平方差公式的特点,能用平方差公式计算,故本选项不合题意;B、(﹣x+y)(﹣x﹣y)符合平方差公式的特点,能用平方差公式计算,故本选项不合题意;C、(x+y)(﹣x﹣y)=﹣(x+y)(x+y),不符合平方差公式的特点,不能用平方差公式计算,故本选项符合题意;D、(x+y)(﹣x+y)符合平方差公式的特点,能用平方差公式计算,故本选项不合题意.故选:C.3.(2020春•岑溪市期末)计算(a+2)(2﹣a)的结果为()A.2a﹣4B.a2﹣4C.4﹣a2D.a2﹣2a+4【分析】原式利用平方差公式计算即可得到结果.【解析】原式=(2+a)(2﹣a)=4﹣a2,故选:C.4.(2020•盱眙县校级模拟)下列运算正确的是()A.(a5)2=a7B.(a+b)2=a2+b2C.(﹣a+2)(﹣a﹣2)=a2﹣4D.(﹣2a)2=﹣4a2【分析】根据幂的乘方和积的乘方,完全平方公式,平方差公式求出每个式子的值,再判断即可.【解析】A、结果是a10,故本选项不符合题意;B、结果是a2+2ab+b2,故本选项不符合题意;C、结果是a2﹣4,故本选项符合题意;D、结果是4a2,故本选项不符合题意;故选:C.5.(2020春•宁化县期末)在计算(x+2y)(﹣2y+x)时,最佳的方法是()A.运用多项式乘多项式法则B.运用平方差公式C.运用单项式乘多项式法则D.运用完全平方公式【分析】根据平方差公式的特点得出即可.【解析】(x+2y)(﹣2y+x)=x2﹣(2y)2=x2﹣4y2,即运用了平方差公式,故选:B.6.(2020春•锡山区期末)(1﹣2x)(1+2x)的计算结果是()A.4x2+1B.1﹣4x2C.1+4x2D.﹣4x2﹣1【分析】根据平方差公式求出即可.【解析】(1﹣2x)(1+2x)=12﹣(2x)2=1﹣4x2,故选:B.7.(2020春•隆回县期末)计算(x﹣y)(x+y)(x2+y2)(x4+y4)的结果是()A.x8+y8B.x8﹣y8C.x6+y6D.x6﹣y6【分析】根据平方差公式进行计算即可.【解析】(x﹣y)(x+y)(x2+y2)(x4+y4)=(x2﹣y2)(x2+y2)(x4+y4)=(x4﹣y4)(x4+y4)=x8﹣y8,故选:B.8.(2020春•三水区期末)为了应用平方差公式计算(a﹣b+c)(a+b﹣c),必须先适当变形,下列变形中,正确的是()A.[(a+c)﹣b][(a﹣c)+b]B.[(a﹣b)+c][(a+b)﹣c]C.[a﹣(b+c)][a+(b﹣c)]D.[a﹣(b﹣c)][a+(b﹣c)]【分析】由于平方差公式是把多项式分解为两个数的和与两个数的差的积的形式,所以根据这个特点即可判定选择项.【解析】(a﹣b+c)(a+b﹣c)=[a﹣(b﹣c)][a+(b﹣c)].故选:D.9.(2020春•凌海市期末)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣ab=a(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)【分析】用代数式表示粗两个图形阴影部分的面积,即可得出等式.【解析】左图的阴影部分的面积为a2﹣b2,右图的阴影部分的面积为(a+b)(a﹣b),因此有为a2﹣b2=(a+b)(a﹣b),故选:D.10.(2020•红花岗区二模)如图(1),边长为m的正方形剪去边长为n的正方形得到①、②两部分,再把①、②两部分拼接成图(2)所示的长方形,根据阴影部分面积不变,你能验证以下哪个结论()A.(m﹣n)2=m2﹣2mn+n2B.(m+n)2=m2+2mn+n2C.(m﹣n)2=m2+n2D.m2﹣n2=(m+n)(m﹣n)【分析】分别表示图(1)和图(2)的阴影部分的面积,根据面积相等得出结论.【解析】图(1)中,①、②两部分的面积和为:m2﹣n2,图(2)中,①、②两部分拼成长为(m+n),宽为(m﹣n)的矩形面积为:(m+n)(m﹣n),因此有m2﹣n2=(m+n)(m﹣n),故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•靖远县期末)已知m+n=12,m﹣n=3,则m2﹣n2=36.【分析】根据平方差公式解答即可.【解析】∵m+n=12,m﹣n=3,∴m2﹣n2=(m+n)(m﹣n)=3×12=36,故答案为:36.12.(2020春•赫章县期末)计算2021×2019﹣20202的值为﹣1.