上海市交通大学附属中学2016-2017学年高一下学期期末考试数学试题 (word版含答案)
2016-2017学年上海交大附中高一(下)3月月考数学试卷
2016-2017学年上海交大附中高一(下)3月月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、填空题(本大题共12小题,共60.0分)1.你在忙着答题,秒针在忙着“转圈”,现在经过了2分钟,则秒针转过的角的弧度数是______ .【答案】【解析】解:由于经过2分钟,秒针转过2个周角,由一周角为,又由顺时针旋转得到的角是负角,故秒针转过的角的弧度数是,故答案为:.根据2分钟,秒针针转过2周,一个周角为,即可得到答案.本题考查的知识点是弧度制,其中一周角,是解答本题的关键.2.已知角的终边上一点P落在直线上,则______ .【答案】【解析】解:角的终边上一点P落在直线上,,,故答案为:.由条件利用任意角的三角函数的定义求得的值,再利用同角三角函数的基本关系,求得的值.本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.3.把化成,,的形式为______ .【答案】【解析】解:由,,,,,则,故答案为:根据辅助角公式化解可得答案.本题主要考察了辅助角公式的应用,属于基本知识的考查.4.函数的定义域为______ .【解析】解:由题意得:且,解得:,故函数的定义域是,,,故答案为:,,.根据二次根式的性质求出函数的定义域即可.本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.5.函数的最大值为______ .【答案】2【解析】解:,的最大值为2.故答案为2.,即可得出结论.本题考查函数的最值,考查二次函数的性质,正确转化是关键.6.已知,求______ .【答案】【解析】解:,,故答案为先两边平方,利用同角三角函数关系求得,再将化简,代入即可.本题的考点同角三角函数的基本关系考查了同角三角函数的基本关系,关键是利用好平方关系及切化弦关系.7.已知:,则______ .【答案】【解析】解:因为,..故答案为:.先由得到,再用诱导公式对所求问题化简整理即可得出答案.本题考查了诱导公式的应用三角函数式的化简求值是三角函数中的基本问题,也是常考的问题之一.8.若函数的值域为R,则实数a的取值范围是______ .【答案】,【解析】解:函数的值域为R,,为函数的值域的子集,,解得.故答案为,.令,为函数的值域的子集,根据二次函数的性质列出不等式组即可得出a的范围.本题考查了对数的函数的性质,二次函数的性质,属于中档题.9.若关于x的方程有负根,则实数a的取值范围是______ .【答案】【解析】解:当时,,若关于x的方程有负根,在,即,即,或,则解得,故答案为:根据指数函数的性质,解不等式即可得到结论.本题主要考查不等式的解法,利用指数函数的图象和性质是解决本题的关键.10.小媛在解试题:“已知锐角与的值,求的正弦值”时,误将两角和的正弦公式记成了,解得的结果为,发现与标准答案一致,那么原题中的锐角的值为______ 写出所有的可能值【答案】,,【解析】解:由题意可得:,观察可得:锐角的值可能为,,.故答案为:,,.由已知利用两角和与差的正弦函数余弦函数公式及特殊角的三角函数值即可计算得解.本题主要考查了两角和与差的正弦函数余弦函数公式及特殊角的三角函数值的应用,属于基础题.11.已知,则函数的最小值为______ .【答案】0【解析】解:由,可得,,可得,,那么当时,y取得最小值为0.故答案为0.由,可得,可得,,转化为二次函数求解最小值即可.本题主要考查了同角三角函数关系式和三角函数的有界性的应用,属于基本知识的考查.12.已知,,,则______ .【答案】【解析】解:,,,.故答案为:.,由此能求出结果.本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.二、选择题(本大题共4小题,共16.0分)13.一个扇形OAB的面积为1平方厘米,它的周长为4厘米,则它的中心角是A. 2弧度B. 3弧度C. 4弧度D. 5弧度【答案】A【解析】解:设扇形的弧长为:l,半径为r,所以,面积,所以解得:,,所以扇形的圆心角的弧度数是.根据题意设出扇形的弧长与半径,通过扇形的周长与面积,即可求出扇形的弧长与半径,进而根据公式求出扇形圆心角的弧度数.本题考查弧度制下,扇形的面积及弧长公式的运用,注意与角度制下的公式的区别与联系,属于基础题.14.角的终边在第二象限,那么的终边不可能在的象限是第象限.A. 一B. 二C. 三D. 四【答案】C【解析】解:角的终边在第二象限,,,,,当时,此时的终边落在第一象限,当时,此时的终边落在第二象限,当时,此时的终边落在第四象限,综上所述,的终边不可能落在第三象限故选:C.首先利用终边相同角的表示方法,写出的表达式,再写出的表达式,由此判断终边位置.本题考查了终边相同角的表示方法,象限角的概念属于基础知识和基础题目.15.已知,均为锐角,且,则,的大小关系是A. B. C. D. 不确定【答案】A【解析】解:,,,,,,均为锐角,.故选:A.利用两角和与差的正弦函数公式解得,从而得到,由此能比较,的大小关系.本题考查两个锐角的大小的比较,考查两角和与差的正弦函数的应用,属于基础题.16.下列关于幂函数的论述中,正确的是A. 当时,幂函数的图象是一条直线B. 幂函数的图象都经过,和,两个点【答案】D【解析】解:对于,时,无意义;对于,不过,;对于,是奇函数,在定义域内无单调性;对于D,因为时,,故幂函数图象不可能出现在第四象限,故对;故选:D.通过求函数的定义域,判断出错;通过举反例说明错;通过求点的坐标的范围判断出对.本题考查幂函数的性质:定义域、过定点、单调性、奇偶性.三、解答题(本大题共5小题,共74.0分)17.有一种细菌A,每小时分裂一次,分裂时每个细菌都分裂为2个,现有某种饮料200毫升,其中细菌A的浓度为20个毫升:试讲饮料中的细菌A的个数y表示成经过的小时数x的函数;若饮料中细菌A的总数超过9万个,将对人体有害,那么几个小时后该饮料将对人体有害?精确到小时.【答案】解:某种饮料200毫升,其中细菌A的浓度为20个毫升:故200毫升饮料有细菌A4000个,故细菌A的个数,;由得:,解得:,即小时后该饮料将对人体有害.【解析】求出最初的细菌个数,列出函数解析式即可;根据题意得到关于x的不等式,解出即可.本题考查了求函数解析式问题,考查不等式的应用,是一道中档题.18.已知中,,是方程的两个实数根:若,求的值;求的最小值,并指出此时对应的,的值.【答案】解:时,,,;:由题意,,解得或;又,,,,的最小值是,此时对应的.【解析】由根与系数的关系写出,;利用三角形内角和定理与两角和的正切公式计算即可;由以及根与系数的关系,求出;再利用三角形内角和定理与两角和的正切公式,求出的最小值以及此时对应的、的值.本题考查了根与系数的关系以及三角形内角和定理与两角和的正切公式应用问题,是基础题.19.已知函数,其中,是适合的常数若,,求函数的最小值;是否可能为常值函数?若可能,求出为常值函数时,,的值,如果不可能,请说明理由.【答案】解:函数,其中,是适合的常数,,则函数的最小值为1.假设存在常数值,,则,即,,则.,.【解析】将,带入化简,利用三角函数的性质求解即可.假设存在常数值,采用“赋值法”,特殊值,令,带入计算求解在内的常数即可.本题考查了三角函数的性质和赋值法证明存在性问题属于中档题.20.某校同学设计了一个如图所示的“蝴蝶形图案”其中,是过抛物线的两条相互垂直的弦点,在第二象限,且,交于点,,点E为y轴上的一点,记,其中为锐角:设线段AF的长为m,将m表示为关于的函数;求“蝴蝶形图案”面积的最小值,并指出取最小值时的大小.【答案】解:点,,,即.,;同理:,,.“蝴蝶形图案”的面积,令,,,,,,,此时.【解析】由点,,代入抛物线的标准方程,即可将m表示为关于的函数;由题意结合图形,把A、B、C、D四点的坐标分别用、、、和表示,代入抛物线方程后最终求得、、、,对三角形面积化简整理,换元后利用配方法求面积的最小值.本题考查了抛物线的标准方程及其性质、点直线与抛物线的关系、三角函数化简、换元法、二次函数的单调性,考查了推理能力与计算能力,属于中档题.21.若函数定义域为R,满足对任意,,有,则称为“V形函数”;若函数定义域为,恒大于0,且对任意,,有,则称为“对数V形函数”:当时,判断函数是否为V形函数,并说明理由;当时,证明:是对数V形函数;若是V形函数,且满足对任意,有,问是否为对数V形函数?如果是,请加以证明;如果不是,请说明理由.【答案】解:,,符号不定,当时,是V形函数;当时,不是V形函数;证明:假设对任意,,有,则,,,显然成立,解:是对数V形函数证明:是V形函数,对任意,,有,对任意,有,,,,,是对数V形函数.【解析】由,可得符号不定,从而可得结论;利用反证法证明假设对任意,,有,则可得,即证,显然成立;是对数V形函数,根据是V形函数,利用对任意,有,证明,从而可得是对数V形函数.本题考查了函数的性质、不等式的性质与解法、反证法,考查了推理能力与计算能力,属于难题.。
2016-2017学年上海交大附中高三(下)开学数学试卷(解析版)
2016-2017学年上海交大附中高三(下)开学数学试卷一、填空题:(本大题共14小题,每小题5分,共70分)1.(5分)函数y=tan3x的最小正周期为.2.(5分)计算=.3.(5分)=.4.(5分)若集合M={y|y=﹣x2+5,x∈R},N={y|y=,x≥﹣2},则M∩N=.5.(5分)二项式(x+1)10的展开式中,x4的系数为.6.(5分)现有6位同学排成一排照相,其中甲、乙二人相邻的排法有种.7.(5分)若cos(π+α)=﹣,π<α<2π,则sinα=.8.(5分)若一个球的体积为,则它的表面积为.9.(5分)三棱锥O﹣ABC中,OA=OB=OC=2,且∠BOC=45°,则三棱锥O﹣ABC体积的最大值是.10.(5分)如图所示,在长方体ABCD﹣A1B1C1D1中,AD=2,AB=AE=1,M为矩形AEHD 内一点,若∠MGF=∠MGH,MG和平面EFGH所成角的正切值为,则点M到平面EFGH的距离为.11.(5分)若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分析,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A的同一种分析,则集合A={a1,a2,a3}的不同分析种数是.12.(5分)已知函数y=a x+b(b>0)是定义在R上的单调递增函数,图象经过点P(1,3),则的最小值为.13.(5分)已知函数f(x)是R上的减函数,且y=f(x﹣2)的图象关于点(2,0)成中心对称.若u,v满足不等式组,则u2+v2的最小值为.14.(5分)已知x∈R,定义:A(x)表示不小于x的最小整数,如,若x>0且A(2x•A(x))=5,则x的取值范围为.二、选择题:15.(5分)在△ABC中,若,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形16.(5分)已知z∈C,“”是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也不必要条件17.(5分)下列关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列;其中真命题是()A.p1,p2B.p3,p4C.p2,p3D.p1,p418.(5分)某工厂今年年初贷款a万元,年利率为r(按复利计算),从今年末起,每年年末偿还固定数量金额,5年内还清,则每年应还金额为()万元.A.B.C.D.三、解答题:本大题共5小题,共90分.解答应写出必要的文字说明或推理、验算过程. 19.(10分)某地区有800名学员参加交通法规考试,考试成绩的频率分布直方图如图所示,其中成绩分组区间是:[75,80),[80,85),[85,90),[90,95),[95,100],规定90分及以上为合格:(1)求图中a的值;(2)根据频率分布直方图估计该地区学员交通法规考试合格的概率;(3)若三个人参加交通法规考试,估计这三个人至少有两人合格的概率.20.(10分)如图,在三棱锥P﹣ABC中,P A⊥底面ABC,AB⊥BC,AB=P A=BC=2.D,E分别为AB,AC的中点,过DE的平面与PB,PC相交于点M,N(M与P,B不重合,N与P,C不重合).(Ⅰ)求证:MN∥BC;(Ⅱ)求直线AC与平面PBC所成角的大小;(Ⅲ)若直线EM与直线AP所成角的余弦值时,求MC的长.21.(10分)在平面直角坐标系中xOy中,动点E到定点(1,0)的距离与它到直线x=﹣1的距离相等.(Ⅰ)求动点E的轨迹C的方程;(Ⅱ)设动直线l:y=kx+b与曲线C相切于点P,与直线x=﹣1相交于点Q.证明:以PQ为直径的圆恒过x轴上某定点.22.(15分)已知函数(a>0,a≠1)是奇函数.(1)求实数m的值;(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;(3)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.23.(15分)已知二次函数y=f(x)的图象的顶点坐标为,且过坐标原点O,数列{a n}的前n项和为S n,点(n,S n)(n∈N*)在二次函数y=f(x)的图象上.(1)求数列{a n}的表达式;(2)设b n=a n•a n+1cos(n+1)π(n∈N*),数列{b n}的前n项和为T n,若T n≥m2对n∈N*恒成立,求实数m的取值范围;(3)在数列{a n}中是否存在这样的一些项,,,,…,…(1=n1<n2<n3<…<n k<…k∈N*),这些项能够依次构成以a1为首项,q(0<q<5,q∈N*)为公比的等比数列{}?若存在,写出n k关于k的表达式;若不存在,说明理由.2016-2017学年上海交大附中高三(下)开学数学试卷参考答案与试题解析一、填空题:(本大题共14小题,每小题5分,共70分)1.【解答】解:函数y=tan3x的最小正周期为T==.故答案为:.2.【解答】解:=2×3﹣1×4=2,故答案为:2.3.【解答】解:==(+)=,故答案为:4.【解答】解:由M中y=﹣x2+5≤5,得到M=(﹣∞,5],由N中y=,x≥﹣2,得到y≥0,即N=[0,+∞),则M∩N=[0,5],故答案为:[0,5]5.【解答】解:二项式(x+1)10的展开式中,x4的系数为C104=210,故答案为:106.【解答】解:先把甲乙二人捆绑在一起,看作一个复合元素,再和其他4人进行全排,故有=240种,故答案为:2407.【解答】解:∵cos(π+α)=﹣cosα=﹣,∴cosα=,又π<α<2π,∴sinα=﹣=﹣.故答案为:﹣.8.【解答】解:由得,所以S=4πR2=12π.9.【解答】解:将△BOC作为三棱锥的底面,∵OA=OB=OC=2,且∠BOC=45°,∴△BOS的面积为定值S==,∴当OA⊥平面BOC时,该棱锥的高最大,体积就最大,此时三棱锥O﹣ABC体积的最大值V=×S×h==.故答案为:.10.【解答】解:取FG的中点N,作MO⊥EH于O,连接MN,ON,MH,OG,在长方体ABCD﹣A1B1C1D1中,AD=2,AB=AE=1,M为矩形AEHD内一点,若∠MGF =∠MGH,可得△MNG≌△MGH,则△ONG≌△OGH,所以ON=GH=AB=1,因为N是FG的中点,所以NG=FG=AD=×2=1,所以在Rt△ONG中,OG===MG和平面EFGH所成角的正切值为,可得=,则MO==.则点M到平面EFGH的距离为:.故答案为:.11.【解答】解:当A1=∅时必须A2=A,分析种数为1;当A1有一个元素时,分析种数为C31•2;当A1有2个元素时,分析总数为C32•22;当A1=A时,分析种数为C33•23.所以总的不同分析种数为1+C31•21+C32•22+C33•23=(1+2)3=27.故答案为:2712.【解答】解:∵函数y=a x+b(b>0)是定义在R上的单调递增函数,图象经过点P(1,3),∴a>1,3=a+b.∴=(a﹣1+b)=≥=,当且仅当a=,b=时取等号.故答案为:13.【解答】解:∵y=f(x﹣2)的图象关于点(2,0)成中心对称.∴y=f(x)的图象关于点(0,0)成中心对称.即函数f(x)是奇函数,则不等式组,等价为,即,作出不等式组对应的平面区域如图,则u2+v2的几何意义为区域内的点到原点距离的平方,则由图象知原点到直线u=1﹣v,即v+u﹣1=0的距离最小,此时d=,故u2+v2的最小值为d2=,故答案为:14.【解答】解:当A(x)=1时,0<x≤1,可得4<2x≤5,得2<x≤,矛盾,故A(x)≠1,当A(x)=2时,1<x≤2,可得4<4x≤5,得1<x≤,符合题意,故A(x)=2,当A(x)=3时,2<x≤3,可得4<6x≤5,得<x≤,矛盾,故A(x)≠3,由此可知,当A(x)≥4时也不合题意,故A(x)=2∴正实数x的取值范围是(1,]故答案为:(1,]二、选择题:15.【解答】解:∵=cos=sin,⇒,则△ABC是等腰三角形,故选:A.16.【解答】解:对于复数z,若z+=0,z不一定为纯虚数,可以为0,反之,若z为纯虚数,则z+=0.∴“z+=0”是“z为纯虚数”的必要非充分条件.故选:B.17.【解答】解:∵对于公差d>0的等差数列{a n},a n+1﹣a n=d>0,∴命题p1:数列{a n}是递增数列成立,是真命题.对于数列{na n},第n+1项与第n项的差等于(n+1)a n+1﹣na n=(n+1)d+a n,不一定是正实数,故p2不正确,是假命题.对于数列,第n+1项与第n项的差等于﹣==,不一定是正实数,故p3不正确,是假命题.对于数列{a n+3nd},第n+1项与第n项的差等于a n+1+3(n+1)d﹣a n﹣3nd=4d>0,故命题p4:数列{a n+3nd}是递增数列成立,是真命题.故选:D.18.【解答】解:假设每年偿还x元,由题意可得a(1+r)5=x(1+r)4+x(1+r)3+…+x(1+r)+x,化为a(1+r)5=x•,解得x=.故选:B.三、解答题:本大题共5小题,共90分.解答应写出必要的文字说明或推理、验算过程. 19.【解答】解:(1)由频率分布直方图,知:(0.01+a+0.07+0.06+0.02)×5=1,解得a=0.04.(2)规定90分及以上为合格,根据频率分布直方图估计该地区学员交通法规考试合格的概率:p1=(0.06+0.02)×5=0.4.(3)三个人参加交通法规考试,估计这三个人至少有两人合格的概率:p2==.20.【解答】解:(Ⅰ)证明:∵D,E分别为AB,AC的中点;∴DE∥BC,BC⊂平面PBC,DE⊄平面PBC;∴DE∥平面PBC,平面DENM∩平面PBC=MN;∴DE∥MN;∴MN∥BC;(Ⅱ)如图,在平面P AB内作BZ∥P A,则根据:P A⊥底面ABC,及AB⊥BC即知,BC,BA,BZ两两垂直;∴以B为坐标原点,BC,BA,BZ所在直线为x,y,z轴建立如图所示空间直角坐标系,则:B(0,0,0),C(2,0,0),A(0,2,0),P(0,2,2);∴,;设平面PBC的法向量为;则由得:,令z1=1,得x1=0,y1=﹣1;∴;设直线AC和平面PBC所成角为α,则:sinα==;又;∴;即直线AC和平面PBC所成角为;(Ⅲ)设M(0,y,z),M在棱PB上,则:;∴(0,y,z)=λ(0,2,2);∴M(0,2λ,2λ),E(1,1,0);∴;因为直线EM与直线AP所成角的余弦值;设直线EM和直线AP所成角为θ;所以cosθ=;∴8λ2﹣18λ+9=0;解得,或(舍去);∴M(0,);∴.21.