植物生理学第1章水分代谢
植物的水分代谢
0.2
37.8
2、水分的迁移方式
扩散(diffusion) 物质从高浓度(高化学势)的区域向低浓度(低化学势)区域自发的 转移称为扩散。 动力:两点间的化学势差(浓度差)。 对于短距离的物质运输有效。不适用于长距离运输。
渗透(osmosis)
当溶液被膜分开为两个部分时,溶质无法跨膜运输,溶剂的跨膜 扩散称为渗透。 渗透动力:膜两侧的水势差。 这是水分进入细胞的主要形式。
1.水分的生理作用
1)水是植物细胞原生质的重要组分
2)水是植物体内代谢过程的反应物质
3)水是植物各种生化反应和物质运输的介质 4)水使植物保持挺立的姿态 5)细胞的分裂和延伸生长都需要足够的水
•正常代谢的组织原生质呈溶胶状态;代谢弱的干种子,原生质呈凝胶状态。
2.水对植物的生态作用:
1)水是植物体温调节剂
处在强烈蒸发环境中的细胞ψP会成负值?
• 因为植物细胞壁的表面蒸发失水,原生质和液泡中的一部分水分 就外移到细胞壁中去。但这时并不发生质壁分离。在强烈的蒸发 环境中, 细胞壁内已经没有水分了,原生质体便与细胞壁紧密吸 附而不分离。所以在原生质收缩时,就会拉着细胞壁一起向内收 缩。由于细胞壁的伸缩性有限,所以就会产生一个向外的反作用
用质壁分离现象解决下列几个问题(P13):
1、鉴定细胞死活
2、测定细胞的渗透势
3、观察物质透过原生质的难易程度 4、证明植物细胞是渗透系统
低水势
常态
纯水
细胞水势、溶质势、压力势与细胞体积的关系
• 问题:
(1)甲、乙两细胞,甲放在0.4M的蔗糖溶液中,充分平衡后, 测得其渗透势为-0.8RT;乙放在0.3M的NaCl溶液中,充分平
饱和含水量
植物生理学第1章 水分代谢
3、细胞间的水分移动
土壤水势>植物根水势>茎木质部水势>叶片水势>大气水势
4、水分在植物体内的迁移方式 迁移方式主要有两种:集流和扩散
(1)扩散:是物质分子(包括气体分子、水分子、 溶质分子等)从高浓度区域向低浓度区域转移,直 到分布均匀的现象。水分子可以从高水势区域向低 水势区域扩散,但比较慢。 (2)集流:是在外力的作用下,大量水分子快速运 动的现象。如导管的输水作用。 ( 3)渗透作用(osmosis):是指液体通过半透膜进 行扩散的现象,是扩散作用的一种特殊形式。
渗透作用( osmosis) :是指水分从水势高的系 统通过半透膜向水势低的系统进行扩散的现象, 是扩散作用的一种特殊形式。
图1.2 渗透作用示意图
稀溶液的渗透势可用范特· 霍 夫 ( Vant Hoff)计算渗透压的公式来计算: ψs=ψπ=-iCRT
式中 i为溶质的解离系数; C为溶质的体 积 摩 尔 浓 度 ( mol· L-1 ) ; R 为 气 体 常 数 (0.0083dm3· Mpa· mol-1· K-1) ; T 为绝对温度 (K) 。 对于一个开放系统来说,在常温常压下, 溶液的水势就等于其渗透势。
土壤中的水分是以集流的方式向根部移
动。水分移动的速率与土质有关。
农业的节水灌溉
微灌技术:有微喷灌、滴灌、渗灌及微管灌等。 将灌溉水加压、过滤,经各级管道和灌水器具灌水于 作物根际附近。微灌技术具有以下优点: (1) 微灌技术的节水效益更显著。与地面灌溉相比, 可节水 80%~ 85 % .(2) 同时微灌可以与施肥结合,利 用施肥器将可溶性的肥料随水施入作物根区,及时补 充作物需要的水分和养分,增产效果好。 (3) 微灌可 以使土壤疏松、保持颗粒状。( 4)微灌使地表干燥, 不利于杂草生长。
