振动理论-考题

合集下载

振动学基础练习题及答案

振动学基础练习题及答案

振动学基础练习题及答案一、选择1、物体做简谐运动时,下列叙述中正确的是 [ C ](A )在平衡位置加速度最大; (B )在平衡位置速度最小; (C )在运动路径两端加速度最大; (D )在运动路径两端加速度最小。

2、作简谐运动的单摆,在最大角位移向平衡位置运动过程中 [ B ](A )动能减少,势能增加; (B) 动能增加,势能减少;(C )动能增加,势能增加; (D) 动能减少,势能减少。

3、弹簧振子沿直线作简谐振动,当振子连续两次经过相同位置时,以下说法正确的是(A )加速度不同,动能相同; [ C ] (B )动能相同,动量相同; (C )回复力相同,弹性势能相同; (D )位移、速度和加速度都相同。

4、一弹簧振子,当0t =时,物体处在/2x A =(A 为振幅)处且向负方向运动,则它的初相为[ A ](A )π3; (B )π6; (C )-π3; (D )-π6。

5、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为 [ C ](A) π ; (B) π/2 ; (C) 0 ; (D) θ 。

6、一质点作简谐振动,周期为T 。

当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为 [ C ](A) T /12 ; (B) T /8 ; (C) T /6 ; (D) T /47、一质点沿x 轴作简谐振动,振动方程为 10.04cos(2)3x t ππ=+(SI ),从t = 0时刻起,到质点位置在x = -0.02 m 处,且向x 轴正方向运动的最短时间间隔为 [ D ](A)s 81; (B) s 61; (C) s 41; (D) s 21。

8、一弹簧振子,物体的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动。

当物体通过平衡位置且向规定的正方向运动时开始计时。

《振动力学》习题集(含问题详解)

《振动力学》习题集(含问题详解)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

机械振动期末考试题及答案

机械振动期末考试题及答案

机械振动期末考试题及答案一、选择题(每题2分,共20分)1. 简谐振动的周期与振幅无关,这是由哪个定律决定的?A. 牛顿第二定律B. 牛顿第三定律C. 胡克定律D. 能量守恒定律答案:C2. 下列哪个不是阻尼振动的特点?A. 振幅逐渐减小B. 频率逐渐增大C. 能量逐渐减少D. 振幅随时间呈指数衰减答案:B3. 一个物体做自由振动,若其振幅逐渐减小,这表明振动受到了:A. 阻尼B. 共振C. 强迫振动D. 非线性振动答案:A4. 质点的振动方程为 \( y = A \sin(\omega t + \phi) \),其中\( \omega \) 表示:A. 振幅B. 频率C. 角频率D. 相位答案:C5. 弹簧振子的振动周期与下列哪个参数无关?A. 弹簧的劲度系数B. 振子的质量C. 振子的振幅D. 振子的初始相位答案:C6. 阻尼振动的振幅随时间呈指数衰减,其衰减速率与什么有关?A. 振幅大小B. 阻尼系数C. 振动频率D. 振动周期答案:B7. 以下哪个不是振动系统的自由度?A. 1B. 2C. 3D. 无穷大答案:D8. 共振现象发生在以下哪种情况下?A. 系统固有频率等于外部激励频率B. 系统阻尼系数最大C. 系统振幅最小D. 系统能量最大答案:A9. 以下哪个是简谐振动的特有现象?A. 振幅不变B. 频率不变C. 能量不变D. 周期不变答案:A10. 一个物体在水平面上做简谐振动,其振动能量主要由以下哪两个因素决定?A. 振幅和频率B. 振幅和阻尼系数C. 阻尼系数和频率D. 振幅和劲度系数答案:A二、填空题(每空2分,共20分)11. 简谐振动的周期公式为 \( T = \frac{2\pi}{\omega} \),其中\( \omega \) 为________。

答案:角频率12. 当外部激励频率接近系统的________时,系统将产生共振现象。

答案:固有频率13. 阻尼振动的振幅随时间的变化规律可表示为 \( A(t) = A_0 e^{-\beta t} \),其中 \( \beta \) 为________。

大学机械振动考试题目及答案

大学机械振动考试题目及答案

大学机械振动考试题目及答案一、选择题(每题2分,共10分)1. 在简谐振动中,振幅与振动的能量关系是()。

A. 无关B. 成正比C. 成反比D. 振幅越大,能量越小答案:B2. 下列哪个不是机械振动系统的自由度?()。

A. 转动B. 平动C. 振动D. 形变答案:C3. 一个单自由度系统在受到初始条件激励后,其振动形式是()。

A. 简谐振动B. 阻尼振动C. 受迫振动D. 自由振动答案:D4. 在阻尼振动中,如果阻尼系数增加,振动的振幅将()。

A. 增加B. 不变C. 减小D. 先增加后减小答案:C5. 对于一个二自由度振动系统,其振动模态数量是()。

A. 1B. 2C. 3D. 4答案:B二、填空题(每题2分,共10分)6. 一个物体做自由振动时,其频率称为______。

答案:固有频率7. 当外力的频率与系统的固有频率相等时,系统发生的振动称为______。

答案:共振8. 阻尼力与速度成正比的阻尼称为______阻尼。

答案:线性9. 振动系统的动态响应可以通过______分析法求解。

答案:傅里叶10. 在转子动力学中,临界转速是指转子发生______振动的转速。

答案:自激三、简答题(每题5分,共20分)11. 简述什么是简谐振动,并说明其运动方程的形式。

答案:简谐振动是一种周期性的振动,其加速度与位移成正比,且方向相反。

在数学上,简谐振动的运动方程可以表示为:x(t) = A * cos(ωt + φ)其中,A 是振幅,ω 是角频率,t 是时间,φ 是初相位。

12. 解释什么是阻尼振动,并说明其特点。

答案:阻尼振动是指在振动系统中存在能量耗散,导致振幅随时间逐渐减小的振动。

其特点包括振幅逐渐衰减,振动频率可能会随着振幅的减小而发生变化,且阻尼力通常与振动速度成正比。

13. 描述什么是受迫振动,并给出其稳态响应的条件。

答案:受迫振动是指系统在周期性外力作用下的振动。

当外力的频率接近系统的固有频率时,系统将发生共振,此时振幅会显著增大。

机械振动测试题及答案

机械振动测试题及答案

第九章机械振动单元测试班级姓名学号一'选择题:(每题3分,共36分)1.关于振幅,以下说法中正确的是()①物体振动的振幅越人,振动越强烈②•个确定的振动系统,振幅越人振动系统的能量越人③ 振幅越大,物体振动的位移越大④振幅越大,物体振动的加速度越人D C•②③.③④A.①② B.①③2.振动的单摆小球通过平衡位置时,关于小球受到的回复力及合外力的说法正确的是()A.回复力为零:合外力不为零,方向指向悬点B.回复力不为零,方向沿轨迹的切线C.合外力不为零,方向沿轨迹的切线D.回复力为零,合外力也为零()3.下列说法中不正确的是A.某物体做自由振动时,其振动频率与振幅无关B.某物体做受迫振动时,其振动频率与固有频率无关C.某物体发生共振时的频率就是其自由振动的频率D .某物体发生共振时的振动就是无阻尼振动4.发生下述哪•种情况时,单摆周期会增大()B.缩短摆长A.增大摆球质量.将单摆由山下移至山顶DC.减小单摆振幅5.摆长和等的两单摆悬挂在同•个固定点,将它们从最低点分别向两边拉开,偏角各为3°和5° . 同时将它们释放后,它们相遇在()A.最低点左侧B.最低点右侧C.最低点D.无法确定()6.关于共振的防止和利用,应做到①利用共振时,应使驱动力的频率接近或等于振动物体的固有频率②利用共振时,应使驱动力的频率大于或小于振动物体的固有频率③防上共振危害时,应尽量使驱动力频率接近或等于振动物体的固有频率④防止共振危害时,应使驱动力频率远离振动物体的固有频率A B. <D<3) C.②③ D. (§Xg)图1点,这时弹簧恰所示,物体静止于水平面上的07.如图1,与水平而间的动摩擦W mL为原长,物体的质量为。

