江苏省扬州中学等差数列专题(有答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.记n S 为等差数列{}n a 的前n 项和.若5620a a +=,11132S =,则{}n a 的公差为
( ) A .2
B .
43
C .4
D .4-
2.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72
B .90
C .36
D .45
3.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11
B .10
C .6
D .3
4.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .
825
两 B .
845
两 C .
865
两 D .
885
两 5.为了参加学校的长跑比赛,省锡中高二年级小李同学制定了一个为期15天的训练计划.已知后一天的跑步距离都是在前一天的基础上增加相同距离.若小李同学前三天共跑了
3600米,最后三天共跑了10800米,则这15天小李同学总共跑的路程为( ) A .34000米 B .36000米 C .38000米 D .40000米
6.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32
B .33
C .34
D .35
7.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29
B .38
C .40
D .58
8.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n
n S a b n =---⨯+,*n N ∈,则
存在数列{}n b 和{}n c 使得( )
A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列
B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列
C .·
n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·
n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 9.已知等差数列{}n a 的前n 项和为S n ,若S 2=8,38522a a a +=+,则a 1等于( ) A .1
B .2
C .3
D .4
10.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值
为( ) A .2m
B .21m +
C .22m +
D .23m +
11.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫
+-= ⎪⎪⎝⎭⎝⎭
,数列{}n b 满足
1111n n n
b a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1
B .2
C .3
D .4
12.已知等差数列{}n a 的前n 项和为n S ,且2
n S n =.定义数列{}n b 如下:
()*1m m b m m
+∈N 是使不等式()
*
n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b +++
+=( )
A .25
B .50
C .75
D .100
13.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )
A .7
B .9
C .21
D .42
14.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S >
D .70S <,且80S <
15.已知等差数列{}n a 中,7916+=a a ,41a =,则12a 的值是( ) A .15
B .30
C .3
D .64
16.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )
A .3、8、13、18、23
B .4、8、12、16、20
C .5、9、13、17、21
D .6、10、14、18、22
17.等差数列{}n a 中,若26a =,43a =,则5a =( ) A .
32
B .
92
C .2
D .9
18.已知数列{}n a 的前n 项和为n S ,且()1
1213n n n n S S a n +++=+-+,现有如下说法:
①541a a =;②222121n n a a n ++=-;③401220S =. 则正确的个数为( ) A .0
B .1
C .2
D .3
19.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .
54
钱 B .
43
钱 C .
23
钱 D .
53
钱
20.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60
B .120
C .160
D .240
二、多选题
21.(多选)在数列{}n a 中,若2
2
1(2,,n n a a p n n N p *
--=≥∈为常数),则称{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .
(){}1n
- 是等方差数列
C .{}2
n
是等方差数列.
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 22.已知递减的等差数列{}n a 的前n 项和为n S ,57S S =,则( ) A .60a > B .6S 最大 C .130S >
D .110S >
23.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4
B .5
C .7
D .8
24.无穷等差数列{}n a 的前n 项和为S n ,若a 1>0,d <0,则下列结论正确的是( ) A .数列{}n a 单调递减 B .数列{}n a 有最大值 C .数列{}n S 单调递减
D .数列{}n S 有最大值
25.等差数列{}n a 的前n 项和记为n S ,若10a >,717S S =,则( ) A .0d < B .120a > C .13n S S ≤
D .当且仅当0n
S <时,26n ≥
26.数列{}n a 满足11,121
n
n n a a a a +=
=+,则下列说法正确的是( ) A .数列1n a ⎧⎫
⎨⎬⎩⎭
是等差数列
B .数列1n a ⎧⎫⎨⎬⎩⎭
的前n 项和2
n S n =
C .数列{}n a 的通项公式为21n a n =-
D .数列{}n a 为递减数列
27.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列
C .数列{
}n
a n
是递增数列 D .数列{}3n a nd +是递增数列
28.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22
B .d =-2
C .当n =10或n =11时,S n 取得最大值
D .当S n >0时,n 的最大值为21
29.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <
B .70a >
C .{}n S 中5S 最大
D .49a a <
30.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .当9n =或10时,n S 取最大值 C .911a a <
D .613S S =
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.C 【分析】
由等差数列前n 项和公式以及等差数列的性质可求得6a ,再由等差数列的公式即可求得公差. 【详解】 解:
()111116
11111322
a a S a
+⨯=
==,
612a ∴=,
又
5620a a +=,
58a ∴=,
654d a a ∴=-=.