A53-植物生理学-7版第1章 水分代谢
茎、枝等器官 皮孔蒸腾 0.1%
二、气孔蒸腾
第四节 植物的蒸腾作用 一、概念、生理意义和方式
通常气孔的面积
(一)气孔的运动
三、根系吸水的动力
通常蒸腾植物的吸水主要是由蒸 腾拉力引起的。只有春季叶片未展开 时,蒸腾速率很低的植株,根压才成 为主要吸水动力。
(三)影响根系吸水的土壤条件
1.土壤通气状况: 通气状况良好,有利于根吸水 通气状况不良:影响呼吸;根系中毒。
2.土壤温度:适宜的温度范围内土三、温根系愈吸水高的动,力 根系吸水愈多
1) 溶质势:由于溶质颗粒的存在而引起体系水势降低 的数值,又称渗透势ψπ 。
ψs =ψπ=-π(渗透压)=-iCRT
i:等渗系数,蔗糖为1 C:质量摩尔浓度,mol/kg R:大气常数,0.008314 T:绝对温度
温带大多数作物叶组织的渗透势在-1~-2MPa, 旱生植物叶片的渗透势很低,达-10MPa。
1、说明原生质层是半透膜 2、判断细胞死活 3、测定细胞的渗透势 4、观察物质通过细胞的速率。
(四)细胞的水势
一、细胞的渗透性吸水
典型植物细胞水势由4个势组成:
ψw = ψs +ψp+ ψm+ ψg
水 渗 压 衬重 透 力 质力
势 势 势 势势
渗透势:(osmotic potential) 压力势:(pressure potential) 重力势:(gravity potential) 衬质势:(matric potential)
• 水分从植物体中散失到外界去的方式有两种:
(1)以液体状态散失到体外的,吐水现象; (2)以气体状态散逸到体外的,蒸腾作用,
第四节 植物的蒸腾作用
一、概念、生理意义和方式:
第一章植物生理学-水分生理
第一章植物生理学-水分生理
32
(三)、相邻细胞间水分运转的方向
X ψS=-14Pa ψP=+ 8 Pa
Y ψS=-14Pa ψP=+ 4 Pa
Z ψS=-12Pa ψP=+7 Pa
ψW=-6Pa
ψW=-8Pa
X→Y←Z
ψW=-5Pa
第一章植物生理学-水分生理
33
第一章植物生理学-水分生理
34
(四)、渗透作用
第一章植物生理学-水分生理
43
洋葱上表皮细胞的质壁分离
刚开始发生质壁分离
明显发生质壁分离
第一章植物生理学-水分生理
44
质壁分离的作用: ①测定细胞渗透势; ②判断细胞死活。(死细胞质膜无选择透 性,因此只有活细胞才有质壁分离现象; ③作为细胞是一个渗透系统的证据。
第一章植物生理学-水分生理
45
三、 吸胀吸水
第一章植物生理学-水分生理
8
三、 水分在植物生命活动中的作用
(四)水能使植物保持固有姿态 (五)细胞分裂及伸长都需要水分 (六)水还可以通过水的理化性质调节植物周
围的环境,这就是水对植物的生态作用。
第一章植物生理学-水分生理
9
四、植物体内水分状态及作用
自由水: 不被原生质胶体吸附的, 能自由移动并起溶剂作用的水。
渗
水柱1小时后的液面
透
装
置
• 由于渗透 作用纯水 通过选择 透性膜向 糖溶液移 动,使糖 溶液液面 上升
第一章植物生理学-水分生理
35
su5r%gae
wPautreer
等压
高渗
Bag 5%surgae su15rg%ae
低渗
第一章植物生理学-水分生理
华中农业大学 植物生理学 第一章水分代谢
2008-2009年全国干旱地图
2010年10月以来,中国发生的大事是什么?