现将物体向右拉•段距离后自由释放,使之沿•数为U )水平而振动,下列结论正确的是(O点时所受的合外力为零.物体通过A・物体将做阻尼振动BO点C.物体最终只能停止在mg UD.物体停止运动后所受的摩擦力为开.8.如图2所示,曲轴上悬挂•弹簧振转动摇把,曲轴可以带动弹费振子上下振动,然后匀速转动摇把,转2 Hz 始时不转动摇把,让振了上下自由振动测得振动频率为)速为240 r/rnin,当振子振动稳定后,它的振动周期为(114s2sDsB. sC.. A. ____________ 42、的驱,B的固有频率为4f,若它们均在频率为39. AfB两个弹簧振JS A的固有频率为f动力作用下做受迫振动,则()的振幅较人,振动频率为f・振/B的振幅较人,振动频率为3B f.振了A的振幅较大,振动频率为3Cf・振了B 的振幅较人,振动频率为D所示装置中,先后用两个不同9-1910.在课本插图匀N,以速度v 次用纸板的砂摆做实验,第Im,以速度v匀速拉动速拉动;第2次用纸板Nx符合关系、T结果形成如图3所示的砂了分布的曲线.已知\=2v,则两个摆的周期T2211 )(Ti =T4TD・ TT・ AT=TB・=2TC・=21 2221_ 41. •物体在某行星农Ifti受到的万有引力是它在地球衣[fri受到的万有引力的。

振动理论练习题

振动理论练习题

第1章练习题题1.1 已知一弹簧质量系统的振动规律为x(t)=1.0sinωt+0.6cosωt (cm), 式中,ω=10π (1/s)。

(1)求其振幅、最大速度、最大加速度和初相位;(2)以旋转矢量表示出它们之间的关系。

题1.2 如题1.2图所示,一弹簧质量系统沿光滑斜面作自由振动,求其振动微分方程及固有频率。

题1.2图题1.3图题1.3 一均质直杆,长为l,重力W,用2根长为h的铅直线挂成水平位置,见题1.3图。

试求此杆绕铅直轴oo1微幅振动的微分方程和它的固有周期。

题1.4 如题1.4图,质量m1自高度l下落碰撞原在弹簧k下平衡的质量m2,为完全塑性碰撞,求碰撞后两质量的振动运动。

题1.4图题1.5图题1.5 如题1.5图,惯性矩为J的轮和轴,轴中心线与铅垂线有夹角α,盘上半径r处有一附加质量m,求轮和盘系统的固有振动周期。

题1.6 利用等效质量与刚度的概念求解题1.6图示系统的固有频率。

AB杆为刚性,本身质量不计。

题1.6图题1.7图题1.7 两缸发动机的曲轴臂及飞轮如题1.7图所示,曲轴相当于在半径r 处有偏心质量m e ,为平衡这一质量将平衡配重放在飞轮上,设所在位置同样距轴心r ,求平衡配重所需质量。

题1.8 用衰减振动法测定某系统的阻尼系数时,测得在40周内振幅由0.268mm 减少到0.14mm 。

求此系统的相对阻尼系数ζ。

题1.9 某洗衣机滚筒部分重14kN ,用四个弹簧对称支承,每个弹簧的刚度为k =80N /mm 。

(1)试计算此系统的临界阻尼系数c c ;(2)这个系统装有四个阻尼缓冲器,每个阻尼系数c =1.8N ·s /mm 。

试问此系统自由振动时经过多少时间后,振幅衰减到10%?(3)衰减振动的周期是多少?与不安装缓冲器时的振动周期作比较。

题1.10 如题1.10图,展开周期半正弦函数F (t )成傅里叶级数,求出所示弹簧质量系统在该F (t ) 作用下的响应。

机械振动试题

机械振动试题

机械振动试题一、选择题1. 下列关于机械振动的说法中,正确的是:A. 机械振动只存在于弹簧系统中B. 机械振动只存在于质点系统中C. 机械振动既存在于弹簧系统中,也存在于质点系统中D. 机械振动只存在于液体中2. 以下哪个现象不属于机械振动的特征:A. 周期性B. 振动幅度相等C. 能量交换D. 机械振动的振幅随时间变化3. 关于自由振动和受迫振动的说法,正确的是:A. 自由振动需要外力驱动B. 受迫振动不需要外力驱动C. 自由振动和受迫振动都需要外力驱动D. 自由振动和受迫振动都不需要外力驱动4. 振动系统的自然频率与以下哪个因素无关:A. 系统的刚度B. 系统的阻尼C. 系统的质量D. 系统所受的外力5. 下面哪种振动现象是产生共振的原因:A. 外力频率与振动系统自然频率相同B. 外力频率与振动系统自然频率不同C. 外力频率与振动系统自然频率较大差异D. 外力频率与振动系统自然频率较小差异二、简答题1. 什么是机械振动?机械振动是物体围绕平衡位置做周期性的往复运动。

它有着特定的振动频率和振幅,是一种具有周期性和能量交换的运动形式。

2. 机械振动有哪些特征?机械振动具有周期性、振幅相等、能量交换和振幅随时间变化等特征。

周期性表示机械振动运动形式的重复性;振幅相等表示振动系统在每个周期内的振动幅度相等;能量交换表示振动系统的能量在正、反向振动过程中的转化与交换;振幅随时间变化表示振动幅度随着时间的推移而发生变化。

3. 什么是自由振动和受迫振动?自由振动是指机械振动系统受到初位移或初速度激发后,在无外力驱动的情况下进行的振动。

受迫振动是指机械振动系统受到外力周期性激励后产生的振动。

4. 什么是共振现象?共振现象是指当外力的频率与振动系统的自然频率相同时,产生的振幅迅速增大的现象。

在共振状态下,系统振幅可能会无限增大,从而引起系统的损坏甚至破坏。

5. 如何减小机械振动的共振现象?减小机械振动的共振现象可以通过以下几种方法来实现:- 调整外力的频率,使其与振动系统的自然频率有所偏离,避免共振;- 增加阻尼,通过增加振动系统的阻尼来消耗振动能量,减小共振现象;- 改变振动系统的刚度和质量,使其自然频率与外力频率有所偏离,从而减少共振。

(完整版)大学物理振动习题含答案

(完整版)大学物理振动习题含答案

一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。

若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。

第一个质点的振动方程为x 1 = A cos(ωt + α)。

当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。

则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。

若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。

其运动速度与时间的曲线如图所示。

若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。

将它们拿到月球上去,相应的周期分别为1T '和2T '。

则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。

物理振动试题及答案

物理振动试题及答案

物理振动试题及答案一、选择题(每题2分,共20分)1. 简谐振动的周期与振幅的关系是:A. 振幅越大,周期越长B. 振幅越大,周期越短C. 周期与振幅无关D. 振幅越大,周期越不稳定答案:C2. 阻尼振动的振幅会:A. 逐渐增大B. 逐渐减小C. 保持不变D. 先增大后减小答案:B3. 单摆的周期与摆长的关系是:A. 摆长越长,周期越长B. 摆长越长,周期越短C. 摆长与周期无关D. 摆长越长,周期先长后短答案:A4. 以下哪种振动是等幅振动:A. 阻尼振动B. 受迫振动C. 简谐振动D. 非线性振动答案:C5. 波的传播速度与介质的关系是:A. 介质越硬,波速越快B. 介质越软,波速越快C. 波速与介质无关D. 介质越软,波速越慢答案:A6. 波的干涉现象中,两列波的相位关系是:A. 总是相同的B. 总是相反的C. 总是相差180度D. 可以是任意的答案:A7. 波的衍射现象发生的条件是:A. 波长与障碍物尺寸相近B. 波长远大于障碍物尺寸C. 波长远小于障碍物尺寸D. 波速与障碍物无关答案:A8. 声波的频率与音调的关系是:A. 频率越高,音调越低B. 频率越高,音调越高C. 频率与音调无关D. 频率越低,音调越高答案:B9. 光的干涉现象中,两列光波的相位关系是:A. 总是相同的B. 总是相反的C. 总是相差180度D. 可以是任意的答案:A10. 光的衍射现象中,光波通过小孔后:A. 波长变长B. 波长变短C. 波长不变D. 波长变宽答案:C二、填空题(每题2分,共20分)1. 简谐振动的周期公式为 T = _______。

答案:2π√(L/g)2. 单摆的周期公式为 T = _______。

答案:2π√(L/g)3. 阻尼振动的振幅随时间的变化关系可以表示为 A(t) = A0 * e^(-γt),其中γ是 _______。

答案:阻尼系数4. 波的干涉条件是两列波的频率 _______。

机械振动试题(含答案)

机械振动试题(含答案)