【解答】(Ⅰ)解:设动点E的坐标为(x,y),由抛物线定义知,动点E的轨迹是以(1,0)为焦点,x=﹣1为准线的抛物线,∴动点E的轨迹C的方程为:y2=4x;(Ⅱ)证明:设直线l的方程为:y=kx+b(k≠0),由,消去x得:ky2﹣4y+4b=0.∵直线l与抛物线相切,∴△=16﹣16kb=0,即.∴直线l的方程为y=kx+.令x=﹣1,得,∴Q(﹣1,),设切点坐标P(x0,y0),则,解得:P(),设M(m,0),则==.当m=1时,.∴以PQ为直径的圆恒过x轴上定点M(1,0).22.【解答】解:(1)∵函数(a>0,a≠1)是奇函数.∴f(﹣x)+f(x)=0解得m=﹣1.(2)由(1)及题设知:,设,∴当x1>x2>1时,∴t1<t2.当a>1时,log a t1<log a t2,即f(x1)<f(x2).∴当a>1时,f(x)在(1,+∞)上是减函数.同理当0<a<1时,f(x)在(1,+∞)上是增函数.(3)由题设知:函数f(x)的定义域为(1,+∞)∪(﹣∞,﹣1),∴①当n<a﹣2≤﹣1时,有0<a<1.由(1)及(2)题设知:f(x)在为增函数,由其值域为(1,+∞)知(无解);②当1≤n<a﹣2时,有a>3.由(1)及(2)题设知:f(x)在(n,a﹣2)为减函数,由其值域为(1,+∞)知得,n=1.23.【解答】解:(Ⅰ)由题意得f(x)=(x+1)2﹣,∴S n=(n+1)2﹣=n2+n(n∈N*),当n≥2时,a n=s n﹣s n﹣1=n2+n﹣[(n﹣1)2+(n﹣1)]=,当n=1时,a1=s1=1适合上式,∴数列{a n}的通项公式是:a n=(n∈N*);(Ⅱ)∵b n=a n a n+1cos(n+1)π,(n∈N*),∴T n=b1+b2+…+b n=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n﹣1a n a n+1,由(Ⅰ)得:数列{a n}是以1为首项,公差为的等差数列,①当n=2m,m∈N*时,T n=T2m=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n﹣1a n a n+1,=a2(a1﹣a3)+a4(a3﹣a5)+…+a2m(a2m﹣1﹣a2m+1)=﹣(a2+a4+…+a2m)=﹣••m=﹣(8m2+12m)=﹣(2n2+6n),②当n=2m﹣1,m∈N*时,T n=T2m﹣1=T2m﹣(﹣1)2m﹣1a2m a2m+1=﹣(8m2+12m)+(16m2+16m+3)=(8m2+4m+3)=(2n2+6n+7),∴T n=,要使T n≥tn2对n∈N*恒成立,只要使﹣(2n2+6n)≥tn2(n为正偶数)恒成立,即使﹣(2+)≥t对n为正偶数恒成立.∴t≤[﹣(2+)]min=﹣;(Ⅲ)由a n=知,数列{a n}中每一项都不可能是偶数,①如存在以a1为首项,公比q为2或4的数列{ank},k∈N*,此时{ank}中每一项除第一项外都是偶数,故不存在以a1为首项,公比为偶数的数列{ank};②q=1时,显然不存在这样的数列{ank},q=3时,若存在以a1为首项,公比为3的数列{ank},k∈N*,则an1=1,n1=1,ank=3k﹣1=,n k=,∴存在满足条件的数列{a nk},且n k=,(k∈N*).。
2016-2017学年上海市交大附中高一(下)学期期中数学试卷(解析版)
2016-2017学年上海市交⼤附中⾼⼀(下)学期期中数学试卷(解析版)2016-2017学年上海市交⼤附中⾼⼀第⼆学期期中数学试卷⼀、填空题1.已知⾓α的顶点在坐标原点,始边在x 轴的正半轴上,其终边上有⼀点P (5,﹣12),则sec α=.2.arccos (?√32)=.3.已知扇形的圆⼼⾓为2弧度,⾯积为9cm 2,则该扇形的弧长为 cm . 4.设sin α=35,α∈(π2,π),则tan α的值为.5.函数y =2sin 2(x +π6)的最⼩正周期为.6.若cos x cos y +sin x sin y =13,则cos (2x ﹣2y )=. 7.函数y =sin x +arcsin x 的值域是.8.关于x 的⽅程cos 2x +sin x +a =0在x ∈(0,π2]上有解,则a 的取值范围是. 9.设函数f(x)=(sinx+1)2sin 2x+1的最⼤值为M ,最⼩值为m ,则M +m =. 10.已知sin α=3sin (α+π6),则tan (α+π12)=.11.已知△ABC ,若存在△A 1B 1C 1,满⾜cosA sinA 1=cosB sinB 1=cosC sinC 1=1,则称△A 1B 1C 1是△ABC 的⼀个“对偶”三⾓形,若等腰△ABC 存在“对偶”三⾓形,则其底⾓的弧度数为.12.已知函数y =k cos (kx )在区间(π4,π3)单调递减,则实数k 的取值范围为.⼆、选择题13.⽅程tan x =2的解集为() A .{x |x =2k π+arctan2,k ∈Z } B .{x |x =2k π±arctan2,k ∈Z }C .{x |x =k π+arctan2,k ∈Z }D .{x |x =k π+(﹣1)k arctan2,k ∈Z }14.已知函数y =A sin (ωx +φ)+m (A >0,ω>0)的最⼤值为4,最⼩值为0,最⼩正周期为π2,直线x =π3是其图象的⼀条对称轴,则符合条件的函数解析式是()A .y =4sin(4x +π6)B .y =2sin(2x +π3)+2C .y =2sin(4x +π3)+2D .y =2sin(4x +π6)+215.函数y =2sin (π62x ),(x ∈[0,π])为增函数的区间是() A .[0,π3]B .[π12,7π12] C .[π3,5π6] D .[5π6,π]16.已知α,β,γ是某三⾓形的三个内⾓,给出下列四组数据:①sin α,sin β,sin γ;②sin 2α,sin 2β,sin 2γ;③cos 2α2,cos 2β2,cos 2γ2;④tan α2,tan β2,tan γ2分别以每组数据作为三条线段的长,其中⼀定能构成三⾓形的有() A .1组 B .2组 C .3组 D .4组三、解答题17.设α∈(0,π3),β∈(π6,π2),且α,β满⾜{5√3sinα+5cosα=8√2sinβ+√6cosβ=2(1)求cos(α+π6)的值.(2)求cos (α+β)的值.18.如图,等腰三⾓形ABC 中,∠B =∠C ,D 在BC 上,∠BAD ⼤⼩为α,∠CAD ⼤⼩为β.(1)若α=π4,β=π3,求BD DC ;(2)若BD DC=12,β=α+π3,求∠B .19.某景区欲建两条圆形观景步道M 1,M 2(宽度忽略不计),如图所⽰,已知AB ⊥AC ,AB =AC =AD =60(单位:⽶),要求圆M 与AB ,AD 分别相切于点B ,D ,圆M 2与AC ,AD 分别相切于点C ,D .(1)若∠BAD =π3,求圆M 1,M 2的半径(结果精确到0.1⽶)(2)若观景步道M 1,M 2的造价分别为每⽶0.8千元与每⽶0.9千元,则当∠BAD 多⼤时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)20.在△ABC中,内⾓A,B,C的对边分别为a,b,c.已知(√3sinB?cosB)(√3sinC?cosC)=4cos B cos C.(1)求⾓A的⼤⼩;(2)若a=2,求△ABC⾯积的取值范围;(3)若sin B=p sin C,试确定实数p的取值范围,使△ABC是锐⾓三⾓形.21.已知集合P是满⾜下述性质的函数f(x)的全体:存在⾮零常数M,对于任意的x∈R,都有f(x+M)=﹣Mf(x)成⽴.(1)设函数g(x)=sinπx,试证明:g(x)∈P;(2)当M=1时,试说明函数f(x)的⼀个性质,并加以证明;(3)若函数h(x)=sinωx∈P,求实数ω的取值范围.2016-2017学年上海市交⼤附中⾼⼀第⼆学期期中数学试卷参考答案⼀、填空题1.已知⾓α的顶点在坐标原点,始边在x 轴的正半轴上,其终边上有⼀点P (5,﹣12),则sec α=135.【分析】利⽤条件直接利⽤任意⾓的三⾓函数的定义求得cos α的值,然后求解sec α.解:由题意可得 x =5,y =﹣12,r =|OP |=13,∴cos α=x r =513,∴sec α=135.故答案为:135.【点评】本题主要考查任意⾓的三⾓函数的定义,属于基础题.2.arccos (?√32)= 5π6.【分析】利⽤arccos(?√32)=π?arccos √32即可得出.解:arccos(?√32)=π?arccos √32=π?π6=5π6.故答案为:5π6.【点评】本题考查了反三⾓函数的性质,属于基础题.3.已知扇形的圆⼼⾓为2弧度,⾯积为9cm 2,则该扇形的弧长为 6 cm .【分析】利⽤扇形的⾯积求出扇形的半径,然后由弧长公式求出弧长的值.解:设扇形的弧长为l ,圆⼼⾓⼤⼩为α(rad ),半径为r ,扇形的⾯积为S ,则:r 2=2S α=2×92=9.解得r =3∴扇形的弧长为l =r α=3×2=6l =r α=3×2=6cm .故答案为:6.【点评】本题考查扇形⾯积、扇形的弧长公式的应⽤,考查计算能⼒,属于基础题. 4.设sin α=35,α∈(π2,π),则tan α的值为 ?34 .【分析】由已知利⽤同⾓三⾓函数基本关系式可求cos α,进⽽可求tan α的值.解:∵sinα=35,α∈(π2,π),∴cosα=?√1?sin2α=?45,∴tanα=sinαcosα=3545=?34.故答案为:?3 4.【点评】本题主要考查了同⾓三⾓函数基本关系式在三⾓函数化简求值中的应⽤,考查了转化思想,属于基础题.5.函数y=2sin2(x+π6)的最⼩正周期为π.【分析】利⽤⼆倍⾓的余弦公式化简函数的解析式,再根据y=A cos(ωx+φ)的周期等于T=2πω,得出结论.解:函数y=2sin2(x+π6)=2sin2(x+π6)?1+1=﹣cos(2x+π3)+1 的最⼩正周期为2π2=π,故答案为:π.【点评】本题主要考查三⾓函数的周期性及其求法,⼆倍⾓的余弦公式,利⽤了y=A cos(ωx+φ)的周期T=2πω,属于基础题.6.若cos x cos y+sin x sin y=13,则cos(2x﹣2y)=?79.【分析】已知等式左边利⽤两⾓和与差的余弦函数公式化简,求出cos(x﹣y)的值,所求式⼦利⽤⼆倍⾓的余弦函数公式化简后,将cos(x﹣y)的值代⼊计算即可求出值.解:∵cos x cos y+sin x sin y=cos(x﹣y)=1 3,∴cos(2x﹣2y)=cos2(x﹣y)=2cos2(x﹣y)﹣1=?7 9.故答案为:?7 9.【点评】此题考查了两⾓和与差的余弦函数公式,⼆倍⾓的余弦函数公式,熟练掌握公式是解本题的关键.7.函数y=sin x+arcsin x的值域是[﹣sin1?π2,sin1+π2].【分析】函数y=sin x+arcsin x的定义域为[﹣1,1],且在此定义域内单调递增,故当x=﹣1时,函数有最⼩值,当x=1时,函数y=sin x+arcsin x有最⼤值,由此得到函数的值域.解:函数y=sin x+arcsin x的定义域为[﹣1,1],且在此定义域内单调递增,故当x =﹣1时,函数y =sin x +arcsin x 有最⼩值﹣sin1+(?π2)=﹣sin1?π2.故当x =1时,函数y =sin x +arcsin x 有最⼤值 sin1+π2,故函数y =sin x +arcsin x 的值域是[﹣sin1?π2,sin1+π2],故答案为[﹣sin1?π2,sin1+π2].【点评】本题主要考查正弦函数的和反正弦函数的定义域、值域,及其单调性的应⽤,得到函数在其定义域[﹣1,1]内单调递增,是解题的关键,属于中档题.8.关于x 的⽅程cos 2x +sin x +a =0在x ∈(0,π2]上有解,则a 的取值范围是 [?54,?1] .【分析】由题意,x 的⽅程cos 2x +sin x +a =0在x ∈(0,π2]上有解,转化为⼆次函数值域的问题.解:由cos 2x +sin x +a =0,转化为:1﹣sin 2x +sin x +a =0,即(sin x ?12)2=54+a∵x ∈(0,π2]上, sin x ∈(0,1)∴sin x ?12∈(?12,12]则(sin x ?12)2∈[0,14]∴{54+a ≤1454+a ≥0 ∴a 的取值范围是[?54,?1].故答案为[?54,?1].【点评】本题主要考查对三⾓函数的化简能⼒和三⾓函数的图象和性质的运⽤,属于中档题. 9.设函数f(x)=(sinx+1)2sin 2x+1的最⼤值为M ,最⼩值为m ,则M +m = 2 .【分析】通过换元可知y =f (x )=1+2t t 2+1,其中t =sin x ∈[﹣1,1],利⽤z =2tt 2+1为奇函数可知z max +z min =0,进⽽M +m =(1+z max )+(1+z min )=2.解:由题可知t =sin x ∈[﹣1,1],则y =f (x )=1+2tt 2+1,令z =2tt 2+1,则当t =0时z =0,且函数z 为奇函数,所以z max +z min =0,⼜因为M +m =(1+z max )+(1+z min ),所以M +m =2+(z max +z min )=2,故答案为:2.【点评】本题考查函数的最值及其⼏何意义,考查函数的奇偶性,注意解题⽅法的积累,属于中档题.10.已知sin α=3sin (α+π6),则tan (α+π12)= 2√3?4 .【分析】利⽤⾓三⾓的基本关系、两⾓和差的三⾓公式求得tan α、tan π12的值,可得tan (α+π12)的值.解:∵sin α=3sin (α+π6)=3sin α?√32+3cos α?12,∴tan α=2?33,∴tan π12=tan (π3?π4)=tan π3?tan π41+tan π3?tan π4=√3?11+3=2?√3,∴tan (α+π12)=tanα+tan π121?tanα?tan π12=32?33+(2?√3)1?32?3√3(2√3)=√3)(23√3)2333(23)=2√3?4,故答案为:2√3?4.【点评】本题主要考查两⾓和差的三⾓公式的应⽤,同⾓三⾓的基本关系,属于基础题. 11.已知△ABC ,若存在△A 1B 1C 1,满⾜cosA sinA 1=cosB sinB 1=cosC sinC 1=1,则称△A 1B 1C 1是△ABC 的⼀个“对偶”三⾓形,若等腰△ABC 存在“对偶”三⾓形,则其底⾓的弧度数为3π8.【分析】设等腰△ABC 中A =B ,由已知得sin A 1=sin B 1,cos A =sin A 1,cos B =sin B 1,cos C =sin C 1,则A 1=B 1,结合同⾓三⾓函数关系进⾏化简求值即可.解:设A =B ,由已知得sin A 1=sin B 1,cos A =sin A 1,cos B =sin B 1,cos C =sin C 1,则A 1=B 1,所以A +A 1=π2,B +B 1=π2,C +C 1=π2(舍)或A +A 1=π2,B +B 1=π2,C =C 1?π2,解得C =π4,A =B =π?π42=3π8.故答案是:3π8.【点评】本题主要考查三⾓函数的化简求值,注意新定义运算法则,诱导公式的应⽤,属于中档题.12.已知函数y =k cos (kx )在区间(π4,π3)单调递减,则实数k 的取值范围为 [﹣6,﹣4]∪(0,3]∪[8,9]∪{﹣12} .【分析】对k 的符号进⾏讨论,利⽤符合函数的单调性及余弦函数的单调性列不等式组求出f (x )的减区间,令区间(π4,π3)为f (x )单调减区间的⼦集解出k 的范围.解:当k >0时,令2m π≤kx ≤π+2m π,解得2mπk≤x ≤πk +2mπk ,m ∈Z ,∵函数y =k cos (kx )在区间(π4,π3)单调递减,∴{π4≥2mπk π3≤πk +2mπk,解得{k ≥8m k ≤3+6m ,m ∈Z ,∴0<k ≤3或8≤k ≤9.当k <0时,令﹣π+2m π≤﹣kx ≤2m π,解得πk ?2mπk≤x ≤?2mπk ,m ∈Z ,∵函数y =k cos (kx )在区间(π4,π3)单调递减,∴{π4≥πk ?2mπk π3≤?2mπk ,解得{k ≤4?8m k ≥?6m ,m ∈Z ,∴﹣6≤k ≤﹣4,或k =﹣12,综上,k 的取值范围是[﹣6,﹣4]∪(0,3]∪[8,9]∪{﹣12}.故答案为:[﹣6,﹣4]∪(0,3]∪[8,9]∪{﹣12}.【点评】本题考查了余弦函数的图象与性质,分类讨论思想,属于中档题.⼆、选择题13.⽅程tan x =2的解集为() A .{x |x =2k π+arctan2,k ∈Z } B .{x |x =2k π±arctan2,k ∈Z }C .{x |x =k π+arctan2,k ∈Z }D .{x |x =k π+(﹣1)k arctan2,k ∈Z }【分析】根据反三⾓函数的定义及正切函数的周期为k π,即可得到原⽅程的解.解:由tan x =2,根据正切函数图象及周期可知: x =k π+arctan2.故选:C .【点评】此题考查学⽣掌握正切函数的图象及周期性,是⼀道基础题.14.已知函数y =A sin (ωx +φ)+m (A >0,ω>0)的最⼤值为4,最⼩值为0,最⼩正周期为π2,直线x =π3是其图象的⼀条对称轴,则符合条件的函数解析式是()A .y =4sin(4x +π6)B .y =2sin(2x +π3)+2 C .y =2sin(4x +π3)+2D .y =2sin(4x +π6)+2【分析】由题意可得A +m =4,A ﹣m =0,解得 A 和m 的值,再根据周期求出ω,根据函数图象的对称轴及φ的范围求出φ,从⽽得到符合条件的函数解析式.解:由题意可得A +m =4,A ﹣m =0,解得 A =2,m =2.再由最⼩正周期为π2,可得2πω=π2,解得ω=4,∴函数y =A sin (ωx +φ)+m =2sin (4x +φ)+2.再由 x =π3是其图象的⼀条对称轴,可得 4×π3+φ=k π+π2,k ∈Z ,⼜|φ|<π2,∴φ=π6,故符合条件的函数解析式是 y =2sin (4x +π6)+2,故选:D .【点评】本题主要考查利⽤y =A sin (ωx +φ)的图象特征,由函数y =A sin (ωx +φ)的部分图象求解析式,属于中档题.15.函数y =2sin (π6?2x ),(x ∈[0,π])为增函数的区间是()A .[0,π3]B .[π12,7π12] C .[π3,5π6] D .[5π6,π]【分析】化简函数y =2sin (π62x ),利⽤正弦函数的图象与性质,求出y 在x ∈[0,π]的增区间即可.解:∵y =2sin (π6?2x )=﹣2sin (2x ?π6),∴只要求y =2sin (2x ?π6)的减区间,∵y =sin x 的减区间为[2k π+π2,2k π+3π2],∴令2x ?π6∈[2k π+π2,2k π+3π2],解得x ∈[k π+π3,k π+5π6],⼜x ∈[0,π],∴x ∈[π3,5π6].故选:C .【点评】本题考查了正弦型函数的图象与性质的应⽤问题,是基础题⽬. 16.