望花区二中2018-2019学年高二上学期数学期末模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
望花区二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 下列说法正确的是( )
A.圆锥的侧面展开图是一个等腰三角形;
B.棱柱即是两个底面全等且其余各面都是矩形的多面体;
C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;
D.通过圆台侧面上的一点,有无数条母线.
2. 将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函
数图象的一条对称轴方程是( )
A .x=π
B .
C .
D .
3. 若点O 和点F (﹣2,0)分别是双曲线的中心和左焦点,点P 为双曲线右支上的任
意一点,则的取值范围为( )
A .
B .
C .
D .
4. 复数i i
i
z (21+=
是虚数单位)的虚部为( ) A .1- B .i - C .i 2 D .2
【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 5. 执行下面的程序框图,若输入2016x =-,则输出的结果为( )
A .2015
B .2016
C .2116
D .2048
6.在等差数列{a n}中,a1+a2+a3=﹣24,a10+a11+a12=78,则此数列前12项和等于()A.96 B.108 C.204 D.216
7.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k的最大值为()A.4 B.5 C.6 D.7
8.设a>0,b>0,若是5a与5b的等比中项,则+的最小值为()
A.8 B.4 C.1 D.
9. 如图表示的是四个幂函数在同一坐标系中第一象限内的图象,则幂函数y=x 的图象是( )
A .①
B .②
C .③
D .④
10.定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17
C .T 5=T 12
D .T 8=T 11
11.若当R x ∈时,函数||)(x a x f =(0>a 且1≠a )始终满足1)(≥x f ,则函数3
|
|log x
x y a =的图象大致是 ( )
【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等. 12.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为( )
A .30
B .50
C .75
D .150
二、填空题
13.已知函数5()sin (0)2
f x x a x π
=-≤≤的三个零点成等比数列,则2log a = .
14.已知(1+x+x 2)(x
)n (n ∈N +
)的展开式中没有常数项,且2≤n ≤8,则n= .
15.如图,一船以每小时20km 的速度向东航行,船在A 处看到一个灯塔B 在北偏东60°方向,行驶4小时后,船到达C 处,看到这个灯塔在北偏东15°方向,这时船与灯塔间的距离为 km .
16.要使关于x 的不等式2
064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.
17.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .
18.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .
三、解答题
19.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==. (1)求()f x 的解析式;
(2)若()f x 在区间[]2,1a a +上不单调,求实数的取值范围;
(3)在区间[]1,1-上,()y f x =的图象恒在221y x m =++的图象上方,试确定实数m 的取值范围.
20.已知椭圆E 的长轴的一个端点是抛物线y 2=4x 的焦点,离心率是
.
(1)求椭圆E 的标准方程;
(2)已知动直线y=k (x+1)与椭圆E 相交于A 、B 两点,且在x 轴上存在点M ,使得与k 的取值无
关,试求点M 的坐标.
21.已知f (x )=log 3(1+x )﹣log 3(1﹣x ). (1)判断函数f (x )的奇偶性,并加以证明;
(2)已知函数g (x )=log ,当x ∈[,
]时,不等式 f (x )≥g (x )有解,求k 的取值范围.
22.(本小题满分12分)
已知函数()
23cos cos 2
f x x x x =++
.
(1)当6
3x ππ⎡⎤
∈-⎢⎥⎣⎦,时,求函数()y f x =的值域;
(2)已知0ω>,函数()212x g x f ωπ⎛⎫=+
⎪⎝⎭,若函数()g x 在区间23
6π
π⎡⎤-⎢⎥⎣⎦,上是增函数,求ω的最大值.
23.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点. (1)若x 0=﹣4,y 0=1,求圆M 的方程;
(2)若点C 是以AB 为直径的圆M 上的任意一点,直线x=3交直线AC 于点R ,线段BR 的中点为D .判断直线CD 与圆M 的位置关系,并证明你的结论.
24.已知z 是复数,若z+2i 为实数(i 为虚数单位),且z ﹣4为纯虚数.
(1)求复数z ;
(2)若复数(z+mi )2
在复平面上对应的点在第四象限,求实数m 的取值范围.
望花区二中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)
一、选择题
1.【答案】C
【解析】
考点:几何体的结构特征.
2.【答案】B
【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),
得到y=cos x,再向右平移个单位得到y=cos[(x)],
由(x)=kπ,得x=2kπ,
即+2kπ,k∈Z,
当k=0时,,
即函数的一条对称轴为,
故选:B
【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.
3.【答案】B
【解析】解:因为F(﹣2,0)是已知双曲线的左焦点,
所以a2+1=4,即a2=3,所以双曲线方程为,
设点P(x0,y0),
则有,解得,
因为,,
所以=x0(x0+2)+=,
此二次函数对应的抛物线的对称轴为,
因为,
所以当时,
取得最小值
=
,
故的取值范围是
,
故选B .
【点评】本题考查待定系数法求双曲线方程,考查平面向量的数量积的坐标运算、二次函数的单调性与最值等,考查了同学们对基础知识的熟练程度以及知识的综合应用能力、运算能力.