机械振动试题(含答案)一、机械振动 选择题1.做简谐运动的水平弹簧振子,振子质量为m ,最大速度为v ,周期为T ,则下列说法正确的是( ) A .从某时刻算起,在2T的时间内,回复力做的功一定为零 B .从某一时刻算起,在2T的时间内,速度变化量一定为零 C .若Δt =T ,则在t 时刻和(t +Δt )时刻,振子运动的速度一定相等 D .若Δt =2T,则在t 时刻和(t +Δt )时刻,弹簧的形变量一定相等 2.如图所示,在一条张紧的绳子上悬挂A 、B 、C 三个单摆,摆长分别为L 1、L 2、L 3,且L 1<L 2<L 3,现将A 拉起一较小角度后释放,已知当地重力加速度为g ,对释放A 之后较短时间内的运动,以下说法正确的是( )A .C 的振幅比B 的大 B .B 和C 的振幅相等 C .B 的周期为2π2L g D .C 的周期为2π1L g3.如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘在一起,且摆动平面不便.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后A 56T B 65TC .摆球最高点与最低点的高度差为0.3hD .摆球最高点与最低点的高度差为0.25h4.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振动周期与电荷间距离的关系类比单摆的振动周期与摆球到地心距离的关系.已知单摆摆长为l ,引力常量为G ,地球质量为M ,摆球到地心的距离为r ,则单摆振动周期T 与距离r 的关系式为( ) A .T =2πrGMlB .T =2πrl GM C .T =2πGMr lD .T =2πlr GM5.用图甲所示的装置可以测量物体做匀加速直线运动的加速度,用装有墨水的小漏斗和细线做成单摆,水平纸带中央的虚线在单摆平衡位置的正下方。

物理机械振动考试题及答案

物理机械振动考试题及答案

物理机械振动考试题及答案一、选择题1. 简谐振动的频率与振幅无关,这是由什么决定的?A. 振子的质量B. 振子的弹性系数C. 振子的阻尼D. 振子的初始条件答案:B2. 在阻尼振动中,振幅随时间如何变化?A. 保持不变B. 逐渐减小C. 逐渐增大D. 先增大后减小答案:B3. 以下哪个不是简谐振动的特点?A. 周期性B. 振幅不变C. 频率恒定D. 振子质量不变答案:D4. 什么是共振现象?A. 振子的振动频率等于系统固有频率时的现象B. 振子的振幅达到最大时的现象C. 振子的振动频率等于外部驱动频率时的现象D. 振子的振动频率等于外部阻尼频率时的现象答案:A5. 以下哪个公式描述了简谐振动的位移?A. \( x = A \sin(\omega t + \phi) \)B. \( x = A \cos(\omega t + \phi) \)C. \( x = A \tan(\omega t + \phi) \)D. \( x = A \sec(\omega t + \phi) \)答案:B二、填空题6. 一个物体在水平面上做简谐振动,其振动周期 \( T \) 与振动频率 \( f \) 的关系是 \[ T = \frac{1}{f} \]。

7. 阻尼振动中,振幅随时间的衰减速度与振子的________成正比。

8. 共振现象中,振子的振动频率等于系统的________频率。

9. 简谐振动的位移公式中,\( \omega \) 表示________,\( \phi \) 表示________。

10. 阻尼振动的振幅随时间的衰减可以表示为 \( A(t) = A_0 e^{-\alpha t} \),其中 \( \alpha \) 表示________。

三、简答题11. 简述什么是阻尼振动,并说明其振幅随时间的变化趋势。

答案:阻尼振动是指在振动过程中,由于存在阻力(如空气阻力、摩擦力等),振子的振动能量逐渐减小,导致振幅逐渐减小的振动。

《振动力学》习题集(含答案)

《振动力学》习题集(含答案)