已知α,β,γ是某三⾓形的三个内⾓,给出下列四组数据:①sin α,sin β,sin γ;②sin 2α,sin 2β,sin 2γ;③cos 2α2,cos 2β2,cos 2γ2;④tan α2,tan β2,tan γ2分别以每组数据作为三条线段的长,其中⼀定能构成三⾓形的有() A .1组B .2组C .3组D .4组【分析】设α,β,γ的对边分别为a ,b ,c ,不妨令α≤β≤γ,则a ≤b ≤c ,则a +b >c ,分别判断两个较⼩的边与最⼤边的差是否⼀定⼤于0,可得答案.解:∵α,β,γ是某三⾓形的三个内⾓,设α,β,γ的对边分别为a ,b ,c ,不妨令α≤β≤γ,则a ≤b ≤c ,则a +b >c .则①中,sin α=a2R ,sin β=b2R,sin γ=c 2R ;则a 2R+b 2R>c 2R,故⼀定能构成三⾓形;②中,sin 2α=a 24r 2,sin 2β=b 24R2,sin 2γ=c 24R 2,由a 24r +b 24R >c 24R 仅在a 2+b 2﹣c 2>0,即cos γ>0时成⽴,故不⼀定能构成三⾓形.③中,cos 2α2+cos 2β2=cosα+cosβ?cosγ2+12>0恒成⽴.恒成⽴,故⼀定能构成三⾓形,故③正确.④中,当α=β=30°时γ=120°,tan α2+tan β2tan γ2<0,故不⼀定能构成三⾓形,故①③正确,故选:B .【点评】本题考查了构成三⾓形的条件,三⾓函数的图象和性质,是三⾓函数较为综合的考查,难度较⼤,属于难题三、解答题17.设α∈(0,π3),β∈(π6,π2),且α,β满⾜{5√3sinα+5cosα=8√2sinβ+√6cosβ=2(1)求cos(α+π6)的值.(2)求cos (α+β)的值.【分析】(1)将等式5√3sin α+5cos α=8左边提取10,利⽤两⾓和与差的正弦函数公式及特殊⾓的三⾓函数值求出sin (α+π6)的值,由α的范围求出α+π6的范围,利⽤同⾓三⾓函数间的基本关系化简即可求出cos (α+π6)的值;(2)等式√2sin β+√6cos β=2左边提取2√2,利⽤两⾓和与差的正弦函数公式及特殊⾓的三⾓函数值化简,求出sin (β+π3)的值,由β的范围求出β+π3的范围,利⽤同⾓三⾓函数间的基本关系求出cos (β+π3)的值,将所求式⼦利⽤诱导公式sin (π2+θ)=cos θ变形,其中的⾓π2+α+β变形为(α+π6)+(β+π3),利⽤两⾓和与差的正弦函数公式化简后,将各⾃的值代⼊即可求出值.解:(1)∵5√3sin α+5cos α=8,2sin α+12cos α)=8,即sin (α+π6)=45,∵α∈(0,π3),∴α+π6∈(π6,π2),∴cos (α+π6)=√1?sin 2(α+π6)=35;(2)⼜∵√2sin β+√6cos β=2,∴2√2(12sin β+√32cos β)=2,即sin (β+π3)=√22,∵β∈(π6,π2),∴β+π3∈(π2,5π6),∴cos (β+π3)=?√22,∴cos (α+β)=sin[π+(α+β)]=sin[(α+π6)+(β+π3)]=sin (α+π6)cos (β+π3)+cos (α+π6)sin (β+π3) =45×(?√22)+35×√22=?√210.【点评】此题考查了两⾓和与差的正弦函数公式,诱导公式,同⾓三⾓函数间的基本关系,熟练掌握公式,灵活变换⾓度是解本题的关键,同时注意⾓度的范围.本题中灵活运⽤⾓的变换的技巧达到了⽤已知表⽰未知,在求值题中,这是⼀个重要的经验! 18.如图,等腰三⾓形ABC 中,∠B =∠C ,D 在BC 上,∠BAD ⼤⼩为α,∠CAD ⼤⼩为β.(1)若α=π4,β=π3,求BD DC ;(2)若BD DC=12,β=α+π3,求∠B .【分析】(1)分别在△ABD 和△ACD 中使⽤正弦定理即可得出BD DC=sinαsinβ;(2)利⽤三⾓恒等变换求出α,从⽽得出∠B .解:(1)在△ABD 中,由正弦定理得BD sinα=AD sinB,在△ACD 中,由正弦定理得DC sinβ=ADsinC,∵∠B =∠C ,∴BD sinα=DC sinβ∴BD DC=sinαsinβ=√22√32=√63.(2)由(1)知BD DC=sinαsinβ=12,⼜β=α+π3,∴sin β=sin (α+π3)=12sin α+√32cos α,∴12sin α+√32cos α=2sin α,即√3cos α=3sin α,∴tan α=√33,∴α=π6,β=π2,∴B =12(π﹣α﹣β)=π6.【点评】本题考查了正弦定理,三⾓恒等变换,属于中档题.19.某景区欲建两条圆形观景步道M 1,M 2(宽度忽略不计),如图所⽰,已知AB ⊥AC ,AB =AC =AD =60(单位:⽶),要求圆M 与AB ,AD 分别相切于点B ,D ,圆M 2与AC ,AD 分别相切于点C ,D .(1)若∠BAD =π3,求圆M 1,M 2的半径(结果精确到0.1⽶)(2)若观景步道M 1,M 2的造价分别为每⽶0.8千元与每⽶0.9千元,则当∠BAD 多⼤时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)【分析】(1)利⽤切线的性质即可得出圆的半径;(2)设∠BAD =2α,则总造价y =0.8?2π?60tan α+0.9?2π?60tan (45°﹣α),化简,令1+tan α=x 换元,利⽤基本不等式得出最值.解:(1)连结M 1M 2,AM 1,AM 2,∵圆M 1与AB ,AD 相切于B ,D ,圆M 2与AC ,AD 分别相切于点C ,D ,∴M 1,M 2⊥AD ,∠M 1AD =12∠BAD =π6,∠M 2AD =π12,∴M 1B =AB tan ∠M 1AB =60×√33=20√3≈34.6(⽶),∵tanπ6=2tanπ121?tan 2π12=√33,∴tan π12=2?√3,同理可得:M 2D =60×tanπ12=60(2?√3)≈16.1(⽶).(2)设∠BAD =2α(0<α<π4),由(1)可知圆M 1的半径为60tan α,圆M 2的半径为60tan (45°﹣α),设观景步道总造价为y 千元,则y =0.8?2π?60tan α+0.9?2π?60tan (45°﹣α)=96πtan α+108π?1?tanα1+tanα,设1+tan α=x ,则tan α=x ﹣1,且1<x <2.∴y =96π(x ﹣1)+108π(2x ?1)=12π?(8x +18x ?17)≥84π≈263.8,当且仅当8x =18x 即x =32时取等号,当x =32时,tan α=12,∴α≈26.6°,2α≈53.2°.∴当∠BAD 为53.2°时,观景步道造价最低,最低造价为263.8千元.【点评】本题考查直线与圆的位置关系,考查基本不等式的运⽤,属于中档题.20.在△ABC中,内⾓A,B,C的对边分别为a,b,c.已知(√3sinB?cosB)(√3sinC?cosC)=4cos B cos C.(1)求⾓A的⼤⼩;(2)若a=2,求△ABC⾯积的取值范围;(3)若sin B=p sin C,试确定实数p的取值范围,使△ABC是锐⾓三⾓形.【分析】(1 )由已知及三⾓函数中的恒等变换应⽤,从⽽可求tan A=√3,即可解得A的值,(2)由余弦定理和基本不等式可得bc≤4,再根据三⾓形的⾯积公式计算即可,(3)由题意可得p=√32tanC+12,根据⾓C的范围,即可求出.解:(1)∵(√3sinB?cosB)(√3sinC?cosC)=4cos B cos C,∴3sin B sin C+cos B cos C?√3sin B cos C?√3cos B sin C,∴?√3sin(B+C)=3cos(B+C),∴tan(B+C)=?√3,∴tan A=√3,∴A=π3,(2)由余弦定理可得a2=b2+c2﹣2bc cos A,∴4=b2+c2﹣bc≥2bc﹣bc=bc,当且仅当b=c时取等号,∴S△ABC=12bc sin A≤12×4×√32=√3,∴△ABC⾯积的取值范围为(0,√3],(3)sin B=p sin C,∴p=sinBsinC =sin(120°?C)sinC=√32tanC+12,∵△ABC 为锐⾓三⾓形,A =π3,∴π6<C <π2,∴tan C >√33,∴12<p <2,即p 的范围为(12,2)【点评】本题主要考查了三⾓函数中的恒等变换应⽤,考查了正弦定理余弦定理和三⾓形的⾯积公式,属于中档题.21.已知集合P 是满⾜下述性质的函数f (x )的全体:存在⾮零常数M ,对于任意的x ∈R ,都有f (x +M )=﹣Mf (x )成⽴.(1)设函数g (x )=sin πx ,试证明:g (x )∈P ;(2)当M =1时,试说明函数f (x )的⼀个性质,并加以证明;(3)若函数h (x )=sin ωx ∈P ,求实数ω的取值范围.【分析】(1)可取M =1,验证即可;(2)M =1时,由f (x +1)=﹣f (x )可得到函数f (x )的⼀个性质:周期性;(3)由题意可得h (x +M )=﹣Mh (x )成⽴,既 sin (ωx +ωM )=﹣M sin ωx ,可对M 分|M |>1,|M |<1及|M |=1三种情况讨论解决.解:(1)取 M =1 对于任意x ∈R ,g (x +M )=sin (πx +π)=﹣sin πx =﹣g (x )=Mf (x )∴g (x )∈P(2)M =1时,f (x +1)=﹣f (x )f (x +2)=﹣f (x +1)=f (x )∴f (x )是⼀个周期函数,周期为2;(3)∵h (x )=sin ωx ∈P ∴存在⾮零常数M ,对于对于任意的x ∈R ,都有h (x +M )=﹣Mh (x )成⽴.既 sin (ωx +ωM )=﹣M sin ωx若|M |>1,取sin ωx =1,则 sin (ωx +ωM )=﹣M 对x ∈R 恒成⽴时不可能的.若|M |<1,取sin (ωx +ωM )=1,则sinωx =?1M对x ∈R 也不成⽴.∴M =±1当 M =1时 sin (ωx +ω)=﹣sin ωx ,sin (ωx +ω)+sin ωx =0,2sin(ωx +ω2)?cos ω2=0(x ∈R ),cos ω2=0解得:ω=2k π+π(k ∈Z );当M =﹣1时 sin (ωx ﹣ω)=sin ωx ,sin (ωx ﹣ω)﹣sin ωx =0,2cos(ωx ?ω2)?sin(?ω2)=0(x∈R),sin ω2=0解得:ω=2kπk∈Z综上可得ω=kπ(k∈Z)【点评】本题考查三⾓函数的周期性与最值,难点在于(3)中对M取值范围的分类讨论及和差化积公式与根据三⾓函数值求⾓的灵活应⽤,属于难题.。
2016-2017年上海交大附中高一(下)3月月考数学试卷(解析版)
2016-2017学年上海交大附中高一(下)3月月考数学试卷一、填空题:(本大题共12小题,每小题5分,共70分)1.(5分)你在忙着答题,秒针在忙着“转圈”,现在经过了2分钟,则秒针转过的角的弧度数是.2.(5分)已知角α的终边上一点P落在直线y=2x上,则sin2α=.3.(5分)把化成A sin(α+φ)(A>0,φ∈(0,2π))的形式为.4.(5分)函数的定义域为.5.(5分)函数的最大值为.6.(5分)已知,求tan2α+cot2α=.7.(5分)已知:,则=.8.(5分)若函数y=lg(ax2﹣ax+1)的值域为R,则实数a的取值范围是.9.(5分)若关于x的方程5x=有负根,则实数a的取值范围是.10.(5分)小媛在解试题:“已知锐角α与β的值,求α+β的正弦值”时,误将两角和的正弦公式记成了sin(α+β)=cosαcosβ+sinαsinβ,解得的结果为,发现与标准答案一致,那么原题中的锐角α的值为.(写出所有的可能值)11.(5分)已知﹣5sin2α+sin2β=3sinα,则y=sin2α+sin2β函数的最小值为.12.(5分)已知,则f(cos10)=.二、选择题:13.(4分)一个扇形OAB的面积为1平方厘米,它的周长为4厘米,则它的中心角是()A.2弧度B.3弧度C.4弧度D.5弧度14.(4分)角α的终边在第二象限,那么的终边不可能在的象限是第()象限.A.一B.二C.三D.四15.(4分)已知α,β均为锐角,且,则α,β的大小关系是()A.α<βB.α>βC.α=βD.不确定16.(4分)下列关于幂函数y=xα(α∈Q)的论述中,正确的是()A.当α=0时,幂函数的图象是一条直线B.幂函数的图象都经过(0,0)和(1,1)两个点C.若函数f(x)为奇函数,则f(x)在定义域内是增函数D.幂函数f(x)的图象不可能在第四象限内三、解答题:解答应写出必要的文字说明或推理、验算过程.17.(14分)有一种细菌A,每小时分裂一次,分裂时每个细菌都分裂为2个,现有某种饮料200毫升,其中细菌A的浓度为20个/毫升:(1)试讲饮料中的细菌A的个数y表示成经过的小时数x的函数;(2)若饮料中细菌A的总数超过9万个,将对人体有害,那么几个小时后该饮料将对人体有害?(精确到0.1小时).18.(14分)已知△ABC中,tan A,tan B是方程x2+ax+4=0的两个实数根:(1)若a=﹣8,求tan C的值;(2)求tan C的最小值,并指出此时对应的tan A,tan B的值.19.(14分)已知函数f(x)=sin2x+sin2(x+α)+sin2(x+β),其中α,β是适合0≤α≤β≤π的常数(1)若,求函数f(x)的最小值;(2)f(x)是否可能为常值函数?若可能,求出f(x)为常值函数时,α,β的值,如果不可能,请说明理由.20.(16分)某校同学设计了一个如图所示的“蝴蝶形图案”.其中AC,BD是过抛物线y =x2的两条相互垂直的弦(点A,B在第二象限),且AC,BD交于点,点E 为y轴上的一点,记∠EF A=α,其中α为锐角:(1)设线段AF的长为m,将m表示为关于α的函数;(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小.21.(16分)若函数f(x)定义域为R,满足对任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2)有,则称f(x)为“V形函数”;若函数g(x)定义域为R,g(x)恒大于0,且对任意x1,x2∈R,有lg[g(x1+x2)]≤lg[g(x1)]+lg[g(x2)],则称g(x)为“对数V形函数”:(1)当f(x)=x2时,判断函数f(x)是否为V形函数,并说明理由;(2)当g(x)=x2+2时,证明:g(x)是对数V形函数;(3)若f(x)是V形函数,且满足对任意x∈R,有f(x)≥2,问f(x)是否为对数V形函数?如果是,请加以证明;如果不是,请说明理由.2016-2017学年上海交大附中高一(下)3月月考数学试卷参考答案与试题解析一、填空题:(本大题共12小题,每小题5分,共70分)1.(5分)你在忙着答题,秒针在忙着“转圈”,现在经过了2分钟,则秒针转过的角的弧度数是﹣4π.【解答】解:由于经过2分钟,秒针转过2个周角,由一周角为2π,又由顺时针旋转得到的角是负角,故秒针转过的角的弧度数是﹣4π,故答案为:﹣4π.2.(5分)已知角α的终边上一点P落在直线y=2x上,则sin2α=.【解答】解:∵角α的终边上一点P落在直线y=2x上,∴tanα=2,∴sin2α====,故答案为:.3.(5分)把化成A sin(α+φ)(A>0,φ∈(0,2π))的形式为2sin ().【解答】解:由=φ),tanφ=,∵φ∈(0,2π)),∴φ=,则=2sin(),故答案为:2sin().4.(5分)函数的定义域为[﹣3,1)∪(1,5].【解答】解:由题意得:﹣x2+2x+15≥0且x≠1,解得:﹣3≤x≤5,故函数的定义域是[﹣3,1)∪(1,5],故答案为:[﹣3,1)∪(1,5].5.(5分)函数的最大值为2.【解答】解:=1+≤2,∴的最大值为2.故答案为2.6.(5分)已知,求tan2α+cot2α=.【解答】解:∵,∴,∴∵tan2α+cot2α=故答案为7.(5分)已知:,则=.【解答】解:因为,∴sinθ=.∵=+2(﹣tanθ)•(﹣cosθ)=﹣sinθ+2sinθ=sinθ=.故答案为:.8.(5分)若函数y=lg(ax2﹣ax+1)的值域为R,则实数a的取值范围是[4,+∞).【解答】解:∵函数y=lg(ax2﹣ax+1)的值域为R,∴(0,+∞)为函数y=ax2﹣ax+1的值域的子集,∴,解得a≥4.故答案为[4,+∞).9.(5分)若关于x的方程5x=有负根,则实数a的取值范围是a<﹣3.【解答】解:当x<0时,0<5x<1,若关于x的方程5x=有负根,在0<<1,即,即,则,解得a<﹣3,故答案为:a<﹣310.(5分)小媛在解试题:“已知锐角α与β的值,求α+β的正弦值”时,误将两角和的正弦公式记成了sin(α+β)=cosαcosβ+sinαsinβ,解得的结果为,发现与标准答案一致,那么原题中的锐角α的值为,,.(写出所有的可能值)【解答】解:由题意可得:sinαcosβ+cosαsinβ=cosαcosβ+sinαsinβ==×+×,观察可得:锐角α的值可能为,,.故答案为:,,.11.(5分)已知﹣5sin2α+sin2β=3sinα,则y=sin2α+sin2β函数的最小值为0.【解答】解:由﹣5sin2α+sin2β=3sinα,可得sin2β=5sin2α+3sinα∈[0,1],可得sinα∈[]∪[0,]那么y=sin2α+sin2β=6sin2α+3sinα=6(sinα+)2当sinα=0时,y取得最小值为0.故答案为0.12.(5分)已知,则f(cos10)=21﹣7π.【解答】解:∵,∴f(cos10)=f[sin(10﹣)]=2(10﹣)+1=21﹣7π.故答案为:21﹣7π.二、选择题:13.(4分)一个扇形OAB的面积为1平方厘米,它的周长为4厘米,则它的中心角是()A.2弧度B.3弧度C.4弧度D.5弧度【解答】解:设扇形的弧长为:l,半径为r,所以2r+l=4,S面积=lr=1,所以解得:r=1,l=2,所以扇形的圆心角的弧度数是α===2.故选:A.14.(4分)角α的终边在第二象限,那么的终边不可能在的象限是第()象限.A.一B.二C.三D.四【解答】解:∵角α的终边在第二象限,∴+2kπ<x<π+2kπ,k∈Z,∴+<x<+,k∈Z,当k=3n(n∈Z)时,此时的终边落在第一象限,当k=3n+1(n∈Z)时,此时的终边落在第二象限,当k=3n+2(n∈Z)时,此时的终边落在第四象限,综上所述,的终边不可能落在第三象限故选:C.15.(4分)已知α,β均为锐角,且,则α,β的大小关系是()A.α<βB.α>βC.α=βD.不确定【解答】解:∵sin(α+β)=sinαcosβ+cosαsinβ,,∴2sinα=sinαcosβ+cosαsinβ,∴sinα(2﹣cosβ)=cosαsinβ,∴tanα=<=tanβ,∵α,β均为锐角,∴α<β.故选:A.16.(4分)下列关于幂函数y=xα(α∈Q)的论述中,正确的是()A.当α=0时,幂函数的图象是一条直线B.幂函数的图象都经过(0,0)和(1,1)两个点C.若函数f(x)为奇函数,则f(x)在定义域内是增函数D.幂函数f(x)的图象不可能在第四象限内【解答】解:对于A,x=0时,无意义;对于B,y=不过(0,0);对于C,y=是奇函数,在定义域内无单调性;对于D,因为x>0时,y=xα>0,故幂函数图象不可能出现在第四象限,故④对;故选:D.三、解答题:解答应写出必要的文字说明或推理、验算过程.17.(14分)有一种细菌A,每小时分裂一次,分裂时每个细菌都分裂为2个,现有某种饮料200毫升,其中细菌A的浓度为20个/毫升:(1)试讲饮料中的细菌A的个数y表示成经过的小时数x的函数;(2)若饮料中细菌A的总数超过9万个,将对人体有害,那么几个小时后该饮料将对人体有害?