北方冬麦区降水持续偏少,河北、 山西、江苏、安徽、山东、河南、 陕西、甘肃八省部分地区旱象持续 发展,干旱发生时间比2008年提早 了1个月左右。
2010-2011年青岛市降水量同比少九成
手持枯苗气加忧,恨旱想绝我夏收, 历尽磨难中华在,何惧旱魔这小丑?
三、影响根系吸水的因素
(一) 根系自身的因素
根系的 有效性 根系密度(root density):根系密度越 大,吸水能力大; 根表面的透性:新生根的表面透性 大, 次生根的透性小或丧失。土壤 干旱时易引起根老化。
(二) 土壤条件 1、土壤中的可用水分
根吸水是土壤和植物争夺水分的问题。
2、土壤通气状况
不同物质分子吸胀力大小是:蛋白质 > 淀粉 > 纤维素 干燥种子、未形成液泡的根尖、茎尖 分生细胞靠吸胀吸水。
三、水分的跨膜运送 (P36) 水分如何跨过细胞膜?
短距离:扩散
长距离:集流
A
B
A 单个水分子通过膜脂双分子层的间隙进入细胞
B 水集流通过质膜上水孔蛋白(AQP) 水孔蛋白活性的调节:磷酸化/去磷酸化 Ca2+的蛋白激酶
-2.69
-4.50
??? 溶液的Ψw = Ψs = -icRT
Ψp :压力势,由于细胞壁压力 的存在而引起的水势增加值。 一般情况下,压力势为正值;
初始质壁分离时,压力势为零;
剧烈蒸腾时,压力势为负值。
Ψg :重力势,由于重力的影响 而水势升高值。恒为正值。
研究水分在细胞水平转运时,重 力势忽略不计。
渗透现象
(二)植物细胞构成的渗透系统(P33) 成熟细胞的原生质层(原生质膜、 原生质和液泡膜)相当于半透膜。 液泡液、原生质层和细胞外溶液 构成了一个渗透系统。
植物生理学第01章 植物的水分代谢
第一章植物的水分代谢本章内容提要水是植物生命的基础。
植物水分代谢包括水的吸收、运输和散失过程。
植物细胞吸水有三种方式:渗透吸水、吸胀吸水和代谢性吸水,以渗透吸水为主。
根系是植物吸水的主要器官,吸水的主要区域为根毛区,吸水的方式有主动吸水和被动吸水,其吸水动力分别为根压和蒸腾拉力。
蒸腾拉力是植物主要的吸水动力。
水分在植物体内连续不断地运输是蒸腾拉力—内聚力克服水柱张力的结果。
植物主要通过叶片蒸腾散失水分,具有重要生理意义。
气孔蒸腾是植物叶片蒸腾的主要形式。
蒸腾速率与气孔的开闭关系很大。
气孔开闭可能是通过保卫细胞内K+的积累学说和苹果酸代谢来调节的。
许多外界因子能调节气孔开闭。
作物需水因作物种类不同而异,一般而论,植物的水分临界期是花粉母细胞四分体形成期,合理灌溉要综合考虑土壤含水量、作物形态指标及生理指标。
灌溉的生理指标能即使反映植物体内的水分状况,是较为科学的。
第一节水分在植物生命活动中的作用一、植物体内的含水量不同植物的含水量不同;同一种植物生长在不同的环境中含水量也有差异;在同一植株中不同器官和不同组织的含水量也不同。
二、水对植物的生理作用1、原生质的主要组分。
原生质一般含水量在70%~90%以上,这样才可使原生质保持溶胶状态,以保证各种生理生化过程的进行。
如果含水量减少,原生质由溶胶变成凝胶状态,细胞生命活动大大减缓(例如休眠种子)。
2、接参与植物体内重要的代谢过程。
在光合作用、呼吸作用、有机物质合成和分解的过程中均有水的参与。
3、多生化反应和物质吸收、运输的良好介质。
植物体内绝大多数生化过程都是在水介质中进行的。
水分子是极性分子,参与生化过程的反应物都溶于水,控制这些反应的酶类也是亲水性的。