4. 【答案】A 【解析】()12(i)
122(i)
i i z i i i +-+=
==--,所以虚部为-1,故选A. 5. 【答案】D 【解析】
试题分析:由于20160-<,由程序框图可得对循环进行加运算,可以得到2x =,从而可得1y =,由于
20151>,则进行2y y =循环,最终可得输出结果为2048.1
考点:程序框图. 6. 【答案】B
【解析】解:∵在等差数列{a n }中,a 1+a 2+a 3=﹣24,a 10+a 11+a 12=78, ∴3a 2=﹣24,3a 11=78,解得a 2=﹣8,a 11=26, ∴此数列前12项和=
=6×18=108, 故选B .
【点评】本题考查了等差数列的前n 项和公式,以及等差数列的性质,属于基础题.
7. 【答案】A
解析:模拟执行程序框图,可得 S=0,n=0
满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5 满足条件5≤k ,S=75,n=6 …
若使输出的结果S不大于50,则输入的整数k不满足条件5≤k,即k<5,
则输入的整数k的最大值为4.
故选:
8.【答案】B
【解析】解:∵是5a与5b的等比中项,
∴5a•5b=()2=5,
即5a+b=5,
则a+b=1,
则+=(+)(a+b)=1+1++≥2+2=2+2=4,
当且仅当=,即a=b=时,取等号,
即+的最小值为4,
故选:B
【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意1的代换.9.【答案】D
【解析】解:幂函数y=x为增函数,且增加的速度比价缓慢,
只有④符合.
故选:D.
【点评】本题考查了幂函数的图象与性质,属于基础题.
10.【答案】C
【解析】解:∵a n=29﹣n,
∴T n=a1•a2•…•a n=28+7+…+9﹣n=
∴T1=28,T19=2﹣19,故A不正确
T3=221,T17=20,故B不正确
T5=230,T12=230,故C正确
T8=236,T11=233,故D不正确
故选C
11.【答案】C
【解析】由||)(x a x f =始终满足1)(≥x f 可知1>a .由函数3
|
|log x
x y a =
是奇函数,排除B ;当)1,0(∈x 时,0||log <x a ,此时0|
|log 3
<=
x
x y a ,排除A ;当+∞→x 时,0→y ,排除D ,因此选C . 12.【答案】B
【解析】解:该几何体是四棱锥, 其底面面积S=5×6=30, 高h=5,
则其体积V=S ×h=
30×5=50.
故选B .
二、填空题
13.【答案】12
-
考点:三角函数的图象与性质,等比数列的性质,对数运算.
【名师点睛】本题考查三角函数的图象与性质、等比数列的性质、对数运算法则,属中档题.把等比数列与三角函数的零点有机地结合在一起,命题立意新,同时考查数形结合基本思想以及学生的运算能力、应用新知识解决问题的能力,是一道优质题. 14.【答案】 5 .
【解析】二项式定理. 【专题】计算题.
【分析】要想使已知展开式中没有常数项,需(x )n (n ∈N +)的展开式中无常数项、x ﹣1项、x ﹣2
项,利
用(x
)n (n ∈N +
)的通项公式讨论即可.
【解答】解:设(x)n(n∈N+)的展开式的通项为T r+1,则T r+1=x n﹣r x﹣3r=x n﹣4r,2≤n≤8,
当n=2时,若r=0,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;
当n=3时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠3;
当n=4时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠4;
当n=5时,r=0、1、2、3、4、5时,(1+x+x2)(x)n(n∈N+)的展开式中均没有常数项,故n=5适合题意;
当n=6时,若r=1,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠6;
当n=7时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠7;
当n=8时,若r=2,(1+x+x2)(x)n(n∈N+)的展开式中有常数项,故n≠2;
综上所述,n=5时,满足题意.
故答案为:5.
【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.
15.【答案】
【解析】解:根据题意,可得出∠B=75°﹣30°=45°,
在△ABC中,根据正弦定理得:BC==海里,
则这时船与灯塔的距离为海里.
故答案为.
16.【答案】±.
【解析】分析题意得,问题等价于2
64x ax ++≤只有一解,即2
20x ax ++≤只有一解,
∴2
80a a ∆=-=⇒=±,故填:±.
17.【答案】 .
【解析】解:由题意图形折叠为三棱锥,底面为△EFC ,高为AC ,
所以三棱柱的体积:××1×1×2=,
故答案为:.
【点评】本题是基础题,考查几何体的体积的求法,注意折叠问题的处理方法,考查计算能力.
18.【答案】 30° .
【解析】解:取AD 的中点G ,连接EG ,GF 则EG DC=2,GF
AB=1,
故∠GEF 即为EF 与CD 所成的角. 又∵FE ⊥AB ∴FE ⊥GF ∴在Rt △EFG 中EG=2,GF=1故∠GEF=30°.
故答案为:30°
【点评】此题的关键是作出AD 的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.
三、解答题
19.【答案】(1)2
()243f x x x =-+;(2)1
02
a <<
;(3)1m <-.