(精确到0.1小时).【解答】解:(1)某种饮料200毫升,其中细菌A的浓度为20个/毫升:故200毫升饮料有细菌A4000个,故细菌A的个数y=4000•2x,x>0;(2)由(1)得:4000×2x>90000,解得:x>4.49,即4.5小时后该饮料将对人体有害.18.(14分)已知△ABC中,tan A,tan B是方程x2+ax+4=0的两个实数根:(1)若a=﹣8,求tan C的值;(2)求tan C的最小值,并指出此时对应的tan A,tan B的值.【解答】解:(1)a=8时,x2﹣8x+4=0,∴tan A+tan B=8,tan A tan B=4;∴tan C=tan[π﹣(A+B)]=﹣tan(A+B)==:(2)由题意,△=a2﹣16≥0,解得a≥4或a≤﹣4;又tan A tan B=4>0,∴,∴tan A+tan B=﹣a>0,∴a<0,即a≤﹣4;∴tan C=﹣tan(A+B)==≥,∴tan C的最小值是,此时对应的tan A=tan B=2.19.(14分)已知函数f(x)=sin2x+sin2(x+α)+sin2(x+β),其中α,β是适合0≤α≤β≤π的常数(1)若,求函数f(x)的最小值;(2)f(x)是否可能为常值函数?若可能,求出f(x)为常值函数时,α,β的值,如果不可能,请说明理由.【解答】解:函数f(x)=sin2x+sin2(x+α)+sin2(x+β),其中α,β是适合0≤α≤β≤π的常数(1)∵,则f(x)=sin2x+sin2(x+)+sin2(﹣x)=sin2x+1≥1∴函数f(x)的最小值为1.(2)假设存在常数值,f(0)=f(),则sin2α+sin2β=1+cos2α+cos2β,即2(sin2α+sin2β)=3,∴sin2α+sin2β=,则cos2α+cos2β=.∴,.20.(16分)某校同学设计了一个如图所示的“蝴蝶形图案”.其中AC,BD是过抛物线y =x2的两条相互垂直的弦(点A,B在第二象限),且AC,BD交于点,点E 为y轴上的一点,记∠EF A=α,其中α为锐角:(1)设线段AF的长为m,将m表示为关于α的函数;(2)求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小.【解答】解:(1)点A(﹣m sinα,m cosα+),∴m cosα+=(﹣m sinα)2,即m2sin2α﹣m cosα﹣=0.∵m>0,∴m=|AF|=;(2)同理:|BF|=,|DF|=,|CF|=.“蝴蝶形图案”的面积S=S△AFB+S△CFD=,令t=sinαcosα,t∈(0,],S==(﹣),,∴=2,S min=,此时.21.(16分)若函数f(x)定义域为R,满足对任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2)有,则称f(x)为“V形函数”;若函数g(x)定义域为R,g(x)恒大于0,且对任意x1,x2∈R,有lg[g(x1+x2)]≤lg[g(x1)]+lg[g(x2)],则称g(x)为“对数V形函数”:(1)当f(x)=x2时,判断函数f(x)是否为V形函数,并说明理由;(2)当g(x)=x2+2时,证明:g(x)是对数V形函数;(3)若f(x)是V形函数,且满足对任意x∈R,有f(x)≥2,问f(x)是否为对数V形函数?如果是,请加以证明;如果不是,请说明理由.【解答】(1)解:f(x1+x2)﹣[f(x1)+f(x2)]=(x1+x2)2﹣(x12+x22)=2x1x2∵x1,x2∈R,∴2x1x2符号不定,∴当2x1x2≤0时,f(x)是V形函数;当2x1x2>0时,f (x)不是V形函数;(2)证明:假设对任意x1,x2∈R,有lgg(x1+x2)≤lgg(x1)+lgg(x2),则lgg(x1+x2)﹣lgg(x1)﹣lgg(x2)=lg[(x1+x2)2+2]﹣lg(x12+2)﹣lg(x22+2)≤0,∴(x1+x2)2+2≤(x12+2)(x22+2),∴x12x22+(x1﹣x2)2+2≥0,显然成立,∴假设正确,g(x)是对数V形函数;(3)解:f(x)是对数V形函数证明:∵f(x)是V形函数,∴对任意x1,x2∈R,有f(x1+x2)≤f(x1)+f(x2),∵对任意x∈R,有f(x)≥2,∴0<f(x1)+f(x2)≤f(x1)f(x2),∴f(x1+x2)≤f(x1)f(x2),∴lgf(x1+x2)≤lgf(x1)+lgf(x2),∴f(x)是对数V形函数.。
2016-2017学年上海市交大附中高一(下)学期期末数学试卷 (解析版)
2016-2017学年上海市交大附中高一第二学期期末数学试卷一.填空题1.无限循环小数0.03⋅6⋅化成最简分数为 . 2.函数y =2arccos √x −1的定义域是 .3.若{a n }是等比数列,a 1=8,a 4=1,则a 2+a 4+a 6+a 8= . 4.函数f (x )=tan x +cot x 的最小正周期为 .5.已知a ,b ∈R 且lim n→∞(an 2+bn n+1−n)=3,则a 2+b 2= .6.用数学归纳法证明“1+12+13+⋯+12n −1<n (n ∈N *,n >1)”时,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项数是 .7.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若a =2√3,c =2,A =120°,S △ABC = .8.函数f (x )=arcsin (cos x ),x ∈[π4,5π6]的值域为 .9.数列{a n }满足a 12+a 222+⋯+a n 2n=2n +5,n ∈N *,则a n = .10.设[x ]表示不超过x 的最大整数,则[sin1]+[sin2]+[sin3]+…+[sin10]= . 11.已知25sin 2α+sin α﹣24=0,α在第二象限内,则cos α2的值为 .12.分形几何学是美籍法国数学家伯努瓦.B .曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,如图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是 .13.数列{a n }满足:a n ={q n ,n =2k −1(0.5)n,n =2k ,k ∈N *,{a n }的前n 项和记为S n ,若lim n→∞S n ≤1,则实数q 的取值范围是 .14.已知数列{a n }满足:a 1=m (m 为正整数),a n+1={a n2,当a n 为偶数时3a n +1,当a n 为奇数时若a 6=1,则a 5= ,m 所有可能取值的集合为 .二.选择题15.设a、b、c是三个实数,则“b2=ac”是“a、b、c成等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件16.若函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|≤π)局部图象如图所示,则函数y =f(x)的解析式为()A.y=32sin(2x+π6)B.y=32sin(2x−π6)C.y=32sin(2x+π3)D.y=32sin(2x−π3)17.若数列{a n}对任意n≥2(n∈N)满足(a n﹣a n﹣1﹣2)(a n﹣2a n﹣1)=0,下面给出关于数列{a n}的四个命题:①{a n}可以是等差数列;②{a n}可以是等比数列;③{a n}可以既是等差又是等比数列;④{a n}可以既不是等差又不是等比数列;则上述命题中,正确的个数为()A.1个B.2个C.3个D.4个18.若数列{a n}前12项的值各异,且a n+12=a n对任意的n∈N*都成立,则下列数列中可取遍{a n}前12项值的数列为()A.{a3k+1}B.{a4k+1}C.{a5k+1}D.{a6k+1}三.解答题19.已知函数f(x)=﹣a cos2x−√3a sin2x+2a+b(a≠0),x∈[0,π2],值域为[﹣5,1],求常数a、b的值.20.在一次人才招聘会上,有A、B两家公司分别开出了他们的工资标准:A公司允诺第一个月工资为8000元,以后每年月工资比上一年月工资增加500元;B公司允诺第一年月工资也为8000元,以后每年月工资在上一年的月工资基础上递增5%,设某人年初被A、B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资分别是多少;(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?21.如图,一个半圆和长方形组成的铁皮,长方形的边AD为半圆的直径,O为半圆的圆心,AB=1,BC=2,现要将此铁皮剪出一个等腰三角形PMN,其底边MN⊥BC,点P在边AB上,设∠MOD=θ;(1)若θ=30°,求三角形铁皮PMN的面积;(2)求剪下的三角形铁皮PMN面积的最大值.22.在xOy平面上有一点列P1(a1,b1)、P2(a2,b2)、…、P n(a n,b n)、…,对每个正整数n,点P n位于函数y=1000(a6)x(0<a<6)的图象上,且点P n、点(n,0)与点(n+1,0)构成一个以P n为顶角顶点的等腰三角形;(1)求点P n的纵坐标b n的表达式;(2)若对每个自然数n,以b n、b n+1、b n+2为边长能构成一个三角形,求a的取值范围;(3)设B n=b1b2…b n(n∈N*),若a取(2)中确定的范围内的最小整数,问数列{B n}的最大项的项数是多少?试说明理由.23.设递增数列{a n}共有k项,定义集合A k={x|x=a i+a j,1≤i<j≤k},将集合A k中的数按从小到大排列得到数列{b n};(1)若数列{a n}共有4项,分别为a1=1,a2=3,a3=4,a4=6,写出数列{b n}的各项的值;(2)设{a n}是公比为2的等比数列,且0.5<a1<2,若数列{b n}的所有项的和为4088,求a1和k的值;(3)若k=5,求证:{a n}为等差数列的充要条件是数列{b n}恰有7项.2016-2017学年上海市交大附中高一第二学期期末数学试卷参考答案一.填空题1.无限循环小数0.03⋅6⋅化成最简分数为255.【分析】把问题转化为求是以361000为首项,以1100为公比的所有项的和,然后利用无穷递缩等比数列所有项和的求法求解.解:0.03⋅6⋅=0.036+0.00036+…,可看作是以361000为首项,以1100为公比的所有项的和,则无限循环小数0.03⋅6⋅化成最简分数为3610001−1100=36990=255.故答案为:255.2.函数y=2arccos√x−1的定义域是[1,2].【分析】函数y=2arccos√x−1有意义,可得﹣1≤√x−1≤1且x﹣1≥0,解不等式即可得到所求定义域.解:函数y=2arccos√x−1有意义,可得﹣1≤√x−1≤1且x﹣1≥0,即为x≤2且x≥1,解得1≤x≤2,则函数的定义域为[1,2].故答案为:[1,2].3.若{a n}是等比数列,a1=8,a4=1,则a2+a4+a6+a8=8516.【分析】{a n}是等比数列,a1=8,a4=1,利用等比数列通项公式求出q=12,由此能求出a2+a4+a6+a8.解:{a n}是等比数列,a1=8,a4=1,∴a4=8q3=1,解得q=12,∴a 2+a 4+a 6+a 8=8×12+8×(12)3+8×(12)5+8×(12)7=8516.故答案为:8516.4.函数f (x )=tan x +cot x 的最小正周期为 π .【分析】利用同角三角函数基本关系式化简函数的解析式,然后利用周期公式求解即可. 解:函数f (x )=tan x +cot x =sinx cosx +cosx sinx =2sin2x, 因为y =sin2x 的周期为:π.所以函数f (x )=tan x +cot x 的最小正周期为:π. 故答案为:π.5.已知a ,b ∈R 且lim n→∞(an 2+bn n+1−n)=3,则a 2+b 2= 17 .【分析】利用数列的极限的运算法则,转化求解a ,b 然后求解a 2+b 2即可.解:a ,b ∈R 且lim n→∞(an 2+bnn+1−n)=3,可得limn→∞an 2−n 2+bn−n n+1=3,可得{a =1b −1=3,则a 2+b 2=1+16=17. 故答案为:17.6.用数学归纳法证明“1+12+13+⋯+1n <n (n ∈N *,n >1)”时,由n =k (k >1)不等式成立,推证n =k +1时,左边应增加的项数是 2k . 【分析】观察不等式左侧的特点,分母数字逐渐增加1,末项为 12−1,然后判断n =k +1时增加的项数即可.解:左边的特点:分母逐渐增加1,末项为12−1; 由n =k ,末项为12k −1到n =k +1,末项为 12k+1−1=12k −1+2k,∴应增加的项数为2k .故答案为2k .7.在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若a =2√3,c =2,A =120°,S △ABC = √3 .【分析】由正弦定理和已知易得C =30°,进而可得sin B =12,由三角形的面积公式可得. 解:∵在△ABC 中,a =2√3,c =2,A =120°,∴由正弦定理可得sin C =csinA a =2×√3223=12, ∴C =30°,或C =150°(A =120°,应舍去), ∴sin B =sin (A +C )=sin150°=12∴S △ABC =12acsinB =12×2√3×2×12=√3故答案为:√38.函数f (x )=arcsin (cos x ),x ∈[π4,5π6]的值域为 [−π3,π4] .【分析】推导出cos ×∈[−√32,√22],由此能求出f (x )=arcsin (cos x )的值域.解:∵x ∈[π4,5π6],∴cos x ∈[−√32,√22],∴f (x )=arcsin (cos x )∈[−π3,π4]. 故答案为:[−π3,π4]. 9.数列{a n }满足a 12+a 22+⋯+a n2=2n +5,n ∈N *,则a n = {14,n =12n+1,n ≥2. 【分析】利用递推公式a n ={S 1,n =1S n −S n−1,n ≥2即可求解解:当n =1时,可得12a 1=7,即a 1=14 当n ≥2时,a 12+a 222+⋯+a n 2n=2n +5,n ∈N *,a 12+a 222+⋯+a n−12n−1=2n +3,两式相减可得,a n 2n=2,∴a n =2n +1当n =1时,a 1=14不适合上式 故a n ={14,n =12n+1,n ≥2,故答案为:{14,n =12n+1,n ≥2.10.设[x ]表示不超过x 的最大整数,则[sin1]+[sin2]+[sin3]+…+[sin10]= ﹣4 . 【分析】由题意得[sin1]=[sin2]=[sin3]=0,[sin4]=[sin5]=[sin6]=﹣1,[sin7]=[sin8]=[sin9]=0,[sin10]=﹣1,由此能求出结果.解:[sin1]+[sin2]+[sin3]+…+[sin10] =0+0+0﹣1﹣1﹣1+0+0+0﹣1 =﹣4. 故答案为:﹣4.11.已知25sin 2α+sin α﹣24=0,α在第二象限内,则cos α2的值为 ±35 .【分析】由已知,先求出sin α的值,再利用二倍角余弦公式求cos α2.解:∵25sin 2α+sin α﹣24=0,∴(25sin α﹣24)(sin α+1)=0,∵α在第二象限内,∴sin α=2425.cos α=7−25.在第一或第三象限.根据二倍角余弦公式可得cos 2α2=1−cosα2=925∴cosα2=±35,故答案为;±35.12.分形几何学是美籍法国数学家伯努瓦.B .曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,如图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是 144 .【分析】本题是一个探究型的题,可以看到第四行起每一行实心圆点的个数都是前两行实心圆点个数的和,由此可以得到一个递推关系,利用此递推关系求解即可得答案. 解:由题意及图形知不妨构造这样一个数列{a n }表示实心圆点的个数变化规律,令a 1=1,a 2=1,n ≥3时,a n =a n ﹣1+a n ﹣2,本数列中的n 对应着图形中的第n +1行中实心圆点的个数. 由此知a 11即所求:故各行中实心圆点的个数依次为1,1,2,3,5,8,13,21,34,55,89,144; 即第13项为144; 故答案为:14413.数列{a n }满足:a n ={q n ,n =2k −1(0.5)n,n =2k,k ∈N *,{a n }的前n 项和记为S n ,若lim n→∞S n ≤1,则实数q 的取值范围是 (﹣1,12] .【分析】由题意可得数列{a n }的奇数项成公比为q 2,偶数项成公比为0.25的等比数列,由无穷递缩等比数列的求和公式,结合二次不等式的解法,即可得到所求q 的范围. 解:前n 项和记为S n , a n ={q n ,n =2k −1(0.5)n ,n =2k,k ∈N *, 则lim n→∞S n =lim n→∞[(a 1+a 3+a 5+…)+(a 2+a 4+a 6+…)] =a 11−q 2+a 21−0.25 =q 1−q 2+0.250.75≤1, 由|q |<1即﹣1<q <1, 可得2q 2+3q ﹣2≤0,解得﹣2≤q ≤12,则q 的取值范围是(﹣1,12].故答案为:(﹣1,12].14.已知数列{a n }满足:a 1=m (m 为正整数),a n+1={a n2,当a n 为偶数时3a n +1,当a n 为奇数时若a 6=1,则a 5= 2 ,m 所有可能取值的集合为 {4,5,32} .【分析】先确定a 5=2,a 4=4,进而a 3=有两种情况,再分类讨论,即可得到结论. 解:∵数列{a n }满足:a 1=m (m 为正整数),a n+1={a n2,当a n 为偶数时3a n +1,当a n 为奇数时,a 6=1,∴a 5=2,a 4=4,∴①a 3=1,a 2=2,a 1=4,即m =4; ②a 3=8,a 2=16,此时,又有下面两种情况: 1°a 1=5,即m =5; 2°a 1=32,即m =32. 故答案为:2,{4,5,32}. 二.选择题15.设a 、b 、c 是三个实数,则“b 2=ac ”是“a 、b 、c 成等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【分析】先证明必要性,由a 、b 、c 成等比数列,根据等比数列的性质可得b 2=ac ;再证充分性,可以举一个反例,满足b 2=ac ,但a 、b 、c 不成等比数列,从而得到正确的选项. 解:若a 、b 、c 成等比数列, 根据等比数列的性质可得:b 2=ac ;若b =0,a =2,c =0,满足b 2=ac ,但a 、b 、c 显然不成等比数列, 则“b 2=ac ”是“a 、b 、c 成等比数列”的必要非充分条件. 故选:B .16.