故选:C . 2.B 【分析】
由题意结合248,,a a a 成等比数列,有2
444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S .
【详解】
由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,
∴2
444(4)(8)a a a =-+,解之得48a =,
∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,
∴99(229)
902
S ⨯+⨯=
=,
故选:B 【点睛】
思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2
k m n a a a =; 2、等差数列前n 项和公式1()
2
n n n a a S +=的应用. 3.A 【分析】
利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】
由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,
213a a d =+=,
解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 4.C 【分析】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,
810
6
100a S =⎧⎨
=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,
则由题意得8106100a S =⎧⎨=⎩,即1176109
101002a d a d +=⎧⎪
⎨⨯+=⎪⎩,解得186585a d ⎧
=⎪⎪⎨⎪=-⎪⎩
. 所以长兄分得86
5
两银子. 故选:C. 【点睛】
关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得
()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和
前n 项和公式. 5.B 【分析】
利用等差数列性质得到21200a =,143600a =,再利用等差数列求和公式得到答案. 【详解】
根据题意:小李同学每天跑步距离为等差数列,设为n a ,
则123233600a a a a ++==,故21200a =,13141514310800a a a a ++==,故
143600a =,
则()()11521411
151********
n S a a a a =
+⨯=+⨯=. 故选:B. 6.D 【分析】
设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出
(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出
111429m n =-,再由[]90,100m ∈求出n 的值.
【详解】
根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m +++++
+++=++=
则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 7.A 【分析】
根据等差中项的性质,求出414a =,再求10a ; 【详解】
因为{}n a 为等差数列,所以264228a a a +==, ∴414a =.由59410a a a a +=+43=,得1029a =, 故选:A. 8.D 【分析】
由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:
(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,
∴当1n =时,有110S a a ==≠;
当2n ≥时,有1
1()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,0
1()2a a b b a =-+⋅=也适合上式,
1()2n n a a bn b -∴=-+⋅,
令n b a b bn =+-,1
2n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,
故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;
因为11
()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{
}1
2
n bn -⋅即不是等差数列,也不是等比数
列,故AB 错. 故选:D. 【点睛】 方法点睛:
由数列前n 项和求通项公式时,一般根据11
,2
,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能
力. 9.C 【分析】
利用等差数列的下标和性质以及基本量运算,可求出1a . 【详解】
设等差数列{}n a 的公差为d ,
则3856522a a a a a +=+=+,解得652d a a =-=,
212112228S a a a d a =+=+=+=,解得13a =
故选:C 10.C 【分析】
首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据
选项,代入前n 项和公式,计算结果. 【详解】
由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++=
=
+,
()()()1232322323<02
m m m m a a S m a +++++==+, ()()()()1222212211>02
m m m m m a a S m a a ++++++=
=
++.
故选:C.
【点睛】
关键点睛:本题的第一个关键是根据公式11
,2
,1n n n S S n a S n --≥⎧=⎨=⎩,判断数列的项的正负,
第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 11.B 【分析】 由题意可得
2
2
1114n n
a a +-
=,运用等差数列的通项公式可得21
43n n a =-
,求得1
4n b =,然后利用裂项相消求和法可求得结果
【详解】
解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫
+-= ⎪⎪⎝⎭⎝⎭
,得22
1114n n
a a +-=, 所以数列21n a ⎧⎫
⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,
所以21
14(1)43n
n n a =+-=-,
因为0n a >
,所以n a =,
所以
1111n n n
b a a +=+=
所以1
4
n b =
=,
所以201220T b b b =++⋅⋅⋅+
11
1339(91)244=++⋅⋅⋅+=⨯-=, 故选:B
【点睛】
关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得
2
2
1114n n a a +-
=,从而数列21n a ⎧⎫⎨⎬⎩⎭
是以4为公差,以1
为首项的等差数列,进而可求n a =
,1
4
n b =
=,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题 12.B 【分析】
先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到2121
2
k k b --=,结合等差数列的求和公式,即可求解. 【详解】
由题意,等差数列{}n a 的前n 项和为n S ,且2
n S n =,可得21n a n =-,
因为n a m ≥,即21n m -≥,解得12
m n +≥, 当21m k =-,(*k N ∈)时,1
m m b k m +=,即()()11212
m m m mk m b m m +===++, 即2121
2
k k b --=
, 从而()135191
13519502
b b b b ++++=
++++=.