试
题解析:
(1)由已知,设2()(1)1f x a x =-+,
由(0)3f =,得2a =,故2
()243f x x x =-+.
(2)要使函数不单调,则211a a <<+,则102
a <<. (3)由已知,即2243221x x x m -+>++,化简得2
310x x m -+->,
设2
()31g x x x m =-+-,则只要min ()0g x >, 而min ()(1)1g x g m ==--,得1m <-. 考点:二次函数图象与性质.
【方法点晴】利用待定系数法求二次函数解析式的过程中注意选择合适的表达式,这是解题的关键所在;另外要注意在做题过程中体会:数形结合思想,方程思想,函数思想的应用.二次函数的解析式(1)一般式:
()()20f x ax bx c a =++≠;(2)顶点式:若二次函数的顶点坐标为(),h k ,则其解析式为
()()()2
0f x a x h k a =-+≠;(3)两根式:若相应一元二次方程的两根为()12,x x ,则其解析式为
()()()()120f x a x x x x a =--≠.
20.【答案】
【解析】解:(1)由题意,椭圆的焦点在x 轴上,且a=,…1分
c=e •a=×
=,
故b=
=
=
,…4分
所以,椭圆E 的方程为
,即x 2+3y 2=5…6分
(2)将y=k (x+1)代入方程E :x 2+3y 2=5,得(3k 2+1)x 2+6k 2x+3k 2﹣5=0;…7分
设A(x1,y1),B(x2,y2),M(m,0),则
x1+x2=﹣,x1x2=;…8分
∴=(x1﹣m,y1)=(x1﹣m,k(x1+1)),=(x2﹣m,y2)=(x2﹣m,k(x2+1));
∴=(k2+1)x1x2+(k2﹣m)(x1+x2)+k2+m2
=m2+2m﹣﹣,
要使上式与k无关,则有6m+14=0,解得m=﹣;
∴存在点M(﹣,0)满足题意…13分
【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题.
21.【答案】
【解析】解:(1)f(x)=log3(1+x)﹣log3(1﹣x)为奇函数.
理由:1+x>0且1﹣x>0,得定义域为(﹣1,1),(2分)
又f(﹣x)=log3(1﹣x)﹣log3(1+x)=﹣f(x),
则f(x)是奇函数.
(2)g(x)=log=2log3,(5分)
又﹣1<x<1,k>0,(6分)
由f(x)≥g(x)得log3≥log3,
即≥,(8分)
即k2≥1﹣x2,(9分)
x∈[,]时,1﹣x2最小值为,(10分)
则k2≥,(11分)
又k>0,则k≥,
即k的取值范围是(﹣∞,].
【点评】本题考查函数的奇偶性的判断和证明,考查不等式有解的条件,注意运用对数函数的单调性,考查运算化简能力,属于中档题.
22.【答案】(1)332⎡⎤
⎢⎥⎣⎦
,;(2).
【解析】
试题分析:(1)化简()sin 226f x x π⎛
⎫=++ ⎪⎝⎭,结合取值范围可得1sin 2126x π⎛⎫-≤+≤ ⎪⎝⎭⇒值域为332⎡⎤⎢⎥⎣⎦,;(2)
易得()sin 22123x g x f x ωππω⎛⎫⎛⎫=+=++ ⎪ ⎪⎝⎭⎝⎭和233363x πωππωππω⎡⎤+∈-++⎢⎥⎣⎦,,由()g x 在23
6π
π⎡⎤-
⎢⎥⎣⎦,上是增函数⇒222Z 336322k k k ωππωππππππ⎡⎤⎡⎤
-
++⊆-++∈⎢⎥⎢⎥⎣⎦⎣⎦,,,⇒ 22332
26
32k k ωππ
ππωππππ⎧-+≥-+⎪⎪⎨
⎪+≤+⎪⎩⇒534112k k ωω⎧≤-⎪⎨⎪≤+⎩⇒151212k -<<,Z k ∈⇒0k =⇒1ω≤⇒ω的最大值为
. 考
点:三角函数的图象与性质. 23.【答案】
【解析】解:(1)设圆的方程为x2+y2+Dx+Ey+F=0
圆的方程为x2+y2﹣8y﹣9=0…
(2)直线CD与圆M相切O、D分别是AB、BR的中点则OD∥AR,∴∠CAB=∠DOB,∠ACO=∠COD,
又∠CAO=∠ACO,∴∠DOB=∠COD
又OC=OB,所以△BOD≌△COD
∴∠OCD=∠OBD=90°
即OC⊥CD,则直线CD与圆M相切.…
(其他方法亦可)
24.【答案】
【解析】解:(1)设z=x+yi(x,y∈R).
由z+2i=x+(y+2)i为实数,得y+2=0,即y=﹣2.
由z﹣4=(x﹣4)+yi为纯虚数,得x=4.
∴z=4﹣2i.
(2)∵(z+mi)2=(﹣m2+4m+12)+8(m﹣2)i,
根据条件,可知
解得﹣2<m<2,
∴实数m的取值范围是(﹣2,2).
【点评】本题考查了复数的运算法则、纯虚数的定义、几何意义,属于基础题.。