若函数f (x )=A sin (ωx +φ)(A >0,ω>0,|φ|≤π)局部图象如图所示,则函数y=f (x )的解析式为( )A .y =32sin(2x +π6) B .y =32sin(2x −π6)C .y =32sin(2x +π3)D .y =32sin(2x −π3)【分析】由y =A sin (ωx +φ)的部分图象可求得A ,T ,从而可得ω,再由f (2π3+π62)=32,结合φ的范围可求得φ,从而可得答案. 解:∵12T =2π3−π6=π2, ∴ω=2πT=2; 又由图象可得:A =32,可得:f (x )=32sin (2x +φ),f (2π3+π62)=32sin (2×5π12+φ)=32, ∴5π6+φ=k π+π2,k ∈Z .∴φ=k π−π3,(k ∈Z ), 又∵|φ|≤π,∴当k=0时,可得:φ=−π3,此时,可得:f(x)=32sin(2x−π3).故选:D.17.若数列{a n}对任意n≥2(n∈N)满足(a n﹣a n﹣1﹣2)(a n﹣2a n﹣1)=0,下面给出关于数列{a n}的四个命题:①{a n}可以是等差数列;②{a n}可以是等比数列;③{a n}可以既是等差又是等比数列;④{a n}可以既不是等差又不是等比数列;则上述命题中,正确的个数为()A.1个B.2个C.3个D.4个【分析】由已知可得a n﹣a n﹣1=2,或a n=2a n﹣1,结合等差数列和等比数列的定义,可得答案.解:∵数列{a n}对任意n≥2(n∈N)满足(a n﹣a n﹣1﹣2)(a n﹣2a n﹣1)=0,∴a n﹣a n﹣1=2,或a n=2a n﹣1,∴①{a n}可以是公差为2的等差数列,正确;②{a n}可以是公比为2的等比数列,正确;③若{a n}既是等差又是等比数列,即此时公差为0,公比为1,由①②得,③错误;④{a n}可以既不是等差又不是等比数列,错误;故选:B.18.若数列{a n}前12项的值各异,且a n+12=a n对任意的n∈N*都成立,则下列数列中可取遍{a n}前12项值的数列为()A.{a3k+1}B.{a4k+1}C.{a5k+1}D.{a6k+1}【分析】对于数列{a n}前12项的值各异,且a n+12=a n对任意的n∈N*都成立,可知:数列{a n}为周期数列.周期为12,并且数列{a n}前12项的值各异.经过验证:对于数列{a5k+1},满足要求,而其他A,B,D不满足要求.解:对于数列{a n}前12项的值各异,且a n+12=a n对任意的n∈N*都成立,可知:数列{a n}为周期数列.周期为12,并且数列{a n}前12项的值各异.对于数列{a5k+1},对于k=0,1,2,3,4,5,6,7,8,9,10,11时,5k+1分别为:1,6,11,12+4,12+9,12×2+2,12×2+7,12×2+12,12×3+5,12×3+10,12×4+3,12×4+8.经过验证:而其他A,B,D不满足要求.故选:C.三.解答题19.已知函数f (x )=﹣a cos2x −√3a sin2x +2a +b (a ≠0),x ∈[0,π2],值域为[﹣5,1],求常数a 、b 的值.【分析】首先把函数的关系式变形成正弦型函数,进一步利用函数的定义域求出函数的值域,其中利用分类讨论思想注意做到灵活应用.解:f (x )=﹣a cos2x −√3a sin2x +2a +b (a ≠0),=﹣2a sin (2x +π6)+2a +b ,由于:x ∈[0,π2],则:2x +π6∈[π6,7π6], 得到:sin(2x +π6)∈[−12,1] 所以:当a >0时,3a +b ≥﹣2a sin (2x +π6)+2a +b ≥b ,由于函数的值域为[﹣5,1],所以:{3a +b =1b =−5, 解得:a =2,b =﹣5,同理:当a <0时,解得:a =﹣2,b =1,故:a =2,b =﹣5或a =﹣2,b =1,20.在一次人才招聘会上,有A 、B 两家公司分别开出了他们的工资标准:A 公司允诺第一个月工资为8000元,以后每年月工资比上一年月工资增加500元;B 公司允诺第一年月工资也为8000元,以后每年月工资在上一年的月工资基础上递增5%,设某人年初被A 、B 两家公司同时录取,试问:(1)若该人分别在A 公司或B 公司连续工作n 年,则他在第n 年的月工资分别是多少; (2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?【分析】(1)设该人在A 或B 公司连续工作n 年,第n 年的月收入分别为a n ,b n ,分别由等差数列与等比数列的通项公式可得a n ,b n ;(2)设该人在A 或B 公司连续工作10年,工资总收入S ,T ,分别利用等差数列与等比数列的求和公式求出S ,T ,由此推导出选择的公司.解:(1)设该人在A 或B 公司连续工作n 年,第n 年的月收入分别为a n ,b n ,∵A 公司允诺第一年月工资为8000元,以后每年月工资比上一年月工资增加500元, B 公司允诺第一年月工资为8000元,以后每年月工资在上一年的月工资基础上递增5%, ∴a n =8000+500(n ﹣1)=500n +7500,b n =8000×(1+5%)n ﹣1=8000×1.05n ﹣1.(2)设该人在A 或B 公司连续工作10年,工资总收入S ,T ,则S =(8000×10+10×92×500)×12=1230000(元), T =8000(1−1.0510)1−1.05×12≈1205769(元). ∵S >T ,∴选择A 公司.21.如图,一个半圆和长方形组成的铁皮,长方形的边AD 为半圆的直径,O 为半圆的圆心,AB =1,BC =2,现要将此铁皮剪出一个等腰三角形PMN ,其底边MN ⊥BC ,点P 在边AB 上,设∠MOD =θ;(1)若θ=30°,求三角形铁皮PMN 的面积;(2)求剪下的三角形铁皮PMN 面积的最大值.【分析】(1)求出MN 和P 到MN 的距离,代入面积公式得出答案;(2)用θ表示出MN 和P 到MN 的距离,得出三角形的面积S 关于θ的函数,利用三角变换求出S 的最大值.解:(1)当∠MOD =θ=30°时,MN =OM •sin θ+AB =32,∴P 到MN 的距离为OA +OM •cos θ=1+√32. ∴△PMN 的面积为12×32×(1+√32)=6+3√38. (2)MN =1+sin θ,P 到直线MN 的距离为(1+cos θ),∴△PMN 的面积S =12×(1+sinθ)(1+cosθ)=12(1+sin θ+cos θ+sin θcos θ)(0≤θ<π),设sin θ+cos θ=t ,则sin θcos θ=t 2−12, ∴S =12(1+t +t 2−12)=t 24+t 2+14=14(t +1)2, ∵t =√2sin (θ+π4),0≤θ<π,∴﹣1<t ≤√2,∴当t =√2时,S 取得最大值3+2√24. 22.在xOy 平面上有一点列P 1(a 1,b 1)、P 2(a 2,b 2)、…、P n (a n ,b n )、…,对每个正整数n ,点P n 位于函数y =1000(a 6)x (0<a <6)的图象上,且点P n 、点(n ,0)与点(n +1,0)构成一个以P n 为顶角顶点的等腰三角形;(1)求点P n 的纵坐标b n 的表达式;(2)若对每个自然数n ,以b n 、b n +1、b n +2为边长能构成一个三角形,求a 的取值范围; (3)设B n =b 1b 2…b n (n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{B n }的最大项的项数是多少?试说明理由.【分析】(1)由于三角形为等腰三角形,所以点P n (a n ,b n )在两点(n ,0)与(n +1,0)连线的中垂线上,结合点P n (a n ,b n )在函数y =1000(a 6)x (0<a <6)的图象上,可得结论.(2)根据函数y =1000(a 6)x (0<a <6)是单调递减,可得对每一个自然数n 有b n >b n +1>b n +2,进而由b n ,b n +1,b n +2为边长能构成一个三角形,可得b n +2+b n +1>b n ,由此可求a 的取值范围.(3)先确定数列{∁n }是一个递减的等差数列,再根据当∁n ≥0且C n +1<0时,数列{∁n }的前n 项的和最大,即可得到结论.解:(1)由题意,∵点P n ,点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形,∴点P n (a n ,b n )在两点(n ,0)与(n +1,0)连线的中垂线上,∴a n =n +12,∴b n =1000(a 6)m +0.5.… (2)∵函数y =1000(a 6)x (0<a <6)递减,∴对每个自然数n ,有b n >b n +1>b n +2,则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2b n +1b n ,即(a 6)2+(a 6)﹣1>0… 解得a <﹣﹣3﹣3√5,或a >3+3√5,综上:3√5−3<a <6.…(3)∵3√5−3<a <6,a 取(2)中确定的范围内的最小整数, ∴a =4,∴b n =1000(23)n+12,…∴数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n ﹣1, 于是当b n ≥1时,B n ≥B n ﹣1,当b n <1时,B n <B n ﹣1,因此,数列{B n }的最大项的项数n 满足不等式b n ≥1且b n +1<1. 由b n =1000(23)n+12≥1,∵b 16>1,b 17<1,∴B 16 最大.…(16分)23.设递增数列{a n }共有k 项,定义集合A k ={x |x =a i +a j ,1≤i <j ≤k },将集合A k 中的数按从小到大排列得到数列{b n };(1)若数列{a n }共有4项,分别为a 1=1,a 2=3,a 3=4,a 4=6,写出数列{b n }的各项的值; (2)设{a n }是公比为2的等比数列,且0.5<a 1<2,若数列{b n }的所有项的和为4088,求a 1和k 的值;(3)若k =5,求证:{a n }为等差数列的充要条件是数列{b n }恰有7项.【分析】(1)由已知中数列{a n }共有4项,分别为a 1=1,a 2=3,a 3=4,a 4=6,进而可得数列{b n }的各项的值;(2)设{a n }是公比为2的等比数列,则数列{b n }的所有项的和即a n 中的每一项重复加了k ﹣1次,进而得到答案;(3)若k =5,分别证明{a n }为等差数列的充要条件是数列{b n }恰有7项的充分性和必要性,综合可得答案.解:(1)∵集合A k ={x |x =a i +a j ,1≤i <j ≤k },将集合A k 中的数按从小到大排列得到数列{b n };若数列{a n }共有4项,分别为a 1=1,a 2=3,a 3=4,a 4=6,则b 1=a 1+a 2=4,b 2=a 1+a 3=5,b 3=a 1+a 4=a 2+a 3=7,b 4=a 2+a 4=9,b 5=a 3+a 4=10. (2)若{a n }是公比为2的等比数列,则数列{b n }的所有项的和即a n 中的每一项重复加了k ﹣1次,即4088=(k﹣1)•(2k﹣1)a1,故a1为2的整数次幂,∵0.5<a1<2,∴a1=1,(2k﹣1)(k﹣1)=4088,k=9,证明:(3)若k=5,{a n}为等差数列,则d>0则数列{b n}也是公差为d的等差数列,最小值为a1+a2=2a1+d最大值为a4+a5=2a1+7d,故数列{b n}恰有7项.若数列{b n}恰有7项.则由a1+a2<a1+a3<a2+a3<a2+a4<a3+a4<a3+a5<a4+a5得:{b n}的7项分别为:a1+a2,a1+a3,a2+a3,a2+a4,a3+a4,a3+a5,a4+a5;则由a1+a3<a1+a4<a3+a4得:a1+a4=a2+a3,即a4﹣a3=a2﹣a1,同理a5﹣a4=a3﹣a2,a3﹣a2=a2﹣a1,即{a n}为等差数列.综上可得:{a n}为等差数列的充要条件是数列{b n}恰有7项.。
2017-2018学年上海交通大学附属中学高一数学第二学期期末试卷(解析版)
上海交通大学附属中学2017-2018学年度第二学期高一数学期末考试试卷(满分150分,120分钟完成. 答案一律写在答题纸上)命题:刘亚丽 审核:杨逸峰一、 填空题(本大题共12题,1-6题每题4分,7-12题每题5分,满分54分) 1、已知12lim()13n an n n→∞-+=,则____________a = 答案:12、一个等差数列的前4项是1,,,2x a x ,则x 等于________ 答案:23、关于x 、y 的二元线性方程组25,32x my nx y +=⎧⎨-=⎩的增广矩阵经过变换,最后得到的矩阵为⎪⎪⎭⎫ ⎝⎛110301,则x y += 答案:44、函数sin y x =和tan y x =的图像在[2,2]ππ-上的交点个数是_______ 答案:55、在数列}{n a 中,1a =2,)(1*1N n a a n n ∈=++,设n S 为数列}{n a 的前n 项和,则2019201820172S S S -+的值为答案:3 解:法-当n 为偶数时,114321=+==+=+-n n a a a a a a Λ,故2n S n =当n 奇数时,21=a ,115432=+==+=+-n n a a a a a a Λ,故23212+=-+=n n S n 故201920182017210112100910103S S S -+=-⨯+= 法二由1a =2,)(1*1N n a a n n ∈=++,可得()()21n n a n ⎧⎪=⎨-⎪⎩为奇数为偶数故2019201820172019201820182017201920182()3S S S S S S S a a -+=---=-=6、把函数22sin 2cos )(+-=x x x f 的图象沿x 轴向左平移m 个单位(m>0),所得函数的图象关于直线π817=x 对称,则m 的最小值为 答案:4π7、给出下列等式:π2cos 4=,π2cos 8=,π2cos 16=, ……请从中归纳出第n ()n ∈*N2n 个答案:12cos n +π28、等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是第 项.答案:设抽取的是第n 项.∵S 11=55,S 11-a n =40,∴a n =15,又∵S 11=11a 6 a 6=5.由a 1=-5,得d =21616=--a a ,令15=-5+(n -1)×2,∴n =119、ABC ∆中,a b c 、、分别为A B C 、、对边,已知,2a c ==,且sin sin 0020cos 01C B b c A -=,则ABC ∆的面积= 。
2016-2017年上海市交大附中高一上期末
上海交通大学附属中学 2016 学年度第一学期高一期末学试卷一、填空题1. 满足{1,2}{1,2,3,4}A ⊆⊆的集合A 共有____________个.2. 已知集合{}{}222,R ,43,RA y y x x xB y y x x x ==+∈==---∈,则A B =____________. 3. 若1tan 2θ=-,那么221sin cos sin cos θθθθ+-=____________. 4. 不等式3112x x-≥-的解集为____________. 5. 若函数2()1x a f x x bx +=++是定义在[1,1]-上的奇函数,则22a b +=____________. 6. 已知函数()3(0)f x a x b a =-+>,则将(),(3),()f e f f π从小到大排列为____________.7. 在物理学中,声波在单位时间内作用在与其传递方向垂直的单位面积上的能量称声强.日常生活中能听到的声音其声强范围很大,最大和最小之间的比值可达1210倍.用声强的物理学单位表示声音强弱很不方便.当人耳听到两个强度不同的声音时,感觉的大小大致上与两个声强比值的常用对数成比例.所以引入声强级来表示声音的强弱.某一处的声强级,是指该处的声强P 与参考声强0P 的比值的常用对数,单位为贝尔(B ),其中参考声强12010P -=瓦/米2.实际生活中一般用1贝尔的十分之一,即分贝(dB )来作为声强级的单位,其公式为声强级(dB )=010lg P P ⎛⎫⨯ ⎪⎝⎭.若某工厂环境内有一台机器(声源)单独运转时,发出噪声的声强级为80 分贝,那么两台相同的机器一同运转时(声强为原来的两倍),发出噪声的声强级为____________分贝.(精确到0.1分贝)8. 记123100A =⨯⨯⨯⨯,那么2341001111log log log log A A A A ++++=____________.9. 已知,(0,)x y ∈+∞,且191x y+=,那么x y +的最小值是____________. 10. 设0a >且1a ≠,则函数2()221x f x a x x a =+--+的零点的个数为____________.11. 若不等式21x a x a a -++≥-+对于任意实数x 恒成立,则满足条件的实数a 的取值范围是____________.12. 已知函数()y f x =的定义域为(1,)+∞,对于定义域内的任意实数x ,有(2)2()f x f x =成立,且(1,2]x ∈时,2()log f x x =.那么当(1,2n x ⎤∈⎦时,函数()y f x =的最大值为____________.(用n 来表示)二、选择题13. 下列命题中正确的是( )A. 第一象限的角必是锐角B. 相等的角终边必相同C. 终边相同的角必相等D. 不相等的角的终边位置必不相同14. 若二次函数2y ax bx c =++的图像不经过原点,则“0abc =”是“此函数为偶函数”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件15. 下列选项中,表示的不是同一个函数的是( )A. ()f x =()g x =B. ()x f x e =与()t g t e =C. 2(),{0,1}f x x x =∈与(),{0,1}g x x x =∈D. ()1f x =与0()g x x =16. 如果一个函数()y f x =的图象是一个中心对称图形,关于点(,)P m n 对称.那么将()y f x =的图像向左平移m 个单位再向下平移n 个单位后得到一个关于原点对称的函数图像.即函数()y f x m n =+-为奇函数.那么下列命题中真命题的个数是( )①二次函数2(0)y ax bx c a =++≠的图像肯定不是一个中心对称图形;②三次函数32(0)y ax bx cx d a =+++≠的图像肯定是一个中心对称图形; ③函数1x b y c a=++(0a >且1a ≠)的图像肯定是一个中心对称图形. A. 0个 B. 1个 C. 2个 D. 3个三、解答题17. 某创业团队拟生产A 、B 两种产品,根据市场预测,A 产品的利润与投资额成正比(如左图),B 产品的利润与投资额的算术平方根成正比(如右图):(注:利润与投资额的单位均为万元)(1)分别将A 、B 两种产品的利润()f x 、()g x 表示为投资额x 的函数;(2)该团队已筹集到10万元资金,并打算全部投入A 、B 两种产品生产,问:当B 产品的投资额为多少万元时,生产A 、B 两种产品能获得的总利润最大,最大总利润为多少?18. 解关于x 的不等式21ax ax x +->19. 已知函数4()(0)f x x x x=-< (1)求函数()f x 的反函数1()f x -;(2)判断1()f x -的单调性并证明;(3)解不等式:22x >-20. 已知函数()9233x x f x a =-⋅+(1)若1,[0,1]a x =∈,求()f x 的值域;(2)当[1,1]x ∈-时,求()f x 的最小值()h a ;(3)对于(2)中的函数()h a ,是否存在实数m 、n ,同时满足下列条件:①3n m >>;②当()h a 的定义域为[,]m n 时,其值域为22[,]m n ,若存在,求出m 、n 的值;若不存在,请说明理由参考答案一、填空题1. 42. [1,1]-3. -14. 3,24⎡⎫⎪⎢⎣⎭5. 06. (3)()()f f f e π<<7. 83.08. 19. 16 10. 2 11. 2(,2],5⎡⎫-∞-+∞⎪⎢⎣⎭12. 12n - 二、选择题13. B 14. C15. D 16. D三、解答题17. (1)1()(0)4y f x x x ==≥,()0)y g x x ==≥ (2)B 产品投资6.25万元,总利润最大,最大为4.0625万元。