各种物质在细胞内的合成、转化和运输分配,以及无机离子的吸收和运输在水介质中完成的。
4、使植物保持固有的姿态。
细胞含有大量的水分,维持细胞的紧张度,因而使植物枝叶挺立、花朵开放等。
3、分裂和延伸生长都需要足够的水。
植物生理学习题大全——第1章植物的水分代谢
第一章植物的水分代谢一. 名词解释水分代谢(water metabolism):植物对水分的吸收、运输、利用和散失的过程。
自由水(free water):距离胶粒较远而不被胶粒所束缚,可以自由流动的水分。
束缚水(bound water):靠近胶粒而被胶粒所束缚、不易自由流动的水分。
扩散(diffusion):水分通过磷脂双分子层的运输方式。
集流(mass flow):水分通过膜上的水孔蛋白的运输方式。
水通道蛋白( water channel protein):存在于生物膜上的一类具有选择性、高效转运水分功能的内在蛋白,亦称水孔蛋白。
束缚能(bound energy):不能用于做功的能量。
自由能(free energy):在温度恒定的条件下可用于做功的能量。
化学势( chemical potential):每摩尔物质所具有的自由能。
水势(water potential ):每偏摩尔体积水的化学势差。
临界水势(critical water potential):气孔开始关闭的水势。
渗透势(osmotic potential):由于溶液中溶质颗粒的存在而引起的水势降低值。
压力势(pressure potential):由于细胞壁压力的存在而增大的水势值。
衬质势(matrix potential):由于细胞胶体物质亲水性和毛细管对自由水的束缚而引起的水势降低值。
重力势(gravitational potential):由于重力的存在而使体系水势增加的数值。
水的偏摩尔体积(partial molar volume):在温度、压强及其他组分不变的条件下,在无限大的体系中加入1mol水时,对体系体积的增量。
质壁分离(plasmolysis):植物细胞由于液泡失水,使原生质体收缩与细胞壁分离的现象。
质壁分离复原(deplasmolysis):把正在质壁分离的细胞移到低渗溶液或水中时,质壁分离的原生质体恢复原状的现象。
植物生理学-第一章植物水分代谢
细胞中含有大量溶质,其溶质势为各 溶质势的总和。
(2)压力势(pressure potential)
由于压力的存在而使体系水势改变的 数值,用ψp表示。
原生质吸水膨胀,对细胞壁产生压力, 而细胞壁对原生质会产生一个反作用力, 这就是细胞的压力势。
(3)衬质势(matric potential)
Ψm :衬质势,由于细胞胶体物质亲 水性和毛细管对自由水的束缚而引起的水 势降低值。恒为负值。
未形成液泡的细胞有一定的衬质势(如干燥 种子的可达-100MPa)。
干燥种子的水势:ψw = ψm
已形成液泡的细胞衬质势很大,但绝对值很小 (趋于零),可忽略不计,故具有液泡的成熟细胞:
2.水势单位: 帕(Pa)、巴(bar)、大气压
(atm)。
兆帕(MPa) 1Mpa=106 Pa
1bar (巴)=0.1 MPa
=0.987 atm (大气压)
1标准atm=1.013×105 Pa
=1.013 bar
化学势是能量概念,单位为J/mol [J=N(牛 顿)·m],
偏摩尔体积的单位为m3/mol,