故选:B. 13.C 【分析】
利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】
设等差数列{}n a 的公差为d ,则()
1212121632
a a S +=
=, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a +++
+=++++++
111111111122277321a a a a a =+++==⨯=,
故选:C 【点睛】
关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,
()()()2582022051781411117a a a a a a a a a a a a +++
+=++++++=即可求解.
14.A 【分析】
根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】
依题意,有170a a +>,180a a +< 则()177702a a S +⋅=
>
()()1881884
02
a a S a a +⋅=
=+<
故选:A . 15.A 【分析】
设等差数列{}n a 的公差为d ,根据等差数列的通项公式列方程组,求出1a 和d 的值,
12111a a d =+,即可求解.
【详解】
设等差数列{}n a 的公差为d ,
则111681631a d a d a d +++=⎧⎨+=⎩,即117831a d a d +=⎧⎨+=⎩ 解得:174
174d a ⎧=⎪⎪⎨⎪=-⎪⎩
,
所以12117760
111115444
a a d =+=-+⨯==, 所以12a 的值是15, 故选:A 16.C 【分析】
根据首末两项求等差数列的公差,再求这5个数字. 【详解】
在1与25之间插入五个数,使其组成等差数列, 则171,25a a ==,则71251
4716
a a d --=
==-, 则这5个数依次是5,9,13,17,21. 故选:C 17.A 【分析】
由2a 和4a 求出公差d ,再根据54a a d =+可求得结果.
【详解】
设公差为d ,则42363
4222a a d --=
==--, 所以5433322
a a d =+=-=. 故选:A 18.D 【分析】
由()
1
1213n n n n S S a n +++=+-+得到()
1
1132n n n a a n ++=-+-,再分n 为奇数和偶数得
到21262k k a a k +=-+-,22165k k a a k -=+-,然后再联立递推逐项判断. 【详解】
因为()1
1213n n n n S S a n +++=+-+,
所以()
1
1132n n n a a n ++=-+-,
所以()212621k k a a k +=-+-,()221652k k a a k -=+-, 联立得:()212133k k a a +-+=, 所以()232134k k a a +++=, 故2321k k a a +-=,
从而15941a a a a ===⋅⋅⋅=,
22162k k a a k ++=-,222161k k a a k ++=++,
则222121k k a a k ++=-,故()()()4012345383940...S a a a a a a a a =++++++++,
()()()()234538394041...a a a a a a a a =++++++++,
()()20
1411820622
k k =+⨯=-=
=
∑1220,
故①②③正确. 故选:D 19.C 【分析】
根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为
2a d -,a d -,a ,a d +,2a d +,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解. 【详解】
设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,
则根据题意有(2)()()(2)5
(2)()()(2)
a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨
-+-=++++⎩,
解得116a d =⎧⎪⎨=-⎪⎩
,
所以戊所得为2
23
a d +=, 故选:C . 20.B 【分析】
根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()
11515815152
a a S a +==,从而可得出结果.
【详解】
解:由题可知,2938a a a +=+,
由等差数列的性质可知2938a a a a +=+,则88a =,
故()1158
158151521515812022
a a a S a +⨯=
===⨯=. 故选:B.
二、多选题
21.BD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若{}n a 是等差数列,如n a n =,则12222
(1)21n n a a n n n --=--=-不是常数,故
{}n
a 不是等方差数列,故A 错误;
对于B ,数列
(){}1n
-中,222121
[(1)][(1)]0n n n n a
a ---=---=是常数,{(1)}n ∴-是等方差数列,故B 正确;
对于C ,数列{}2n 中,()()2
2
2211
1
2234n n n n n a a ----=-=⨯不是常数,{}2n ∴不是等方差数列,故C 错误; 对于D ,
{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数
列,()()2
2
2
112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,
故220d =,故0d =,所以(2)0m d d +=,22
10n n a a --=是常数,故D 正确.