(精品)2016-2017学年上海市交通大学附中高一(下)期中数学试卷(解析版)
2016-2017学年上海市交通大学附中高一(下)期中数学试卷一、填空题1.(3分)已知角α的顶点在坐标原点,始边在x轴的正半轴上,其终边上有一点P(5,﹣12),则secα=.2.(3分)arccos(﹣)=.3.(3分)已知扇形的圆心角为2弧度,面积为9cm2,则该扇形的弧长为cm.4.(3分)设sinα=,α∈(,π),则tanα的值为.5.(3分)函数的最小正周期为.6.(3分)若cosxcosy+sinxsiny=,则cos(2x﹣2y)=.7.(3分)函数y=sinx+arcsinx的值域是.8.(3分)关于x的方程cos2x+sinx+a=0在上有解,则a的取值范围是.9.(3分)设函数的最大值为M,最小值为m,则M+m=.10.(3分)已知sinα=3sin(α+),则tan(α+)=.11.(3分)已知△ABC,若存在△A1B1C1,满足,则称△A1B1C1是△ABC的一个“对偶”三角形,若等腰△ABC存在“对偶”三角形,则其底角的弧度数为.12.(3分)已知函数y=kcos(kx)在区间单调递减,则实数k的取值范围为.二、选择题13.(3分)方程tanx=2的解集为()A.{x|x=2kπ+arctan2,k∈Z}B.{x|x=2kπ±arctan2,k∈Z}C.{x|x=kπ+arctan2,k∈Z}D.{x|x=kπ+(﹣1)k arctan2,k∈Z}14.(3分)已知函数y=Asin(ωx+φ)+m(A>0,ω>0)的最大值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则符合条件的函数解析式是()A. B.C.D.15.(3分)函数y=2sin(﹣2x),(x∈[0,π])为增函数的区间是()A.[0,]B.[,] C.[,]D.[,π]16.(3分)已知α,β,γ是某三角形的三个内角,给出下列四组数据:①sinα,sinβ,sinγ;②sin2α,sin2β,sin2γ;③;④分别以每组数据作为三条线段的长,其中一定能构成三角形的有()A.1组 B.2组 C.3组 D.4组三、解答题17.设,且α,β满足(1)求的值.(2)求cos(α+β)的值.18.如图,等腰三角形ABC中,∠B=∠C,D在BC上,∠BAD大小为α,∠CAD大小为β.(1)若,求;(2)若,求∠B.19.某景区欲建两条圆形观景步道M1,M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M与AB,AD分别相切于点B,D,圆M2与AC,AD分别相切于点C,D.(1)若,求圆M1,M2的半径(结果精确到0.1米)(2)若观景步道M1,M2的造价分别为每米0.8千元与每米0.9千元,则当∠BAD多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)20.在△ABC中,内角A,B,C的对边分别为a,b,c.已知=4cosBcosC.(1)求角A的大小;(2)若a=2,求△ABC面积的取值范围;(3)若sinB=psinC,试确定实数p的取值范围,使△ABC是锐角三角形.21.已知集合P是满足下述性质的函数f(x)的全体:存在非零常数M,对于任意的x∈R,都有f(x+M)=﹣Mf(x)成立.(1)设函数g(x)=sinπx,试证明:g(x)∈P;(2)当M=1时,试说明函数f(x)的一个性质,并加以证明;(3)若函数h(x)=sinωx∈P,求实数ω的取值范围.2016-2017学年上海市交通大学附中高一(下)期中数学试卷参考答案与试题解析一、填空题1.(3分)(2017春•杨浦区校级期中)已知角α的顶点在坐标原点,始边在x轴的正半轴上,其终边上有一点P(5,﹣12),则secα=.【解答】解:由题意可得x=5,y=﹣12,r=|OP|=13,∴cosα==,∴secα=.故答案为:.2.(3分)(2017春•杨浦区校级期中)arccos(﹣)=.【解答】解:===.故答案为:.3.(3分)(2017春•杨浦区校级期中)已知扇形的圆心角为2弧度,面积为9cm2,则该扇形的弧长为6 cm.【解答】解:设扇形的弧长为l,圆心角大小为α(rad),半径为r,扇形的面积为S,则:r2===9.解得r=3∴扇形的弧长为l=rα=3×2=6l=rα=3×2=6cm.故答案为:6.4.(3分)(2016春•金山区校级期末)设sinα=,α∈(,π),则tanα的值为﹣.【解答】解:∵sinα=,α∈(,π),∴cosα=﹣=﹣,∴tanα===﹣.故答案为:﹣.5.(3分)(2017春•杨浦区校级期中)函数的最小正周期为π.【解答】解:函数=2﹣1+1=﹣cos(2x+)+1 的最小正周期为=π,故答案为:π.6.(3分)(2013•上海)若cosxcosy+sinxsiny=,则cos(2x﹣2y)=﹣.【解答】解:∵cosxcosy+sinxsiny=cos(x﹣y)=,∴cos(2x﹣2y)=cos2(x﹣y)=2cos2(x﹣y)﹣1=﹣.故答案为:﹣.7.(3分)(2005•上海)函数y=sinx+arcsinx的值域是[﹣sin1﹣,sin1+] .【解答】解:函数y=sinx+arcsinx的定义域为[﹣1,1],且在此定义域内单调递增,故当x=﹣1时,函数y=sinx+arcsinx有最小值﹣sin1+(﹣)=﹣sin1﹣.故当x=1时,函数y=sinx+arcsinx有最大值sin1+,故函数y=sinx+arcsinx的值域是[﹣sin1﹣,sin1+],故答案为[﹣sin1﹣,sin1+].8.(3分)(2017春•杨浦区校级期中)关于x的方程cos2x+sinx+a=0在上有解,则a的取值范围是.【解答】解:由cos2x+sinx+a=0,转化为:1﹣sin2x+sinx+a=0,即(sinx﹣)2=∵上,sinx∈(0,1)∴sinx﹣∈(,]则(sinx﹣)2∈[0,]∴∴a的取值范围是.故答案为.9.(3分)(2017春•杨浦区校级期中)设函数的最大值为M,最小值为m,则M+m=2.【解答】解:由题可知t=sinx∈[﹣1,1],则y=f(x)=1+,令z=,则当t=0时z=0,且函数z为奇函数,所以z max+z min=0,又因为M+m=(1+z max)+(1+z min),所以M+m=2+(z max+z min)=2,故答案为:2.10.(3分)(2017•江苏一模)已知sinα=3sin(α+),则tan(α+)=2﹣4.【解答】解:sinα=3sin(α+)=3sinαcos+3cosαsin=sinα+cosα,∴tanα=.又tan=tan(﹣)===2﹣,∴tan(α+)====﹣=2﹣4,故答案为:2﹣4.11.(3分)(2017春•杨浦区校级期中)已知△ABC,若存在△A1B1C1,满足,则称△A1B1C1是△ABC的一个“对偶”三角形,若等腰△ABC存在“对偶”三角形,则其底角的弧度数为.【解答】解:设A=B,由已知得sinA1=sinB1,cosA=sinA1,cosB=sinB1,cosC=sinC1,则A1=B1,所以A+A1=,B+B1=,C+C1=(舍)或A+A1=,B+B1=,C=C1﹣,解得C=,A=B==.故答案是:.12.(3分)(2017春•杨浦区校级期中)已知函数y=kcos(kx)在区间单调递减,则实数k 的取值范围为[﹣6,﹣4]∪(0,3]∪[8,9]∪{﹣12} .【解答】解:当k>0时,令2mπ≤kx≤π+2mπ,解得≤x≤+,m∈Z,∵函数y=kcos(kx)在区间单调递减,∴,解得,m∈Z,∴0<k≤3或8≤k≤9.当k<0时,令﹣π+2mπ≤﹣kx≤2mπ,解得﹣≤x≤﹣,m∈Z,∵函数y=kcos(kx)在区间单调递减,∴,解得,m∈Z,∴﹣6≤k≤﹣4,或k=﹣12,综上,k的取值范围是[﹣6,﹣4]∪(0,3]∪[8,9]∪{﹣12}.故答案为:[﹣6,﹣4]∪(0,3]∪[8,9]∪{﹣12}.二、选择题13.(3分)(2011•浦东新区二模)方程tanx=2的解集为()A.{x|x=2kπ+arctan2,k∈Z}B.{x|x=2kπ±arctan2,k∈Z}C.{x|x=kπ+arctan2,k∈Z}D.{x|x=kπ+(﹣1)k arctan2,k∈Z}【解答】解:由tanx=2,根据正切函数图象及周期可知:x=kπ+arctan2.故选C14.(3分)(2017春•杨浦区校级期中)已知函数y=Asin(ωx+φ)+m(A>0,ω>0)的最大值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则符合条件的函数解析式是()A. B.C.D.【解答】解:由题意可得A+m=4,A﹣m=0,解得A=2,m=2.再由最小正周期为,可得=,解得ω=4,∴函数y=Asin(ωx+φ)+m=2sin(4x+φ)+2.再由x=是其图象的一条对称轴,可得4×+φ=kπ+,k∈Z,又|φ|<,∴φ=,故符合条件的函数解析式是y=2sin(4x+)+2,故选D.15.(3分)(2017春•杨浦区校级期中)函数y=2sin(﹣2x),(x∈[0,π])为增函数的区间是()A.[0,]B.[,] C.[,]D.[,π]【解答】解:∵y=2sin(﹣2x)=﹣2sin(2x﹣),∴只要求y=2sin(2x﹣)的减区间,∵y=sinx的减区间为[2kπ+,2kπ+],∴令2x﹣∈[2kπ+,2kπ+],解得x∈[kπ+,kπ+],又x∈[0,π],∴x∈[,].故选:C.16.(3分)(2017春•杨浦区校级期中)已知α,β,γ是某三角形的三个内角,给出下列四组数据:①sinα,sinβ,sinγ;②sin2α,sin2β,sin2γ;③;④分别以每组数据作为三条线段的长,其中一定能构成三角形的有()A.1组 B.2组 C.3组 D.4组【解答】解:∵α,β,γ是某三角形的三个内角,设α,β,γ的对边分别为a,b,c,不妨令α≤β≤γ,则a≤b≤c,则a+b>c.则①中,sinα=,sinβ=,sinγ=;则+>,故一定能构成三角形;②中,sin2α=,sin2β=,sin2γ=,由+>仅在a2+b2﹣c2>0,即cosγ>0时成立,故不一定能构成三角形.③中,+﹣=+>0恒成立.恒成立,故一定能构成三角形,故③正确.④中,当α=β=30°时γ=120°,tan+tan﹣tan<0,故不一定能构成三角形,故①③正确,故选:B.三、解答题17.(2011•广东校级模拟)设,且α,β满足(1)求的值.(2)求cos(α+β)的值.【解答】解:(1)∵5sinα+5cosα=8,∴10(sinα+cosα)=8,即sin(α+)=,(3分)∵α∈(0,),∴α+∈(,),∴cos(α+)==;(4分)(2)又∵sinβ+cosβ=2,∴2(sinβ+cosβ)=2,即sin(β+)=,(6分)∵β∈(,),∴β+∈(,),∴cos(β+)=﹣,(7分)∴cos(α+β)=sin[+(α+β)]=sin[(α+)+(β+)]=sin(α+)cos(β+)+cos(α+)sin(β+)=×(﹣)+×=﹣.(12分)18.(2017春•杨浦区校级期中)如图,等腰三角形ABC中,∠B=∠C,D在BC上,∠BAD大小为α,∠CAD大小为β.(1)若,求;(2)若,求∠B.【解答】解:(1)在△ABD中,由正弦定理得,在△ACD中,由正弦定理得,∵∠B=∠C,∴,∴==.(2)由(1)知==,又β=α+,∴sinβ=sin()=sinα+cosα,∴sinα+cosα=2sinα,即cosα=3sinα,∴tanα=,∴α=,β=,∴B=(π﹣α﹣β)=.19.(2017春•杨浦区校级期中)某景区欲建两条圆形观景步道M1,M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M与AB,AD分别相切于点B,D,圆M2与AC,AD 分别相切于点C,D.(1)若,求圆M1,M2的半径(结果精确到0.1米)(2)若观景步道M1,M2的造价分别为每米0.8千元与每米0.9千元,则当∠BAD多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)【解答】解:(1)连结M1M2,AM1,AM2,∵圆M1与AB,AD相切于B,D,圆M2与AC,AD分别相切于点C,D,∴M1,M2⊥AD,∠M1AD=∠BAD=,∠M2AD=,∴M1B=ABtan∠M1AB=60×=20≈34.6(米),∵tan==,∴tan=2﹣,同理可得:M2D=60×tan=60(2﹣)≈16.1(米).(2)设∠BAD=2α(0<α<),由(1)可知圆M1的半径为60tanα,圆M2的半径为60tan(45°﹣α),设观景步道总造价为y千元,则y=0.8•2π•60tanα+0.9•2π•60tan(45°﹣α)=96πtanα+108π•,设1+tanα=x,则tanα=x﹣1,且1<x<2.∴y=96π(x﹣1)+108π()=12π•(8x+﹣17)≥84π≈263.8,当且仅当8x=即x=时取等号,当x=时,tanα=,∴α≈26.6°,2α≈53.2°.∴当∠BAD为53.2°时,观景步道造价最低,最低造价为263.8千元.20.(2017春•杨浦区校级期中)在△ABC中,内角A,B,C的对边分别为a,b,c.已知=4cosBcosC.(1)求角A的大小;(2)若a=2,求△ABC面积的取值范围;(3)若sinB=psinC,试确定实数p的取值范围,使△ABC是锐角三角形.【解答】解:(1)∵=4cosBcosC,∴3sinBsinC+cosBcosC﹣sinBcosC﹣cosBsinC,∴﹣sin(B+C)=3cos(B+C),∴tan(B+C)=﹣,∴tanA=,∴A=,(2)由余弦定理可得a2=b2+c2﹣2bccosA,∴4=b2+c2﹣bc≥2bc﹣bc=bc,当且仅当b=c时取等号,=bcsinA≤×4×=,∴S△ABC∴△ABC面积的取值范围为(0,],(3)sinB=psinC,∴p===+,∵△ABC为锐角三角形,A=,∴<C<,∴tanC>,∴<p<2,即p的范围为21.(2017春•杨浦区校级期中)已知集合P是满足下述性质的函数f(x)的全体:存在非零常数M,对于任意的x∈R,都有f(x+M)=﹣Mf(x)成立.(1)设函数g(x)=sinπx,试证明:g(x)∈P;(2)当M=1时,试说明函数f(x)的一个性质,并加以证明;(3)若函数h(x)=sinωx∈P,求实数ω的取值范围.【解答】解:(1)取M=1 对于任意x∈R,g(x+M)=sin(πx+π)=﹣sinπx=﹣g(x)=Mf(x)∴g(x)∈P(2)M=1时,f(x+1)=﹣f(x)f(x+2)=﹣f(x+1)=f(x)∴f(x)是一个周期函数,周期为2;(3)∵h(x)=sinωx∈P∴存在非零常数M,对于对于任意的x∈R,都有h(x+M)=﹣Mh(x)成立.既sin(ωx+ωM)=﹣Msinωx若|M|>1,取sinωx=1,则sin(ωx+ωM)=﹣M对x∈R恒成立时不可能的.若|M|<1,取sin(ωx+ωM)=1,则对x∈R也不成立.∴M=±1当M=1时sin(ωx+ω)=﹣sinωx,sin(ωx+ω)+sinωx=0,(x∈R),解得:ω=2kπ+π(k∈Z);当M=﹣1时sin(ωx﹣ω)=sinωx,sin(ωx﹣ω)﹣sinωx=0,(x∈R),解得:ω=2kπk∈Z综上可得ω=kπ(k∈Z):qiss;沂蒙松;w3239003;caoqz;sllwyn;左杰;cst;zhczcb;lcb001;742048;whgcn;wfy814(排名不分先后)菁优网2017年6月6日。
上海交大附中2016-2017学年度第一学期高一期末试卷