《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面内作微幅摆动,如图E1.1所示。

求系统的固有频率。

图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。

求系统的固有频率。

图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。

求系统的固有频率。

图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。

大学物理振动与波题库及答案

大学物理振动与波题库及答案

一、选择题:(每题3分)1、把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π. (B) π/2.(C) 0 . (D) θ. [2、两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为(A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x . (D) )cos(2π++=αωt A x . [ ]3、一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2.将它们拿到月球上去,相应的周期分别为1T '和2T '.则有(A) 11T T >'且22T T >'. (B) 11T T <'且22T T <'.(C) 11T T ='且22T T ='. (D) 11T T ='且22T T >'. [ ]4、一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为:(A) )21/(cos π+=t m k A x (B) )21/cos(π-=t m k A x (C) )π21/(cos +=t k m A x (D) )21/cos(π-=t k m A x (E) t m /k A x cos = [ ]5、一物体作简谐振动,振动方程为)41cos(π+=t A x ω.在 t = T /4(T 为周期)时刻,物体的加速度为(A) 2221ωA -. (B) 2221ωA . (C) 2321ωA -. (D) 2321ωA . [ ]6、一质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间t = T /2(T 为周期)时,质点的速度为(A) φωsin A -. (B) φωsin A .(C) φωcos A -. (D) φωcos A . [ ]7、一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B) T /8.(C) T /6. (D) T /4. [ ]8、两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位 (A) 落后π/2. (B) 超前π/2. (C) 落后π . (D) 超前π.[ ]9、一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是(A) 4f . (B) 2 f . (C) f .(D) 2/f . (E) f /4 [ ]10、一弹簧振子作简谐振动,当位移为振幅的一半时,其动能为总能量的(A) 1/4. (B) 1/2. (C) 2/1. (D) 3/4. (E) 2/3. [ ]11、一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的(A) 7/16. (B) 9/16. (C) 11/16.(D) 13/16. (E) 15/16. [ ]12 一质点作简谐振动,已知振动周期为T ,则其振动动能变化的周期是(A) T /4. (B) 2/T . (C) T .(D) 2 T . (E) 4T . [ ]13、当质点以频率ν 作简谐振动时,它的动能的变化频率为(A) 4 ν. (B) 2 ν . (C) ν. (D) ν21. [ ]14、图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π. (C) π21. (D) 0. [ ]15、若一平面简谐波的表达式为 )cos(Cx Bt A y -=,式中A 、B 、C 为正值常量,则(A) 波速为C . (B) 周期为1/B .(C) 波长为 2π /C . (D) 角频率为2π /B . [ ]16、下列函数f (x , t )可表示弹性介质中的一维波动,式中A 、a 和b 是正的常量.其中哪个函数表示沿x 轴负向传播的行波?(A) )cos(),(bt ax A t x f +=. (B) )cos(),(bt ax A t x f -=.(C) bt ax A t x f cos cos ),(⋅=. (D) bt ax A t x f sin sin ),(⋅=. [ ]17、频率为 100 Hz ,传播速度为300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为π31,则此两点相距(A) 2.86 m . (B) 2.19 m .A/ -A(C) 0.5 m . (D) 0.25 m . [ ]18、已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则(A) 波的频率为a . (B) 波的传播速度为 b/a .(C) 波长为 π / b . (D) 波的周期为2π / a . [ ]19、一平面简谐波的表达式为 )3cos(1.0π+π-π=x t y (SI) ,t = 0时的波形曲线如图所示,则(A) O 点的振幅为-0.1 m .(B) 波长为3 m . (C) a 、b 两点间相位差为π21 . (D) 波速为9 m/s . [ ]20、机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 31.(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ ]21、图为沿x 轴负方向传播的平面简谐波在t = 0时刻的波形.若波的表达式以余弦函数表示,则O 点处质点振动的初相为(A) 0.(B) π21. (C) π. (D) π23. [ ]22、一横波沿x 轴负方向传播,若t 时刻波形曲线如图所示,则在t + T /4时刻x 轴上的1、2、3三点的振动位移分别是 (A) A ,0,-A. (B) -A ,0,A. (C) 0,A ,0. (D) 0,-A ,0. [ ]23一平面简谐波表达式为 )2(sin 05.0x t y -π-= (SI),则该波的频率 ν (Hz), 波速u (m/s)及波线上各点振动的振幅 A (m)依次为(A) 21,21,-0.05. (B) 21,1,-0.05. (C) 21,21,0.05. (D) 2,2,0.05. [ ]24、在下面几种说法中,正确的说法是:(A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的.(B) 波源振动的速度与波速相同.(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于π计).(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于π计) [ ]25、在简谐波传播过程中,沿传播方向相距为λ21(λ 为波长)的两点的振动速度必定x y O u(A) 大小相同,而方向相反. (B) 大小和方向均相同.(C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ ]26、一平面简谐波沿x 轴负方向传播.已知 x = x 0处质点的振动方程为)cos(0φω+=t A y .若波速为u ,则此波的表达式为(A) }]/)([cos{00φω+--=u x x t A y . (B) }]/)([cos{00φω+--=u x x t A y . (C) }]/)[(cos{00φω+--=u x x t A y . (D) }]/)[(cos{00φω+-+=u x x t A y . [ ]27、一平面简谐波,其振幅为A ,频率为ν .波沿x 轴正方向传播.设t = t 0时刻波形如图所示.则x = 0处质点的振动方程为(A) ]21)(2cos[0π++π=t t A y ν. (B) ]21)(2cos[0π+-π=t t A y ν. (C) ]21)(2cos[0π--π=t t A y ν. (D) ])(2cos[0π+-π=t t A y ν. [ ]28、一平面简谐波的表达式为 )/(2cos λνx t A y -π=.在t = 1 /ν 时刻,x 1 = 3λ /4与x 2 = λ /4二点处质元速度之比是(A) -1. (B) 31. (C) 1. (D) 3 [ ]29、在同一媒质中两列相干的平面简谐波的强度之比是I 1 / I 2 = 4,则两列波的振幅之比是(A) A 1 / A 2 = 16. (B) A 1 / A 2 = 4.(C) A 1 / A 2 = 2. (D) A 1 / A 2 = 1 /4. [ ]30、如图所示,两列波长为λ 的相干波在P 点相遇.波在S 1点振动的初相是φ 1,S 1到P 点的距离是r 1;波在S 2点的初相是φ 2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:(A) λk r r =-12. (B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ. (D) π=-π+-k r r 2/)(22112λφφ.[ ]31、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.叠加后形成的驻波中,波节的位置坐标为 (A) λk x ±=. (B) λk x 21±=. (C) λ)12(21+±=k x . (D) 4/)12(λ+±=k x . x y t =t 0u O其中的k = 0,1,2,3, …. [ ]32、有两列沿相反方向传播的相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=. 叠加后形成驻波,其波腹位置的坐标为:(A) x =±k λ. (B) λ)12(21+±=k x . (C) λk x 21±=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ ]33某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是(A) 0 (B) π21(C) π. (D) 5π/4. [ ]34、沿着相反方向传播的两列相干波,其表达式为)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.在叠加后形成的驻波中,各处简谐振动的振幅是(A) A . (B) 2A .(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ ]35、在波长为λ 的驻波中,两个相邻波腹之间的距离为(A) λ /4. (B) λ /2.(C) 3λ /4. (D) λ . [ ]36、在波长为λ 的驻波中两个相邻波节之间的距离为(A) λ . (B) 3λ /4.(C) λ /2. (D) λ /4. [ ]37在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式是)/(2cos 0λνx t E E z -π=,则磁场强度波的表达式是:(A) )/(2cos /000λνμεx t E H y -π=. (B) )/(2cos /000λνμεx t E H z -π=.(C) )/(2cos /000λνμεx t E H y -π-=. (D) )/(2cos /000λνμεx t E H y +π-=. [ ]38、在真空中沿着z 轴负方向传播的平面电磁波,其磁场强度波的表达式为)/(cos 0c z t H H x +-=ω,则电场强度波的表达式为:(A) )/(cos /000c z t H E y +=ωεμ. (B) )/(cos /000c z t H E x +=ωεμ. (C) )/(cos /000c z t H E y +-=ωεμ.(D) )/(cos /000c z t H E y --=ωεμ. [ ]39、电磁波的电场强度E 、磁场强度 H 和传播速度 u 的关系是:(A) 三者互相垂直,而E 和H 位相相差π21. (B) 三者互相垂直,而且E 、H 、 u 构成右旋直角坐标系. (C) 三者中E 和H 是同方向的,但都与 u 垂直. (D) 三者中E 和H 可以是任意方向的,但都必须与 u 垂直. [ ]40、电磁波在自由空间传播时,电场强度E 和磁场强度H(A) 在垂直于传播方向的同一条直线上.(B) 朝互相垂直的两个方向传播.(C) 互相垂直,且都垂直于传播方向.(D) 有相位差π21. [ ] 二、填空题:(每题4分)41、一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,(1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______.42、三个简谐振动方程分别为 )21cos(1π+=t A x ω,)67cos(2π+=t A x ω和)611cos(3π+=t A x ω画出它们的旋转矢量图,并在同一坐标上画出它们的振动曲线.43、一物体作余弦振动,振幅为15×10-2 m ,角频率为6π s -1,初相为0.5 π,则振动方程为x = ________________________(SI).44、一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点.已知周期为T ,振幅为A .(1) 若t = 0时质点过x = 0处且朝x 轴正方向运动,则振动方程为x =_____________________________.(2) 若t = 0时质点处于A x 21=处且向x 轴负方向运动,则振动方程为 x =_____________________________.45、一弹簧振子,弹簧的劲度系数为k ,重物的质量为m ,则此系统的固有振动 周期为______________________.46、在两个相同的弹簧下各悬一物体,两物体的质量比为4∶1,则二者作简谐振动的周期之比为_______________________.47、一简谐振动的表达式为)3cos(φ+=t A x ,已知 t = 0时的初位移为0.04 m ,初速度为0.09 m/s ,则振幅A =_____________ ,初相φ =________________.48、一质点作简谐振动,速度最大值v m = 5 cm/s ,振幅A = 2 cm .若令速度具有正最大值的那一时刻为t = 0,则振动表达式为_________________________.49、两个简谐振动曲线如图所示,则两个简谐振动 的频率之比ν1∶ν2=__________________,加速度最 大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.50、有简谐振动方程为x = 1×10-2cos(π t +φ)(SI),初相分别为φ1 = π/2,φ2 = π,φ3 = -π/2的三个振动.试在同一个坐标上画出上述三个振动曲线.51、一简谐振动曲线如图所示,则由图可确定在t = 2s时刻质点的位移为 ____________________,速度为 __________________.52、已知两个简谐振动的振动曲线如图所示.两 简谐振动的最大速率之比为_________________.53、一水平弹簧简谐振子的振动曲线如图所示.当振子处在位移为零、速度为-ωA 、加速度为零和弹性力为零 的状态时,应对应于曲线上的________点.当振子处在位移的绝对值为A 、速度为零、加速度为-ω2A 和弹性力 为-kA 的状态时,应对应于曲线上的____________点.x (cm)t (s)O- x (cm)54、一简谐振动用余弦函数表示,其振动曲线如图所示,则此简谐振动的三个特征量为A =_____________;ω =________________; φ =_______________.55、已知两个简谐振动曲线如图所示.x 1的相位比x 2 的相位超前_______.56、两个简谐振动方程分别为 t A x ωcos 1=,)31cos(2π+=t A x ω 在同一坐标上画出两者的x —t 曲线.xtO57、已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.58、已知三个简谐振动曲线如图所示,则振动方程分别为:x 1 =______________________,x 2 = _____________________,x 3 =_______________________.59、图中用旋转矢量法表示了一个简谐振动.旋转矢量的长度为0.04 m ,旋转角速度ω = 4π rad/s .此简谐振动以余弦函数表 x (cm)t (s)O 12示的振动方程为x =__________________________(SI).60、一质点作简谐振动的角频率为ω 、振幅为A .当t = 0时质点位于A x 21=处,且向x 正方向运动.试画出此振动的旋转矢量图.61、两个同方向的简谐振动曲线如图所示.合振动的振幅 为_______________________________,合振动的振动方程 为________________________________. 62、一平面简谐波.波速为6.0 m/s ,振动周期为0.1 s ,则波长为___________.在波的传播方向上,有两质点(其间距离小于波长)的振动相位差为5π /6,则此两质点相距___________.63、一个余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在 该时刻的运动方向.A _____________;B _____________ ;C ______________ . 64、一横波的表达式是 )30/01.0/(2sin 2x t y -π=其中x 和y 的单位是厘米、t 的单位是秒,此波的波长是_________cm ,波速是_____________m/s .65、已知平面简谐波的表达式为 )cos(Cx Bt A y -=式中A 、B 、C 为正值常量, 此波的波长是_________,波速是_____________.在波传播方向上相距为d 的两点的振动相位差是____________________.66、一声波在空气中的波长是0.25 m ,传播速度是340 m/s ,当它进入另一介质时, 波长变成了0.37 m ,它在该介质中传播速度为______________.67、已知波源的振动周期为4.00×10-2 s ,波的传播速度为300 m/s ,波沿x 轴正方向传播,则位于x 1 = 10.0 m 和x 2 = 16.0 m 的两质点振动相位差为__________.68、一平面简谐波沿x 轴正方向传播,波速 u = 100 m/s ,t = 0时刻的波形曲线如图所示. 可知波长λ = ____________; 振幅A = __________;频率ν = ____________.69、频率为500 Hz 的波,其波速为350 m/s ,相位差为2π/3 的两点间距离为________________________.70、一平面简谐波沿x 轴正方向传播.