细胞吸水情况决定于细胞水势。 典型细胞水势ψw是由3个势组成的:
ψw = ψs +ψp+ ψm
水 渗 压衬 透 力质
势 势 势势
(1)溶质势(solute potential) 渗透势(osmotic potential)
由于溶质颗粒的存在而引起体系水 势降低的数值。用ψs表示。
ψs =ψπ=-π(渗透压)=-iCRT
两者相除并化简,得N/m2,成为压力单位帕Pa
这样就把以能量为单位的化学势转化为以压力为 单位的水势。
植物生理学第一章 ppt课件
i:溶质的解离常数 R: 气体常数(0 .082大气压/升. 摩尔. 度) T:绝对温度(273+t) C:摩尔浓度
(4)压力势(Pressure potential) 用Ψp 表示
具有一定刚性的细胞壁对细胞内容物施加 的压力而引起细胞内水势的变化值。
第一章 植物的水分代谢
第一节 植物对水分的需要
一、植物含水量 二、植物体内水分存在状态和作用
植物水分代谢(Water metabolism): 水分的吸收,运输,蒸腾
一、植物含水量(Water content) 1、不同植物含水量不同
2、不同环境中的植物含水量不同 3、不同组织和器官含水量不同
水的自由能差。
用ψw表示 单位:大气压、巴、兆帕 1Mpa=10 bar, 1 大气压=1.013 巴 标准状况下,纯水的水势为零
Vw,m :偏摩尔体积,指在恒温恒压、 其它组分不变的条件下,加入1摩尔的水所 引起的体积增量。
如:纯水的摩尔体积是18cm3,将其 加入极大体系的80%乙醇中,最终体积 是16cm3,水的偏摩尔体积是多少? (16cm3)
一般情况下,压力势为正值; 质壁分离时,压力势为零; 剧烈蒸腾时,压力势为负值。
2、细胞的水势构成:
Ψw=Ψπ + Ψp + Ψg
⑴重力势:水分因重力下移于相反力量相等时 的力量。
⑵细胞体积和Ψw、Ψπ、Ψp的关系
①初始质壁分离时,V=1.0,
Ψp= 0, Ψw = Ψs = -2.0MPa
②充分膨胀时,V=1.5,
三、渗透作用 1、细胞和土壤溶液构成一个渗透系统 (1)渗透系统(Osmotic system) 用半透膜将两种不同浓度溶液分开
植物生理学第01章植物的水分代谢
植物⽣理学第01章植物的⽔分代谢第⼀章植物的⽔分代谢本章内容提要⽔是植物⽣命的基础。
植物⽔分代谢包括⽔的吸收、运输和散失过程。
植物细胞吸⽔有三种⽅式:渗透吸⽔、吸胀吸⽔和代谢性吸⽔,以渗透吸⽔为主。
根系是植物吸⽔的主要器官,吸⽔的主要区域为根⽑区,吸⽔的⽅式有主动吸⽔和被动吸⽔,其吸⽔动⼒分别为根压和蒸腾拉⼒。
蒸腾拉⼒是植物主要的吸⽔动⼒。
⽔分在植物体内连续不断地运输是蒸腾拉⼒—内聚⼒克服⽔柱张⼒的结果。
植物主要通过叶⽚蒸腾散失⽔分,具有重要⽣理意义。
⽓孔蒸腾是植物叶⽚蒸腾的主要形式。
蒸腾速率与⽓孔的开闭关系很⼤。
⽓孔开闭可能是通过保卫细胞内K+的积累学说和苹果酸代谢来调节的。
许多外界因⼦能调节⽓孔开闭。
作物需⽔因作物种类不同⽽异,⼀般⽽论,植物的⽔分临界期是花粉母细胞四分体形成期,合理灌溉要综合考虑⼟壤含⽔量、作物形态指标及⽣理指标。
灌溉的⽣理指标能即使反映植物体内的⽔分状况,是较为科学的。
第⼀节⽔分在植物⽣命活动中的作⽤⼀、植物体内的含⽔量不同植物的含⽔量不同;同⼀种植物⽣长在不同的环境中含⽔量也有差异;在同⼀植株中不同器官和不同组织的含⽔量也不同。
⼆、⽔对植物的⽣理作⽤1、原⽣质的主要组分。