上海交通大学附属中学2016-2017学年度第一学期高一期末试卷Section BDirections: Complete the following passage by using the words in the box. Each word can only be used once. Note that there is one word more than you need.(A)A. releaseB. lackC. wordsD. struckE. directedF. drivingG. attracts H. involving I. replaces J. element AB. touchedJapanese anime film (卡通片)Your Name has already been a huge success in its own country. Despite the (33)of big-name Hollywood stars or expensive stunts, it has taken nearly it has taken nearly $78m since its (34) in early December.Written and (35) by 43-year-old Makoto Shinkai, Your Name is a love story about two teenagers who swap bodies. The dreamy drama about missed connections (36) young star-crossed lovers has captured the imagination of Chinese audiences."The film was beautiful beyond (37) and every shot was like a painting," one cinema goer Taylor wrote. "Watching this film made me miss the springtime of my youth and that really (38) me," said one fan.But it is perhaps the (39) of fantasy that appeals to young Chinese looking for a little escapism.Film experts believe Your Name has (40) a chord with young Chinese at just the right time. "It's a love story targeted at the demographic with the most amount of disposable income, the so-called 'Post 90s' generation which has been (41) the box office boom," said Jonathan Papish, film industry analyst for China Film Insider. "It also fits well with the ACGN (Anime, Comic, Game, Novel) youth subculture that is growing in popularity in China," Mr Papish added.With box office ticket sales of nearly $ 78 , the 2D animation (42) Stand by MeDoreamon as the top grossing Japanese film of all time in China.(B)A. activelyB. likelyC. reshapeD. combinedE. riseF. concernsG. account H. remains I. promoted J. reflects K. topThe Forbes list, now in its eighth year, identified 74 people –one for every 100 million on the planet –whose actions have the most impact across the world. Factors taken into (43) include the amount of people a person has power over, the financial resources they control, whether they have influence in more than one sphere, and how (44) they wield their power to change the world.This year, 28 members of the list serve as chief executives of major companies. The top ten of those CEOs - all of whom are American - run firms with a (45) market capitalization of $3tn, Forbesreports.Vladimir Putin has beaten Donald Trump to (46) Forbes magazine’s annual list of the world’s most powerful people, taking the number one spot for the third consecutive year. Trump’s (47) to second from number 69 last year is the biggest ever on the list Angela Merkel, the German chancellor, (48) the most powerful woman, at number 3. The British prime minister, Theresa May, is a new addition to the list at number 13, replacing her predecessor David Cameron, who was ranked at number 8 last year. Barack Obama drops to 48."Forbes's list this year of the world's most powerful people (49) rapid and profound change happening around the globe," said David Ewalt, Forbes contributing editor. "The biggest trend this year is (50) the rise to power of Donald Trump, as well as the increasing power of his supporters and allies."Trump, who last week was named Time's person of the year, has continued to stoke (51) over his relationship with the Russian leader, in part by dismissing CIA reports of Russian intervention in the US presidential election.Unfolding events in the White House, as well as those in Aleppo and Europe, including Britain’s vote to leave theEuropean Union, have made 2016 a significant year for Putin, who has helped (52) the global landscape.III. Reading ComprehensionSection A clozeDirections : For each blank in the following passage there are four words or phrases marked A, B, C and D. Fill in each blank with the word or phrase that best fits the context.( A )The stage and films are the major forms of entertainment for millions of people. Though the stage possesses a much longer history, films now hold greater 53 for people. There is, however, a strong 54 between the theater and the cinema. and both plays and films have their 55 merits.Play continue to attract audience because they provide a slightly 56 form of entertainment form that provided by the cinema. There is more 57 on acting and on the personal relationship created between the actor and the 58 . There is a personal element in the theater which is lacking in the cinema. 59 the audience can go along to the theatre week after and enjoy watching their favorite actors taking different.Many films which have been 60 from stage plays have not been successful. For example, there is hardly one film of a Shakespeare play that rivals the 61 play on the stage.“ Hamlet”, “ Macbeth”, “ Henry IV” and “ Richard III” have all b een made into extremely good films. Yet I doubt if one critic would argue that they are in any way better than the ordinary stage62 -. The majority of people would agree that these plays are much 63 when performed on the stage, as64 by Shakespeare. Other plays, too , have 65 as films simply because they are specially written for the stage------a form on its own.53.A. reputation B. fame C. appeal D. position54.A. difference B. conflict C. focus D. link55.A. respectie B. comparative C. constructive D. descriptive56. A. similar B. different C. new D. original57. A. connection B. dependence C. emphasis D. thought58. A. director B. author C. conductor D. audience59.A. Otherwise B. Moreover C. However D. Therefore60. A. jobs B. places C. roles D. action61. A. adapted B. adjusted C. adopted D. affected62. A. previous B. famous C. former D. original63. A. editions B. copies C. issues D. versions64. A. worse B. better C. perfect D. dull65. A. designed B. directed C. matched D. performed66. A. succeeded B. failed C. released D. acted67. A. separate B. dominant C. similar D. fresh( B )Ten years ago, Facebook was a coding project in Mark Zuckerberg’s dorm room. Now it’s an aggressive business with $4 billion of revenue that is used by one-eighth of the world’s po pulation. Here are four main reasons why ---reasons that 68 to almost every business.1. Move fast.Mark Zuckerberg built the first 69 of Facebook in his spare time in his Harvard dorm room. He didn’t write a business plan. He didn’t 70 ask fri ends and advisors what they thought of the idea. He didn’t “research the market,” apply for patents or trademarks, assemble focus groups, or do any of the other things that entrepreneurs are 71 to do. He just built a cool product quickly and 72 it. And Facebook was born.2. Keep it simple.Many companies get so obsessed with all the amazing 73 they want to build into their products that they make their products too complex for anyone to figure out how to use them. The Facebook team kept improving the designof the product, however, each time, they made sure that the service was still 74 to use.3. Make your primary focus the product, not the “business” or “shareholder value.”Mark Zuckerberg was famously 75 in Facebook’s business in t he early days. In fact, he focused all of his energy on Facebook’s product. This product obsession went so far that Zuckerberg continually76 advertising clients, because he didn’t want ads to mess up the service. As Facebook grew, Zuckerberg77 his focus on the product. When Facebook was preparing to go public, Zuckerberg wrote a letter to shareholders in which he stated the company’s intention to focus on its “social mission” first and its business second, wishing them to78 with him in that regard.4. Get really really good at hiring… and really really good at firing.The 79 of a company has nothing to do with its technology or current products. It has more to do with its people. And building a great team means two things: hiring well, and firing well. It’s easy to understand how to hire well. Firing well is also 80 . A hiring mistake is unavoidable. In Facebook’s early days, the company made lots of hiring mistakes, but it 81 them quickly. 82 , if your company is growing rapidly, it will eventually outgrow some of your early executives---and you’ll need to replace them.68 A. apply B. relate C. attach D. persist69 A. pattern B. version C. outline D. variety70. A. presently B. hastily C. endlessly D. eventually71.A. Intended B. supposed C. trained D urged72.A. Pushed B. provided C. granted D. launched73 A.Features B. operation C. skills D. objects74 A. Difficult B. easy C. feasible D. accessible75.A. Fascinated B. absorbed C. hesitant D. uninterested76.A. called in B. sent for C. asked after D. turned away77.A. Switched B. lasted C. maintained D. extended78.A. Identity B . sympathize C. involve D. permit79. A. admiration B. outcome C. strength D. purpose80. A. efficient. B. critical C. upright D. cruel81. A. Addressed B. dealt C. repaired D. corrected82. A. In short B. In addition C. Even though D. As a resultSection BDirections : Read the following four passage. Each passage is followed by several questions or unfinished statements. Choose the one that fits best according to the information given in the passage you have just read.