已知x = 0处的振动方程为 )cos(0φω+=t y ,波速为u .坐标为x 1和x 2的两点的振动初相位分别记为φ 1和φ 2,则相位差φ 1-φ 2 =_________________.·---y (m)71、已知一平面简谐波的波长λ = 1 m ,振幅A = 0.1 m ,周期T = 0.5 s .选波的传播方向为x 轴正方向,并以振动初相为零的点为x 轴原点,则波动表达式为y = _____________________________________(SI).72、一横波的表达式是)4.0100(2sin 02.0π-π=t y (SI), 则振幅是________,波长是_________,频率是__________,波的传播速度是______________.77、已知一平面简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波沿x 轴传播的速度为___________________.74、一简谐波的频率为 5×104 Hz ,波速为 1.5×103 m/s .在传播路径上相距5×10-3 m 的两点之间的振动相位差为_______________.75、一简谐波沿BP 方向传播,它在B 点引起的振动方程为 t A y π=2cos 11.另一简谐波沿CP 方向传播,它在C 点引起的振动方程为)2cos(22π+π=t A y .P 点与B 点相距0.40 m ,与C 点相距0.5 m (如图).波速均为u = 0.20 m/s .则两波在P 点的相位差为______________________.76、已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.77、在简谐波的一条射线上,相距0.2 m 两点的振动相位差为π /6.又知振动周期为0.4 s ,则波长为_________________,波速为________________.78、一声纳装置向海水中发出超声波,其波的表达式为)2201014.3cos(102.153x t y -⨯⨯=- (SI)则此波的频率ν = _________________ ,波长λ = __________________, 海水中声速u = __________________.79、已知14℃时的空气中声速为340 m/s .人可以听到频率为20 Hz 至20000 Hz 范围内的声波.可以引起听觉的声波在空气中波长的范围约为______________________________.80、一平面简谐波(机械波)沿x 轴正方向传播,波动表达式为)21cos(2.0x t y π-π= (SI),则x = -3 m 处媒质质点的振动加速度a 的表达式为________________________________________.81、在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16,则这两列波的振幅之比是A 1 / A 2 = ____________________.82、两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y . S 1距P 点3个波长,S 2距P 点 4.5个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.83、两相干波源S 1和S 2的振动方程分别是t A y ωcos 1=和)21cos(2π+=t A y ω.S 1距P 点3个波长,S 2距P 点21/4个波长.两波在P 点引起的两个振动的相位差是____________.84、两个相干点波源S 1和S 2,它们的振动方程分别是 )21cos(1π+=t A y ω和 )21cos(2π-=t A y ω.波从S 1传到P 点经过的路程等于2个波长,波从S 2传到P 点的路程等于7 / 2个波长.设两波波速相同,在传播过程中振幅不衰减,则两波传到P 点的振动的合振幅为__________________________.85、一弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的行波的波长为________________,频率为__________________.86、一弦上的驻波表达式为 t x y 1500cos 15cos 100.22-⨯= (SI).形成该驻波的两个反向传播的行波的波速为__________________.87、在弦线上有一驻波,其表达式为 )2cos()/2cos(2t x A y νλππ=, 两个相邻波节之间的距离是_______________.88、频率为ν = 5×107 Hz 的电磁波在真空中波长为_______________m ,在折射率为n = 1.5 的媒质中波长为______________m .89、在电磁波传播的空间(或各向同性介质)中,任一点的E 和H 的方向及波传播方向之间的关系是:_________________________________________________________________________________________________________.90、在真空中沿着x 轴正方向传播的平面电磁波,其电场强度波的表达式为)/(2cos 600c x t E y -π=ν (SI),则磁场强度波的表达式是______________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)91、在真空中沿着x 轴负方向传播的平面电磁波,其电场强度的波的表达式为)/(2cos 800c x t E y +π=ν (SI),则磁场强度波的表达式是________________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m)92、在真空中沿着z 轴正方向传播的平面电磁波的磁场强度波的表达式为])/(cos[00.2π+-=c z t H x ω (SI),则它的电场强度波的表达式为____________________________________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )93、在真空中沿着负z 方向传播的平面电磁波的磁场强度为)/(2cos 50.1λνz t H x +π= (SI),则它的电场强度为E y = ____________________. (真空介电常量ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )94真空中一简谐平面电磁波的电场强度振幅为 E m = 1.20×10-2 V/m 该电磁波的强度为_________________________.(真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )95、在真空中沿着z 轴的正方向传播的平面电磁波,O 点处电场强度为)6/2cos(900π+π=t E x ν,则O 点处磁场强度为___________________________. (真空介电常量 ε 0 = 8.85×10-12 F/m ,真空磁导率 μ 0 =4π×10-7 H/m )96、在地球上测得来自太阳的辐射的强度=S 1.4 kW/m 2.太阳到地球的距离约为1.50×1011 m .由此估算,太阳每秒钟辐射的总能量为__________________.97、在真空中沿着z 轴负方向传播的平面电磁波,O 点处电场强度为)312cos(300π+π=t E x ν (SI),则O 点处磁场强度为_____________________________________.在图上表示出电场强度,磁场强度和传播速度之间的相互关系.98、电磁波在真空中的传播速度是_________________(m/s)(写三位有效数字).99、电磁波在媒质中传播速度的大小是由媒质的____________________决定的.100、电磁波的E 矢量与H 矢量的方向互相____________,相位__________.三、计算题:(每题10分)101、一质点按如下规律沿x 轴作简谐振动:)328cos(1.0π+π=t x (SI).求此振动的周期、振幅、初相、速度最大值和加速度最大值.102、一质量为0.20 kg 的质点作简谐振动,其振动方程为)215cos(6.0π-=t x (SI).求:(1) 质点的初速度;(2) 质点在正向最大位移一半处所受的力.z yxO103、有一轻弹簧,当下端挂一个质量m 1 = 10 g 的物体而平衡时,伸长量为 4.9 cm .用这个弹簧和质量m 2 = 16 g 的物体组成一弹簧振子.取平衡位置为原点,向上为x 轴的正方向.将m 2从平衡位置向下拉 2 cm 后,给予向上的初速度v 0 = 5 cm/s 并开始计时,试求m 2的振动周期和振动的数值表达式.104、有一单摆,摆长为l = 100 cm ,开始观察时( t = 0 ),摆球正好过 x 0 = -6 cm 处,并以v 0 = 20 cm/s 的速度沿x 轴正向运动,若单摆运动近似看成简谐振动.试求(1) 振动频率; (2) 振幅和初相.105、质量m = 10 g 的小球与轻弹簧组成的振动系统,按)318cos(5.0π+π=t x 的规律作自由振动,式中t 以秒作单位,x 以厘米为单位,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的速度、加速度的数值表达式;(3) 振动的能量E ;(4) 平均动能和平均势能.106、一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1.(1) 求振动的周期T 和角频率ω.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相φ.(3) 写出振动的数值表达式.107、一质量为10 g 的物体作简谐振动,其振幅为2 cm ,频率为4 Hz ,t = 0时位移为 -2 cm ,初速度为零.求(1) 振动表达式;(2) t = (1/4) s 时物体所受的作用力.108、两个物体作同方向、同频率、同振幅的简谐振动.在振动过程中,每当第一个物体经过位移为2/A 的位置向平衡位置运动时,第二个物体也经过此位置,但向远离平衡位置的方向运动.试利用旋转矢量法求它们的相位差.109、一物体质量为0.25 kg ,在弹性力作用下作简谐振动,弹簧的劲度系数k = 25 N ·m -1,如果起始振动时具有势能0.06 J 和动能0.02 J ,求(1) 振幅;(2) 动能恰等于势能时的位移;(3) 经过平衡位置时物体的速度.110、在一竖直轻弹簧下端悬挂质量m = 5 g 的小球,弹簧伸长∆l = 1 cm 而平衡.经推动后,该小球在竖直方向作振幅为A = 4 cm 的振动,求(1) 小球的振动周期; (2) 振动能量.111、一物体质量m = 2 kg ,受到的作用力为F = -8x (SI).若该物体偏离坐标原点O 的最大位移为A = 0.10 m ,则物体动能的最大值为多少?112、一横波沿绳子传播,其波的表达式为)2100cos(05.0x t y π-π= (SI)(1) 求此波的振幅、波速、频率和波长.(2) 求绳子上各质点的最大振动速度和最大振动加速度.(3) 求x 1 = 0.2 m 处和x 2 = 0.7 m 处二质点振动的相位差.113、一振幅为 10 cm ,波长为200 cm 的简谐横波,沿着一条很长的水平的绷紧弦从左向右行进,波速为 100 cm/s .取弦上一点为坐标原点,x 轴指向右方,在t = 0时原点处质点从平衡位置开始向位移负方向运动.求以SI 单位表示的波动表达式(用余弦函数)及弦上任一点的最大振动速度.114、一振幅为 10 cm ,波长为200 cm 的一维余弦波.沿x 轴正向传播,波速为 100 cm/s ,在t = 0时原点处质点在平衡位置向正位移方向运动.求(1) 原点处质点的振动方程.(2) 在x = 150 cm 处质点的振动方程.115、一简谐波沿x 轴负方向传播,波速为1 m/s ,在x 轴上某质点的振动频率为1 Hz 、振幅为0.01 m .t = 0时该质点恰好在正向最大位移处.若以该质点的平衡位置为x 轴的原点.求此一维简谐波的表达式.116、已知一平面简谐波的表达式为 )37.0125cos(25.0x t y -= (SI)(1) 分别求x 1 = 10 m ,x 2 = 25 m 两点处质点的振动方程;(2) 求x 1,x 2两点间的振动相位差;(3) 求x 1点在t = 4 s 时的振动位移.117、一横波方程为 )(2cos x ut A y -π=λ, 式中A = 0.01 m ,λ = 0.2 m ,u = 25 m/s ,求t = 0.1 s 时在x = 2 m 处质点振动的位移、速度、加速度.118、如图,一平面简谐波沿Ox 轴传播,波动表达式为])/(2cos[φλν+-π=x t A y (SI),求 (1) P 处质点的振动方程; (2) 该质点的速度表达式与加速度表达式.119、一平面简谐波,频率为300 Hz ,波速为340 m/s ,在截面面积为3.00×10-2 m 2的管内空气中传播,若在10 s 内通过截面的能量为2.70×10-2 J ,求(1) 通过截面的平均能流;(2) 波的平均能流密度;(3) 波的平均能量密度.120、一驻波中相邻两波节的距离为d = 5.00 cm ,质元的振动频率为ν =1.00×103 Hz ,求形成该驻波的两个相干行波的传播速度u 和波长λ .O P大学物理------振动与波参考答案一、选择题1 - 5 CBDBB 6 -10 BCBBD 11-15 EBBBC 16-20 ACDCB 21-25 DBCCA 26-30 ABACD 31-35 DCCDB 36-40 CCCBC二、填空题41.(1) π; (2)2/π-; (3)3/π; 42. 略; 43. 21510cos[6]2t ππ-⨯+; 44. (1)2cos[]2A t T ππ-, (2) 2cos[]3A t T πλ+;45. 2 46. 1:2; 47. m 05.0,π205.0- or 09.36-; 48. 25210cos[]22x t π-=⨯- ; 49. 1:2,1:4,1:2; 51. 0,s m /3; 52. 1:1; 53. e a f b ,,,;54. cm 10,s rad /6/π,3/π;55. 3/4π; 56. 略 ;57.(1),...2,1,0,2/)12(=+n n ,(2),...2,1,0,=n n ,(3),...2,1,0,2/)14(=+n n ,; 58. t πcos 1.0,)2/cos(1.0ππ-t ,)cos(1.0ππ±t ; 59. ]24cos[04.0ππ-t ; 60. 略; 61. 21A A -, ]22cos[12ππ+-=t T A A x ; 62. m 6.0,m 25.0; 63. 向下,向上;64. cm 30,30; 65. c /2π,c B /,cd ; 66. s m /503;67. π;68. m 8.0,m 2.0,Hz 125;69. m 233.0;70. u x x /)(12-ω;71. ]24cos[1.0x t ππ-;72. cm 2,cm 5.2,Hz 100,51~2500;73. b a /; 74. 3/π; 75. 0;76. aE ; 77. m 4.2, s m /0.6;78. Hz 4100.5⨯,m 21086.2-⨯,s m /1043.13⨯; 79. m 2107.1~17-⨯; 80. )23cos(2.02x t πππ+-; 81. 4; 82. 0; 83. 0; 84. A 2; 85. m 2,Hz 45; 86. s m /100; 87. 2/λ; 88. m 6, m 4; 89. H E S ⨯= ; 90. )](2cos[59.1c x t H z -=πν; 91. )](2cos[12.2cx t H z +-=πν; 92. ])(cos[754πω+--=c z t E y ; 93. )](2cos[565λνπz t +; 94. 271091.1--⨯wm ;95. ]62cos[39.2ππν+=t H y ; 96. J 26100.4⨯;97. ]32cos[796.0ππν+-=t H y ;98. 81000.3⨯; 99. με,; 100. 垂直,相同,相同三、计算题101、解:周期 25.0/2=π=ωT s ,振幅 A = 0.1 m ,初相 φ = 2π/3,v max = ω A = 0.8π m/s ( = 2.5 m/s ),a max = ω 2A = 6.4π2 m/s 2 ( =63 m/s 2 ).102、解:(1) )25sin(0.3d d π--==t t x v (SI) t 0 = 0 , v 0 = 3.0 m/s .(2) x m ma F 2ω-==A x 21= 时, F = -1.5 N . 103、解:设弹簧的原长为l ,悬挂m 1后伸长∆l ,则 k ∆l = m 1g ,k = m 1g/ ∆l = 2 N/m取下m 1上m 2后, 2.11/2==m k ω rad/sω/2π=T =0.56 st = 0时, φcos m 10220A x =⨯-=-φωsin m/s 10520A -=⨯=-v解得 220201005.2m )/(-⨯=+=ωv x A m =-=-)/(tg 001x ωφv 180°+12.6°=3.36 rad也可取 φ = -2.92 rad振动表达式为 x = 2.05×10-2cos(11.2t -2.92) (SI)或 x = 2.05×10-2cos(11.2t +3.36) (SI)104、解:(1) 13.3/==l g ω rad/s ,5.0)2/(=π=ων Hz(2) t = 0 时,x 0 = -6 cm= A cos φ, v 0 = 20 cm/s= -A ω sin φ由上二式解得 A = 8.8 cm ,φ = 180°+46.8°= 226.8°= 3.96 rad ,(或-2.33 rad )105、解:(1) A = 0.5 cm ;ω = 8π s -1;T = 2π/ω = (1/4) s ;φ = π/3 (2) )318sin(1042π+π⨯π-==-t x v (SI))318cos(103222π+π⨯π-==-t x a (SI)(3) 2222121A m kA E E E P K ω==+==7.90×10-5 J(4) 平均动能 ⎰=TK t m T E 02d 21)/1(v⎰π+π⨯π-=-T t t m T 0222d )318(sin )104(21)/1(= 3.95×10-5 J = E 21同理 E E P 21== 3.95×10-5 J106、解: (1) 1s 10/-==m k ω, 63.0/2=π=ωT s(2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0由 2020)/(ωv +=x A得 3.12020-=--=x A ωv m/sπ=-=-31)/(tg 001x ωφv 或 4π/3∵ x 0 > 0 ,∴ π=31φ(3) )3110cos(10152π+⨯=-t x (SI)107、解:(1) t = 0时,x 0 = -2 cm = -A , 故初相 φ = π ,ω = 2 πν = 8 π s -1)8cos(1022π+π⨯=-t x (SI)(2) t = (1/4) s 时,物体所受的作用力 126.02=-=x m F ω N 108、解:依题意画出旋转矢量图。