【分析】根据平方差公式化简2021×2019即可得出结果.【解析】2021×2019﹣20202=(2020+1)×(2020﹣1)﹣20202=20202﹣1﹣20202=﹣1.故答案为:﹣1.13.(2020春•曲阳县期末)(m+4)(m﹣4)=m2﹣16.【分析】利用平方差公式填空即可.【解析】(m+4)(m﹣4)=m2﹣42=m2﹣16,故答案为:m﹣4.14.(2020秋•海淀区校级月考)下列各式能用乘法公式进行计算的是①③④(填序号).①(﹣4x+5y)(﹣4x﹣5y)②(﹣4y﹣5x)(﹣5y+4x)③(5y+4x)(﹣5y﹣4x)④(﹣4x+5y)(5y+4x)【分析】根据平方差公式和完全平方公式的特征对各式进行判断.【解析】①(﹣4x+5y)(﹣4x﹣5y)=(4x﹣5y)(4x+5y);②(﹣4y﹣5x)(﹣5y+4x)=﹣(5x+4y)(4x﹣5y);③(5y+4x)(﹣5y﹣4x)=﹣(4x+5y)(4x+5y)=﹣(4x+5y)2,④(﹣4x+5y)(5y+4x)=﹣(4x﹣5y)(4x+5y).故答案为①③④.15.(2020春•台儿庄区期末)若(x+ay)(x﹣ay)=x2﹣16y2,则a的值为±4.【分析】根据平方差公式求出即可.【解析】∵(x+ay)(x﹣ay)=x2﹣16y2,∴a2=16,∴a=±4,故答案为:±4.16.(2020春•平阴县期末)如果(3m+n+3)(3m+n﹣3)=40,则3m+n的值为±7.【分析】利用平方差公式得到(3m+n)2﹣32=40,然后根据平方根的定义计算3m+n的值.【解析】∵(3m+n+3)(3m+n﹣3)=40,∴(3m+n)2﹣32=40,∴(3m+n)2=49∴3m+n=±7.故答案为±7.17.(2020秋•海淀区校级月考)一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62﹣32,63=82﹣12,故27,63都是“创新数”,下列各数中,一定是“创新数”的有 ③④ (填序号).①1 ②54 ③16 ④2k +1(k 为正整数)【分析】根据任何一个正整数都可化成mn (m >n ),再平方差公式(a +b )(a ﹣b )=a 2+b 2,可列方程组{a +b =m a −b =n,求解若a 、b 为正整数,则满足这个正整数为“创新数”. 【解析】①∵1=1×1,∴{a +b =1a −b =1, 解得a =1,b =0,不符合题意,∴1不是“创新数”;②∵54=27×2=18×3=9×6,∴{a +b =27a −b =2,{a 1+b 1=18a 1−b 1=3,{a 2+b 2=9a 2−b 2=6, 解得a =292,a 1=212,a 2=152,∴54不是“创新数”;③∵16=8×2,∴{a +b =8a −b =2, 解得a =5,b =3,16=52﹣32=25﹣9=16,∴16是“创新数”;④∵2k +1=(2k +1)×1,∴{a +b =2k +1a −b =1, 解得a =k +1,b =k ,∵k 为正整数,∴2k +1是“创新数.故答案为:③④.18.(2020春•石阡县期末)在边长为a 的正方形中挖掉一边长为b 的小正方形(a >b ),把余下的部分剪成直角梯形后,再拼成一个等腰梯形(如图),通过计算阴影部分的面积,验证了一个等式,这个等式是a2﹣b2=(a+b)(a﹣b).【分析】用大正方形的面积减去小正方形的面积得到左边图形中阴影部分的面积,用梯形的面积公式表示右边图形中阴影部分的面积,然后利用阴影部分的面积列等式,整理得到平方差公式.【解析】根据题意得a2﹣b2=12(2b+2a)•(a﹣b),即a2﹣b2=(a+b)(a﹣b).故答案为a2﹣b2=(a+b)(a﹣b).三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.计算:(1)(a n+b)(a n﹣b);(2)(a+1)(a﹣1)(a2+1)【分析】(1)根据平方差公式解答即可;(2)根据平方差公式进行两次计算解答即可.【解析】(1)(a n+b)(a n﹣b)=(a n)2﹣b2=a2n﹣b2;(2)(a+1)(a﹣1)(a2+1)=(a2﹣1)(a2+1)=a4﹣1.20.计算:(1)(a+2)(a﹣2);(2)(3a+2b)(3a﹣2b);(3)(﹣x﹣1)(1﹣x);(4)(﹣4k+3)(﹣4k﹣3)【分析】根据平方差公式计算即可.