故选:BD. 【点睛】
关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差
数列和等方差数列定义,利用定义进行判断. 22.ABD 【分析】
转化条件为670a a +=,进而可得60a >,70a <,再结合等差数列的性质及前n 项和公式逐项判断即可得解. 【详解】
因为57S S =,所以750S S -=,即670a a +=,
因为数列{}n a 递减,所以67a a >,则60a >,70a <,故A 正确; 所以6S 最大,故B 正确; 所以()113137
131302
a a S a
+⨯==<,故C 错误; 所以()111116
111102
a a S a
+⨯=
=>,故D 正确.
故选:ABD. 23.BD 【分析】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】
依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:
()()
111110022n n n d n n S na na --=+
=+= 整理得1200
21a n n
=
+-, 因为1a *
∈N ,所以n 为200的因数,()200
12n n
+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】
关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 24.ABD 【分析】
由10n n a a d +-=<可判断AB ,再由a 1>0,d <0,可知等差数列数列{}n a 先正后负,可判断CD.
【详解】
根据等差数列定义可得10n n a a d +-=<,所以数列{}n a 单调递减,A 正确; 由数列{}n a 单调递减,可知数列{}n a 有最大值a 1,故B 正确;
由a 1>0,d <0,可知等差数列数列{}n a 先正后负,所以数列{}n S 先增再减,有最大值,C 不正确,D 正确. 故选:ABD. 25.AB 【分析】
根据等差数列的性质及717S S =可分析出结果. 【详解】
因为等差数列中717S S =, 所以89161712135()0a a a a a a ++++=+=,
又10a >,
所以12130,0a a ><,
所以0d <,12n S S ≤,故AB 正确,C 错误; 因为125251325()
2502
a a S a +==<,故D 错误, 故选:AB 【点睛】
关键点睛:本题突破口在于由717S S =得到12130a a +=,结合10a >,进而得到
12130,0a a ><,考查学生逻辑推理能力.
26.ABD 【分析】 首项根据11,121n n n a a a a +=
=+得到
1112n n a a +-=,从而得到1n a ⎧⎫
⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,再依次判断选项即可.
【详解】
对选项A ,因为121
n
n n a a a +=
+,11a =, 所以
121112n n n n a a a a ++==+,即1112n n
a a +-= 所以1n a ⎧⎫
⎨
⎬⎩⎭
是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:
1121
21n
n n a
数列1n a ⎧⎫⎨
⎬⎩⎭
的前n 项和()21212n
n n S n +-==,故B 正确. 对选项C ,因为
1
21n n a =-,所以121
n a n =-,故C 错误. 对选项D ,因为1
21
n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】
本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题. 27.AD 【分析】
根据等差数列的性质,对四个选项逐一判断,即可得正确选项. 【详解】
0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,
()()2
111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d -<时,数列{}n na 不是递增数列,故②不正确, 1n a a d d n n -=+,当10a d -<时,{}n a n 不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确,
故选:AD 【点睛】
本题主要考查了等差数列的性质,属于基础题. 28.BC 【分析】
分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】
由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①
由a 7是a 3与a 9的等比中项,可得2
739a a a =,即()()()2
111628a d a d a d +=++,化简得
110a d =-,②
由①②解得120,2a d ==-,故A 错,B 对;
由()()2
2121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;
由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】
本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题. 29.AD 【分析】
先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,
0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.
【详解】
解:根据等差数列前n 项和公式得:()111111102a a S +=>,()
112121202
a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】
本题考查等差数列的前n 项和公式与等差数列的性质,是中档题. 30.AD 【分析】
由1385a a S +=求出100a =,即19a d =-,由此表示出9a 、11a 、6S 、13S ,可判断C 、D 两选项;当0d >时,10a <,n S 有最小值,故B 错误. 【详解】
解:1385a a S +=,111110875108,90,02
d
a a d a a d a ⨯++=+
+==,故正确A. 由190a d +=,当0d >时,10a <,n S 有最小值,故B 错误.
9101110,a a d d a a d d =-==+=,所以911a a =,故C 错误.
61656+
5415392
d
S a d d d ⨯==-+=-, 131131213+
11778392
d
S a d d d ⨯==-+=-,故D 正确. 故选:AD
【点睛】
考查等差数列的有关量的计算以及性质,基础题.。