《大学物理》振动练习题及答案解析

《大学物理》振动练习题及答案解析

《大学物理》振动练习题及答案解析一、简答题1、如果把一弹簧振子和一单摆拿到月球上去,它们的振动周期将如何改变? 答案:弹簧振子的振动周期不变,单摆的振动周期变大。

2、完全弹性小球在硬地面上的跳动是不是简谐振动,为什么?答案:不是,因为小球在硬地面上跳动的运动学方程不能用简单的正弦或余弦函数表示,它是一种比较复杂的振动形式。

3、简述符合什么规律的运动是简谐运动答案:当质点离开平衡位置的位移`x`随时间`t`变化的规律,遵从余弦函数或正弦函数()ϕω+=t A x cos 时,该质点的运动便是简谐振动。

或:位移x 与加速度a 的关系为正比反向关系。

4、怎样判定一个振动是否简谐振动?写出简谐振动的运动学方程和动力学方程。

答案:物体在回复力作用下,在平衡位置附近,做周期性的线性往复振动,其动力学方程中加速度与位移成正比,且方向相反:x dtxd 222ω-=或:运动方程中位移与时间满足余弦周期关系:)cos(φω+=t A x 5、分别从运动学和动力学两个方面说明什么是简谐振动?答案:运动学方面:运动方程中位移与时间满足正弦或余弦函数关系)cos(φω+=t A x 动力学方面:物体在线性回复力作用下在平衡位置做周期性往复运动,其动力学方程满足 6、简谐运动的三要素是什么? 答案: 振幅、周期、初相位。