【解析】(1)原式=a2﹣22=a2﹣4;(2)原式=(3a)2﹣(2b)2=9a2﹣4b2;(3)原式=(﹣x)2﹣12=x2﹣1;(4)原式=(﹣4k)2﹣32=16k2﹣9.21.计算:(1)(2m+3n)(2m﹣3n);(2)(﹣3a−12b)(﹣3a+12b);(3)(﹣4x+y)(y+4x);(4)(x+y)(x﹣y)+(y﹣z)(y+z)﹣(x+z)(x﹣z).【分析】(1)根据平方差公式进行计算即可;(2)根据平方差公式进行计算即可;(3)先适当变形,再根据平方差公式进行计算即可;(4)先根据平方差公式进行计算,再合并同类项即可.【解析】(1)原式=4m2﹣9n2;(2)原式=(﹣3a)2﹣(12 b)2=9a2−14b2;(3)原式=(﹣y)2﹣x2=y2﹣x2;(4)原式=(y﹣4x)(y+4x)=y2﹣(4x)2=y2﹣16x2;(4)原式=x2﹣y2+y2﹣z2﹣x2+z2=0.22.(2020春•新都区期末)你能求(x﹣1)(x2019+x2018+x2017+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x﹣1)(x+1)=x2﹣1②(x﹣1)(x2+x+1)=x3﹣1③(x﹣1)(x3+x2+x+1)=x4﹣1…由此我们可以得到:(x ﹣1)(x 2019+x 2018+x 2017+…+x +1)= x 2020﹣1 .请你利用上面的结论,再完成下面两题的计算:(1)(﹣2)99+(﹣2)98+(﹣2)97+…+(﹣2)+1;(2)若x 3+x 2+x +1=0,求x 2020的值.【分析】归纳总结得到一般性规律,写出即可;(1)原式变形后,利用得出的规律计算即可求出值;归纳总结得到一般性规律,写出即可;(2)根据(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,代入已知可得x 的值,根据x 3+x 2+x +1=0,x 2≥0,得x <0,可得x =﹣1,代入可得结论.【解析】(x ﹣1)(x 2019+x 2018+x 2017+…+x +1)=x 2020﹣1;故答案为:x 2020﹣1;(1)(﹣2)99+(﹣2)98+(﹣2)97+…+(﹣2)+1=(﹣2﹣1)•(−2)99+(−2)98+⋯+(−2)+1−3 =(−2)100−1−3=1−21003;(2)∵(x ﹣1)(x 3+x 2+x +1)=x 4﹣1,x 3+x 2+x +1=0,∴x 4=1,则x =±1,∵x 3+x 2+x +1=0,∴x <0,∴x =﹣1,∴x 2020=1.23.(2020春•平顶山期末)(1)如图①所示的大正方形的边长为a ,小正方形的边长为b ,则阴影部分的面积是 a 2﹣b 2 .(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是(a+b)(a﹣b).(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:(a﹣b)(a+b)=a2﹣b2.(4)应用公式计算:(1−122)(1−132)(1−142).【分析】(1)根据面积的和差,可得答案;(2)根据矩形的面积公式,可得答案;(3)根据图形割补法,面积不变,可得答案;(4)根据平方差公式计算即可.【解析】(1)如图①所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知(a﹣b)(a+b)=a2﹣b2,故答案为:(a﹣b)(a+b)=a2﹣b2;(4)(1−122)(1−132)(1−142)=(1−12)(1+12)(1−13)(1+13)(1−14)(1+14)=12×32×23×43×34×54=12×54=58.24.(2020春•通州区期中)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2).(1)设图1中阴影部分的面积为S₁,图2中阴影部分的面积为S₂,请用含a.b的式子表示:S₁=a2﹣b2,S₂=(a+b)(a﹣b);(不必化简)(2)以上结果可以验证的乘法公式是(a+b)(a﹣b)=a2﹣b2.(3)利用(2)中得到的公式,计算;20202﹣2019×2021.