原⽣质⼀般含⽔量在70%~90%以上,这样才可使原⽣质保持溶胶状态,以保证各种⽣理⽣化过程的进⾏。
如果含⽔量减少,原⽣质由溶胶变成凝胶状态,细胞⽣命活动⼤⼤减缓(例如休眠种⼦)。
2、接参与植物体内重要的代谢过程。
在光合作⽤、呼吸作⽤、有机物质合成和分解的过程中均有⽔的参与。
3、多⽣化反应和物质吸收、运输的良好介质。
植物体内绝⼤多数⽣化过程都是在⽔介质中进⾏的。
⽔分⼦是极性分⼦,参与⽣化过程的反应物都溶于⽔,控制这些反应的酶类也是亲⽔性的。
各种物质在细胞内的合成、转化和运输分配,以及⽆机离⼦的吸收和运输在⽔介质中完成的。
4、使植物保持固有的姿态。
细胞含有⼤量的⽔分,维持细胞的紧张度,因⽽使植物枝叶挺⽴、花朵开放等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
压力势(ψp):由于细胞壁压力的存在引起 细胞水势变化的数值。
衬质势(ψm):由于细胞胶体物质的亲水性 和毛细管作用对自由水的束缚而引起水势降 低的值,为负值。
Ⅰ:对于具有液泡的植物细胞 水势 = 渗透势 + 压力势 细胞的衬质势等于零
当植物细胞中自由水含量高时,原 生质处于溶胶状态,植物代谢活动旺盛, 但抗逆性弱。 植物细胞中束缚水含量高 时,原生质处于胶凝状态,植物细胞代 谢活动弱,但抗逆性强。
自由水与束缚水的比率影响植物代 谢活动的强弱。
四、水在植物生命活动中的生理和生态作用
生理作用: 1、作为原生质的主要成分 2、代谢过程的重要反应物质 3、植物吸收和运输物质的溶剂 4、保持植物的固有姿态 5、保持植物体的正常温度
生态作用:
6、水对可见光吸收极少 7、水还可以通过水的理化性质调节植物周围的 环境。
第二节 植物细胞对水分的吸收
细胞吸水是一个热力学过程
一、水势的概念和水的迁移过程
1、自由能、化学势和水势的概念
(1)自由能和化学势 在恒定条件下,体系内能用来做功的能量就
称为自由能(free energy)。 自由能是相对的,是一个体系变化前后的能
第一章 植物的水分代谢 Water Metabolism
水分在生命活动中具有非常重 要的作用,生命起源于水,水是生 命之源。
“有收无收在于水,收多收少在于肥” “风调雨顺,五谷丰登”
植物的水分代谢包含三个内容: 水分的吸收、水分在植物体内的运 输、水分的排出。
根据水分代谢机理指导作物的 合理灌溉,改变植物用水机制。
ψs=ψπ=-iCRT
式中 i为溶质的解离系数;C为溶质的体 积 摩 尔 浓 度 ( mol·L-1 ) ; R 为 气 体 常 数 (0.0083dm3·Mpa·mol-1·K-1);T为绝对温度(K)。
对于一个开放系统来说,在常温常压下, 溶液的水势就等于其渗透势。
Jacobus Henricus van't Hoff, (1852—1911)
势(ψs)压力势(ψp)、重力势(ψg)、温度势(ψt) 和衬质势(ψm)。
所以:ψw=ψs+ψp+ψg+ψt+ψm (2)植物细胞的水势组成(见课本12页)
细胞水势ψw=渗透势ψs+压力势ψp+衬质势ψm 对于一个细胞来说,其重力势(ψg)和温度势 (ψt)可以忽略不计。
植物细胞的水势=渗透势+压力势+衬质势
(3)水势存在的证明及溶液水势的计算
半透膜也叫选择 透性膜,它允许水或 某些小分子通过,而 不允许其他分子通过。 如火棉纸、透析袋、 动物膀胱等。