7、弹簧振子所做的简谐振动的周期与什么物理量有关?答案: 仅与振动系统的本身物理性质:振子质量m 和弹簧弹性系数k 有关。

8、如果弹簧的质量不像轻弹簧那样可以忽略,那么该弹簧的周期与轻弹簧的周期相比,是否有变化,试定性说明之。

答案:该振子周期会变大,作用在物体上的力要小于单纯由弹簧形变而产生的力,因为单纯由形变而产生的弹力中有一部分是用于使弹簧产生加速度的,所以总体的效果相当于物体质量不变,但弹簧劲度系数减小,因此周期会变大。

9、伽利略曾提出和解决了这样一个问题:一根线挂在又高又暗的城堡中,看不见它的上端而只能看见其下端,那么如何测量此线的长度?答案:在线下端挂一质量远大于线的物体,拉开一小角度,让其自由振动,测出周期T ,便可依据单摆周期公式glT π2=计算摆长。

振动力学考题集[]资料讲解

振动力学考题集[]资料讲解

振动力学考题集[]1、四个振动系统中,自由度为无限大的是()。

A. 单摆;B. 质量-弹簧;C. 匀质弹性杆;D. 无质量弹性梁;2、两个分别为c1、c2的阻尼原件,并连后其等效阻尼是()。

A. c1+c2;B. c1c2/(c1+c2);C. c1-c2;D. c2-c1;3、()的振动系统存在为0的固有频率。

A. 有未约束自由度;B. 自由度大于0;C. 自由度大于1;D. 自由度无限多;4、多自由度振动系统中,质量矩阵元素的量纲应该是()。

A. 相同的,且都是质量;B. 相同的,且都是转动惯量;C. 相同的,且都是密度;D. 可以是不同的;5、等幅简谐激励的单自由度弹簧-小阻尼-质量振动系统,激励频率()固有频率时,稳态位移响应幅值最大。

A. 等于;B. 稍大于;C. 稍小于;D. 为0;6、自由度为n的振动系统,且没有重合的固有频率,其固有频率的数目(A )。

A. 为n;B. 为1;C. 大于n;D. 小于n;7、无阻尼振动系统两个不同的振型u(r)和u(s),u(r)T Mu(s)的值一定()。

A. 大于0;B. 等于0;C. 小于0;D. 不能确定;8、无阻尼振动系统的某振型u(r),u(r)T Ku(r)的值一定()。

A. 大于0;B. 等于0;C. 小于0;D. 不能确定;9、如果简谐激励力作用在无约束振动系统的某集中质量上,当激励频率为无限大时,该集中质量的稳态位移响应一定()。

A. 大于0;B. 等于0;C. 为无穷大;D. 为一常数值;10、相邻固有频率之间的间隔呈近似无限等差数列的振动系统是()。

A. 杆的纵向振动;B. 弦的横向振动;C. 一般无限多自由度系统;D. 梁的横向振动;11、两个刚度分别为k1、k2串连的弹簧,其等效刚度是()。

A. k1+k2;B. k1k2/(k1+k2);C. k1-k2;D. k2-k1;12、无阻尼振动系统两个不同的振型u(r)和u(s),u(r)T Ku(s)的值一定()。

机械振动试题(参考答案)

机械振动试题(参考答案)

一、填空题(本题15分,每空1分)1、机械振动大致可分成为:()和非线性振动;确定性振动和();()和强迫振动。

2、在离散系统中,弹性元件储存( ),惯性元件储存(),()元件耗散能量。

3、周期运动的最简单形式是(),它是时间的单一()或()函数。

4、叠加原理是分析( )系统的基础。

5、系统固有频率主要与系统的()和()有关,与系统受到的激励无关。

6、系统的脉冲响应函数和()函数是一对傅里叶变换对,和()函数是一对拉普拉斯变换对。

7、机械振动是指机械或结构在平衡位置附近的( )运动。

二、简答题(本题40分,每小题10分)1、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

(10分)2、 共振具体指的是振动系统在什么状态下振动?简述其能量集聚过程? (10分)3、 简述刚度矩阵[K]中元素k ij 的意义。

(10分)4、 简述随机振动问题的求解方法,以及与周期振动问题求解的区别。

(10分)三、计算题(45分) 3.1、(14分)如图所示中,两个摩擦轮可分别绕水平轴O 1,转动,无相对滑动;摩擦轮的半径、质量、转动惯量分别为r 1、m I 1和r 2、m 2、I 2。

轮2的轮缘上连接一刚度为k 的弹簧,轮1上有软绳悬挂质量为m 的物体,求: 1)系统微振的固有频率;(10分)2)系统微振的周期;(4分)。

3.2、(16分)如图所示扭转系统。

设转动惯量I 1=I 2,扭转刚度K r1=K r2。

1)写出系统的动能函数和势能函数; (4分) 2)求出系统的刚度矩阵和质量矩阵; (4分)3)求出系统的固有频率; (4分)4)求出系统振型矩阵,画出振型图。

(4分)3.3、(15分)根据如图所示微振系统, 1)求系统的质量矩阵和刚度矩阵和频率方程; (5分)2)求出固有频率; (5分)3)求系统的振型,并做图。

(5分)参考答案及评分细则:填空题(本题15分,每空1分)1、线性振动;随机振动;自由振动;2、势能;动能;阻尼3、简谐运动;正弦;余弦4、线性图2图35、刚度;质量6、频响函数;传递函数7、往复弹性简答题(本题40分,每小题10分)5、 简述振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。

振动理论-考题

振动理论-考题

《振动力学》——习题单自由度系统的自由振动2-1 如图2-1 所示,重物W悬挂在刚度为k的弹簧上并处于静止平衡位置,另一重物2W1从高度为h处自由下落到W上且无弹跳。

试求2W下降的最大距离和两物体碰撞后1的运动规律。

图2-1 图2-22-2 一均质等直杆,长为l,重量为w,用两根长h的相同的铅垂线悬挂成水平位置,如图2-2所示。

试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。

2-3 一半圆薄壁筒,平均半径为R, 置于粗糙平面上做微幅摆动,如图2-3所示。

试求其摆动的固有频率。

图2-3 图2-42-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:(1)振动过程中杆被约束保持水平位置;(2)杆可以在铅垂平面内微幅转动;(3)比较上述两种情况中哪种的固有频率较高,并说明理由。

2-5 试求图2-5所示系统中均质刚性杆AB在A点的等效质量。

已知杆的质量为m,A 端弹簧的刚度为k。

并问铰链支座C放在何处时使系统的固有频率最高?图2-5 图2-62-6 在图2-6所示的系统中,四个弹簧均未受力。

已知m =50kg ,19800N m k =,234900N mk k ==,419600N m k =。

试问:(1)若将支撑缓慢撤去,质量块将下落多少距离? (2)若将支撑突然撤去,质量块又将下落多少距离?2-7 图2-7所示系统,质量为m 2的均质圆盘在水平面上作无滑动的滚动,鼓轮绕轴的转动惯量为I ,忽略绳子的弹性、质量及各轴承间的摩擦力。

试求此系统的固有频 率。

图2-72-8 如图2-8所示的系统中,钢杆质量不计,建立系统的运动微分方程,并求临界阻尼系数及阻尼固有频率。

图2-8 图2-92-9 图2-9所示的系统中,m =1kg ,k =224N/m ,c =48N.s/m ,l 1=l =0.49m ,l 2=l /2,l 3=l /4,不计钢杆质量。