【分析】(1)根据图形以及正方形和长方形的面积计算公式可得答案;(2)由(1)中所得的S₁和S₂的面积相等,可得答案;(3)根据(2)中的公式,将2019×2021写成(2020﹣1)×(2020+1),然后按照平方差公式进行化简,再按照有理数的混合运算计算出答案即可.【解析】(1)根据图形以及正方形和长方形的面积计算公式可得:S₁=a2﹣b2,S₂=(a+b)(a﹣b)故答案为:a2﹣b2,(a+b)(a﹣b);(2)以上结果可以验证的乘法公式是a2﹣b2=(a+b)(a﹣b).故答案为:(a+b)(a﹣b)=a2﹣b2.(3)20202﹣2019×2021=20202﹣(2020﹣1)×(2020+1)=20202﹣(20202﹣1)=20202﹣20202+1=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式--培优-CAL-FENGHAI.-(YICAI)-Company One1
第三讲 乘法公式
【易错点剖析】
1.注意乘法公式的特点,符合公式的特点的多项式乘法才能套用公式.
2. 在混合运算时,运用乘法公式计算出来的积要添括号,如果前面是 “-”要注意变号
⑤()()22
22x y x y +- ⑥()()()()24832124515151...51+++++
⑦221.2340.766 2.4680.766++⨯ ⑧2222211111111...11234910⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
【能力提高】
整体思想
1、 若()2
23m -=,求246m m -+的值.
2、 已知22227,+9a ab b a ab b ++=-=,求()2
a b +的值.
3、 已知5,4a b ab ++=,求(1)22a b +;(2)44a b +;(3)44a b -的值
4A 、已知2510x x -+=,求(1)221x x
+
(2)322143x x x --+的值
4B 、已知0a ≠,且满足()()()222112329147a a a a a +---+=-, 求(1)2
21a a +(2)24255a a a ++的值.
5、 已知()()22
201820171a a -+-=,求()()20182017a a --的值
配方法
1、已知()22116x m x --+是一个完全平方式,则m = .
2、已知264A x x +-+是一个完全平方式,则A = .
1B 、已知()()2222116x xy y m x y ++--++是一个完全平方式,则m = .
2B 、已知()()()()22
2210024400a b k b a a b +++--是一个完全平方式,则k = .
3、把代数式223x x --化为()2
x m k -+的形式,则m k += .
4、若22
28170x y x y ++-+=,求y x 的值.
5A 、当x 为多少时,代数式245x x -+有最小值,最小值为多少
5B 、求多项式222451213x xy y y -+-+的最小值及此时,x y 的值.
6、试说明:无论x 取何值,225x x ++的值一定为一个正数.
7、已知111100,99,101100100100
a x
b x
c x =
+=+=+,求222a b c ab bc ac ++---的值
8、已知22234,52M x x N x x =++=++,试比较M ,N 的大小.
【课后练习】
1、 已知225a b =+,则()()33
a b a b +-= . 2、 已知2210x x --=,则2
21x x += ,44
1x x += 4、 若()()2212x mx x x n +--+的展开式中不含2x 和3x 项,则m = ,n = . 5、已知6224b a ==,则23a b -= .
6、()()()()241612121212++++的个位数是 .
7、计算
①()
()223131x x +- ②()()22
12a a +--
8、4821-能被60和70之间的某两个整数整除,求这两个数.
9、已知2220a b c ab bc ac ++---=,求,,a b c 之间的关系.
10 、已知2781,1515
P m Q m m =
-=-(x 任意实数),试比较P ,Q 的大小.
11、已知()()20172015100a a --=,求()()22201720156a a -+-+的值。