渗透作用(osmosis):是指水分从水势高的系 统通过半透膜向水势低的系统进行扩散的现象, 是扩散作用的一种特殊形式。
图1.2 渗透作用示意图
稀 溶 液 的 渗 透 势 可 用 范 特 ·霍 夫 ( Vant Hoff)计算渗透压的公式来计算:
第一节 水分与植物生命活动
一、水分的理化性质 1、水分子的化学结构
2、水的某些理化性质
(1)水的高汽化热 (2)水的高比热 (3)水的内聚力、黏附力和表面张力 (4)水是良好的溶剂 (5)在生理温度下是液体
(6)水的密度; (7)水的蒸气压;
(8)毛细作用; (9)水的高抗张强度;
二、植物的含水量
范特·霍夫:荷兰化学家:第 一个诺贝尔化学奖得主。
范特·霍夫 ,荷兰化学家, 1901年因研究 化学动力学和溶液渗透压的有关定律《气体体 系或稀溶液中的化学平衡》,成为第一位获得 诺贝尔化学奖的化学家。
2、植物细胞的水势组成
(1)含水体系水势的组成(见课本12页) 影响水分子自由能的因素主要有:溶质势或渗透
不同种类植物的含水量图示
黄瓜
西红柿
绝对含水量(%) 99
98
干重(%)
1
2
鲜重(%)
100
100
相对含水量(%) ~100
~100
鲜重/干重
100
50
绝对含水量=(鲜重-干重)/鲜重
饱和含水量=(饱和鲜重-干重)/饱和鲜重
相对含水量=绝对含水量/饱和含水量
玉米含水量86%,87%。
三、植物体内水分存在的状态 自由水和束缚水
Ⅱ:对于未形成大液泡的分生细胞和干种子内 的细胞 水势=衬质势 细胞的压力势、渗透势等于零
Ⅲ:对于处于质壁分离状态的细胞 水势 =渗透势
细胞的压力势、衬质势等于零
3、细胞间的水分移动
土壤水势>植物根水势>茎木质部水势>叶片水势>大气水势
4、水分在植物体内的迁移方式
1巴=0.1 MPa =0.987 atm; 1atm=1.013× 105 Pa
偏摩尔体积(Vw,m)是指在恒温恒压和 其他组分浓度不变情况下,多组分体系中 1mol该物质所占据的有效体积。
在纯的水溶液中,水的偏摩尔体积与纯 水的摩尔体积(Vw=18.00 cm3·mol-1)相差 不大,实际应用时往往用纯水的摩尔体积代 替偏摩尔体积。
植物细胞的原生质、膜系统以及细胞壁
是由蛋白质、纤维素等大分子组成,含有大 量的亲水基团,在周围形成水化层。
凡是被原生质胶体颗粒紧密吸附或 存在于生物大分子结构空间的水、这些 水被束缚,不能自由移动,称为束缚水 (bound water)。
自由水(free water)是指存在于原生 质胶粒之间、液胞内、细胞间隙、导管 和管胞内以及植物体其他组织间隙中的 不被吸附、能在体内自由移动、起溶剂 作用的水。
纯水的化学势最高,人为的定为零;
溶液的化学势小于零水势用ψw示=w 0w wVw,m
Vw,m
μw :水溶液的化学势(J·mol-1=牛顿·米·mol-1 ) μ0w:纯水的化学势 Vw,m: 偏摩尔体积(米3 ·mol-1 ) Ψw:Pa(帕) 一般用兆帕表示(1MPa=106Pa)
过去常用巴或大气压表示
差。ΔG=G2-G1
化学势(chemical potential):是在 恒温恒压等条件下,1摩尔某组分在体 系中的自由能,可用来衡量物质反应或 转移所用的能量。
化学势用“μ”表示。化学势和重力 势类似,是一种势能。
(2)水势的概念:指在相同温度和压 力下每偏摩尔体积水的化学势与纯水的 化学势差。