振动理论考试题

振动理论考试题

x + B cos
ω
x
ω
a
cos
ω
a
l + 2k sin
ω
a
l = ω 2 m sin
ω
a
l
ω ω ω 2 EA a cos a l = (ω m − 2k ) sin a l ω ω ∴ EA = (ω 2m − 2k ) tan l a a EAω ω a (ω 2 m − 2k ) = tan a l
l1 kθ m y k x
EA ρ
k 2m
l
(五) (10 分)图示多自由度系统,在得到刚度矩阵和质量矩阵后用矩阵迭代法计算固有频率时遇到如下 问题。 1. 虽然 K 正定,但仍移频 K = K + α M 对同样的初始向量,下列各移频值是否都能使迭代收敛?
*
哪个收敛得最快,哪个最慢?为什么? 移频值α(单位: k / m ) :2.1 0.1 0.1 -0.1 2.为计算第二阶固有频率,在修正动力矩阵后若有两组初始向量,一组为 x T = (1,1,1,1) ,另一组为
b
杆的稳态响应不产生转动,只有垂直位移,问 K 值应为多少?
m2
M
B K
m1
L 2 K
A
L 2
(二)(50 分)图示光滑平面上的弹簧质量系统。 1.计算各阶固有频率和主振型,并画振型图。 2.用振型叠加法计算受迫振动的稳态响应。
F0 sin ωt
k
k
2m
m
2m
F0 sin ωt
(三) (20 分)图示直梁,非等截面,一端连转角弹簧 kθ ,在距转 角弹簧 l1 处有一位移弹簧 k,另一端有集中质量 m,梁的抗弯 刚度 EI,截面积 A,长度为 L,密度为ρ。 1. 写出特征值问题的微分方程和边界条件 (不必推导。 注意: 设 y ( x , t ) = Y ( x )T (t ) ,写出的是 Y ( x ) 的常微分方程,而 不是 y ( x , t ) 的偏微分方程) 。 2. 由主振型正交性的物理意义写出主振型正交性的表达式 (不必推导) 。 (四) (10 分)如图所示系统。长为 l 的等直杆一端固定,另 一端连一集中质量 2m,该集中质量与一刚度为 k 的弹 簧相连。求该系统的纵向振动频率方程。

机械振动学试题

机械振动学试题

机械振动学试题一、判断题:(对以下论述,正确的打“√”,错误的打“×”,每题2分,共20分)1、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。

()2、一个单盘的轴盘系统,在高速旋转时,由于盘的偏心质量使轴盘做弓形回旋时,引起轴内产生交变应力,这是导致在临界转速时,感到剧烈振动的原因。

()3、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。

()4、当激振力的频率等于单自由度线性阻尼系统的固有频率时,其振幅最大值。

()5、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。

()6、当初始条件为零,即x= 0x=0时,系统不会有自由振动项。

()7、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。

()8、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。

()9、隔振系统的阻尼愈大,则隔振效果愈好。

()10、当自激振动被激发后,若其振幅上升到一定程度并稳定下来,形成一种稳定的周期振动,则这种振幅自稳定性,是由于系统中的某些非线性因素的作用而发生的。

()二、计算题:1、一台面以f频率做垂直正弦运动。

如果求台面上的物理保持与台面接触,则台面的最大振幅可有多大?(分)2、质量为m的发电转子,它的转动惯量J0的确定采用试验方法:在转12子经向R 1的地方附加一小质量m 1。

试验装置如图1所示,记录其振动周期。

a )求发电机转子J 0。

b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。

3、 质量为m 的质点与三条刚度系数同为k 的弹簧相联)(321k k k k ===,互成α=120°,并限制在水平面oxy 上运动,如图所示。

当它在平衡位置时,各弹簧均无变形。

令质点作微小振动,可认为弹簧的方向不变,如以x 和y 为广义坐标,求系统的刚度阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《振动力学》——习题
单自由度系统的自由振动
2-1 如图2-1 所示,重物
W悬挂在刚度为k的弹簧上并处于静止平衡位置,另一重物2W
1
从高度为h处自由下落到
W上且无弹跳。

试求2W下降的最大距离和两物体碰撞后
1
的运动规律。

图2-1 图2-2
2-2 一均质等直杆,长为l,重量为w,用两根长h的相同的铅垂线悬挂成水平位置,如图2-2所示。

试写出此杆绕通过重心的铅垂轴做微摆动的振动微分方程,并求出振动固有周期。

2-3 一半圆薄壁筒,平均半径为R, 置于粗糙平面上做微幅摆动,如图2-3所示。

试求其摆动的固有频率。

图2-3 图2-4
2-4 如图2-4 所示,一质量m连接在一刚性杆上,杆的质量忽略不计,试求下列情况系统作垂直振动的固有频率:
(1)振动过程中杆被约束保持水平位置;
(2)杆可以在铅垂平面内微幅转动;
(3)比较上述两种情况中哪种的固有频率较高,并说明理由。

2-5 试求图2-5所示系统中均质刚性杆AB在A点的等效质量。

已知杆的质量为m,A 端弹簧的刚度为k。

并问铰链支座C放在何处时使系统的固有频率最高?
图2-5 图2-6
2-6 在图2-6所示的系统中,四个弹簧均未受力。

已知m =50kg ,19800N m k =,
234900N m
k k ==,419600N m k =。

试问:
(1)若将支撑缓慢撤去,质量块将下落多少距离? (2)若将支撑突然撤去,质量块又将下落多少距离?
2-7 图2-7所示系统,质量为m 2的均质圆盘在水平面上作无滑动的滚动,鼓轮绕轴的
转动惯量为I ,忽略绳子的弹性、质量及各轴承间的摩擦力。

试求此系统的固有频 率。

图2-7
2-8 如图2-8所示的系统中,钢杆质量不计,建立系统的运动微分方程,并求临界阻尼
系数及阻尼固有频率。

图2-8 图2-9
2-9 图2-9所示的系统中,m =1kg ,k =224N/m ,c =48N.s/m ,l 1=l =0.49m ,l 2=l /2,l 3=l /4,不计钢杆质量。

试求系统的无阻尼固有频率n ω及阻尼ζ。

单自由度系统的强迫振动
3-1 如图3-1所示弹簧质量系统中,两个弹簧的连接处有一激振力0()sin P t P t ω=。


求质量块的振幅。

图3-1 图3-2
3-2 图3-2所示系统中,刚性杆AB 的质量忽略不计,B 端作用有激振力0()sin P t P t ω=,
写出系统运动微分方程,并求下列情况中质量m 作上下振动的振幅值:(1)系统 发生共振;(2)ω等于固有频率n ω的一半。

3-3 建立图3-3所示系统的运动微分方程,并求出系统的固有频率n ω,阻尼比ζ以及
稳态响应振幅。

图3-3
3-4 一机器质量为450kg ,支撑在弹簧隔振器上,弹簧静变形为0.5cm ,机器有一偏心
重,产生偏心激振力20 2.254P g ω=,其中ω是激振频率,g 是重力加速度。

试求: (1)在机器转速为1200r/min 时传入地基的力;(2)机器的振幅。

3-5 证明:粘滞阻尼利在一个振动周期内消耗的能量可表示为
2
2
2
2
2(1)(2)
P E k
πςλλςλ∆=
-+
3-6 单自由度无阻尼系统受图3-6所示的外力作用,已知(0)(0)0x x
== 。

试求系统的 响应。

图3-6 图3-7
3-7 试求在零初始条件下的单自由度无阻尼系统对图3-7所示激振力的响应。

3-8 图3-8为一车辆的力学模型,已知车辆的质量m 、悬挂弹簧的刚度k 以及车辆的水
平行驶速度v 。

道路前方有一隆起的曲形地面:
2cos s y a x l π⎛
⎫= ⎪
⎝⎭
1-
(1)试求车辆通过曲形地面时的振动;
(2)试求车辆通过曲形地面以后的振动。

图3-8
3-9 图3-9是一轻型飞机起落架着陆冲撞的简单力学模型。

试求弹簧从接触地面至反跳
脱离接触的时间。

3-10 图3-10所示的箱子从高h 处自由下落,箱体内有足够的间隙允许质量m 运动,
并且箱体质量远大于m 。

若箱子触地后不再跳起,试求:(1)箱子下落过程中质 量块相对于箱体的运动;(2)箱子落地后传到质量块上的最大作用力。

图3-9 图3-10
多单自由度系统的振动
4-1 图4-1所示系统中,各个质量只能沿铅垂方向运动,假设123m m m m ===,
123456k k k k k k k
======。

试求系统的固有频率及振型矩阵。

图4-1 图4-2
4-2 试计算图4-2所示系统对初始条件[]00000T
x =和[]
000
T
x
v v = 的响应。

4-3 试确定题4-2的系统对作用于质量m 1和质量m 4上的阶跃力14p p p ==的响应。

4-4 如图4-4所示,已知机器质量为1=90kg m ,吸振器质量为2=2.25kg m ,若机器上有
一偏心质量m 0.5kg '=,偏心距e =1cm ,机器转速n =1800r/m 。

试问:
(1)吸振器的弹簧刚度k 2多大,才能使机器振幅为零?
(2)此时吸振器的振幅B 2为多大?
(3)若使吸振器的振幅B 2不超过2mm ,应如何改变吸振器的参数?
图4-4。

相关文档
最新文档