( A )Film has properties that set it apart from painting, sculpture, novels, and plays. It is also, in its most popular and powerful form, a story telling medium that shares many elements with the short story and the novel. And since film presents its stories in dramatic form, it has even more in common with the stage play: Both plays and movies act out or dramatize, show rather than tell, what happens.Unlike the novel, short story, or play, however, film is not handy to study; it cannot be effectively frozen on the printed page. The novel and short story are relatively easy to study because they are written to be read. The stage play is slightly more difficult to study because it is written to be performed. But plays are printed, and because they rely heavily on the spoken word, imaginative readers can conjure up at least a pale imitation of the experience they might have been watching a performance on stage. This cannot be said of the screenplay, for a film depends greatly on visual and other nonvisual elements that are not easily expressed in writing. The screenplay requires so much" filling in" by our imagination that we cannot really approximate the experience of a film by reading a screenplay, and reading a screenplay is worthwhile only if we have already seen the film. Thus, most screenplays are published not to read but rather to be remembered.Still, film should not be ignored because studying it requires extra effort. And the fact that we do not generally "read" films does not mean we should ignore the principles of literary or dramatic analysis when we see a film. Literature andfilms do share many elements and communicate many things in similar ways. Perceptive film analysis rests on the principles used in literary analysis, and if we apply what we have learned in the study of literature to our analysis of films, we will be far ahead of those who do not. Therefore, before we turn to the unique elements of film, we need to look into the elements that film shares with any good story.Dividing film into its various elements for analysis is a somewhat artificial process, for the elements of any art form. never exist in isolation. It is impossible, for example, to isolate plot from character: Events influence people, and people influence events; the two are always closely interwoven in any fictional, dramatic, or cinematic work. Nevertheless, the analytical method uses such a fragmenting technique for ease and convenience. But it does so with the assumption that we can study these elements in isolation without losing sight of their interdependence or their relationship to the whole.83 What is mainly discussed in the text?A.The uniqueness of film. B.The importance of film analysis.C.How to identify the techniques a film uses. D.The relationship between film analysis and literary analysis.84. Why is it not handy to study film?A.Because screenplay is not as well written as literary works.B.Because a film cannot be effectively represented by a printed screenplay.C.Because a film is too complicated. D.Because publishers prefer to publish literary works.85. From the third paragraph we learn that .A.the means by which we analyze a literary work cannot be applied to the analysis of the filmB.a good film and a good story have many elements in commonC.we should not pay extra effort to study filmsD.using the principles of literary analysis makes no difference in film analysis86. Why can't we divide film into various elements for analysis?A.Because these elements are interwoven with each other and cannot keep be separated without failing to appreciate a film as a whole.B.Because films cannot be written down and it is inconvenient to analyse them.C.Because films elements are too complicated. D.Because films need not to be analysed in detail.(B)All aboard: try these outHere are new card games popular in the Western geek circle that offer much brain work. Give them a try if you fancy testing your limits.MysteriumIn this game, the players are to solve a murder mystery in order to put rest the soul of a wrongly-accused man who dies in prison.Mysterium allows one player to be the ghost itself, who offers hints to other pla yers in the way of “dream cards”. The dream cards will then lead players to the cards with details about the murder weapon, location and suspects. Figuring out the connections between these elements will help them find the murderer.Playing the ghost can b e fun, as Tony Mastrangeli, a game reviewer, puts it, “For me, some of the most fun comes from playing the ghost role. I like steering the ship and handing out cards.”CodenamesCodenames starts players out with cards. Each card bears a word on the front and a secret identity on the reverse. Players are divided into two teams, red team and blue team. Each team has a leader, or “spymaster”, who owns a map of each hidden identity. It’s then their job to give out clues so the team members can find the ir own spies.Spymasters can only indicate the word on the card following a strict format: a single word followed by a number. For example, if the cards bearing “cactus (仙人掌)” and “heat” both belong to the red team, the clue can be “desert, two”. The red team members will then start discussing the clues and try to find the two cards that relate to “desert”.Pandemic: LegacyIn this game, you and your friends play a team of doctors and scientists, who can help to prevent four deadly diseases from wiping out humanity. This is a cooperative game, which means you and your teammates either live together or die together.By drawing an instruction card, teammates will be able to move, treat diseases or build a research station. If they draw one of the five “epidemic” (流行病) cards, the city will suffer a disease outbreak. If handled wrong, outbreaks might lead to a chain reaction and cause things to crash down.Pandemic: Legacy requires you to look at the bigger picture before making any decisions. Finding the balance between treating diseases and seeking more permanent cures is a constant challenge.87.Playing the ghost in Mysteriumoffers you a lot of fun becauseA. you can bring the poor man back to lifeB. you can solve the murder mystery by yourselfC. you can dominate the whole gameD. you can select your partners88. In Codenames, what clue may the Spymaster give for the cards bearing “agency”, “climate” and“fountain”?A. “architecture, 3”B. “tourism,3”C. “location, 3”D. “geology, 3”89.. Which of the following is NOT true about Pandemic: Legacy?A.It’s a role-play game.B. Its players need to beat one another.C. It provides fun and mental challenge.D. It calls for carefulness and comprehensive thinking to win the challenge.(C)In 1851, Auguste Comte, the French philosopher and father of sociology, coined the new word altruism as part of a drive to create a non-religious religion based on scientific principles. He defined it as “intentional action for the welfare of others that involves at least the possibility of either no benefit or a loss to the actor”. At that time, studies of animal behavior and phrenology(颅相学)led him to locate egotistical(自我本位的)instincts at the back of the brain, altruistic ones at the front.Today, we have a far more sophisticated knowledge of the neurological(神经学的)and biochemical factors that underpin kind behavior. And this science forms the bases of two books aimed at general readers—but also at those who, despite the research, still doubt the existence of altruism.However, the books may end up providing more information for those who are doubtful. Take The Altruistic Brain by neuroscientist Donald Pfaff. On solid scientific ground, he builds a five-step theory of how altruism occurs, which depends on an idea that is unconvincing and may achieve the opposite result. Pfaff argues that to act altruistically you should first visualize the receiver of your good will, then mentally transfor m their image into your own, “from angle to angle and curve to curve”. Does it really work?At the core of evolutionary biologist David Sloan Wilson’s Does Altruism Exist? is another contentious(有争议的)idea: altruism has evolved as the result of group selection. But Wilson argues his corner masterfully, providing a clever reply to the belief that natural selection occurs only at the level of the selfish gene: “Selfishness beats altruism within groups. Altruistic groups beat selfish groups,” he says.In other words, we cooperate when doing so gives our team the advantage. That doesn’t sound very selfless either. Wilson acknowledges this, but argues that thoughts and feelings are less important than actions. According to evolutionary theory, pure altruists do ex ist, but it doesn’t matter why people choose to help others—their reasons may be difficult even for themselves to understand. What matters is that humans can coordinate their activities in just the right way to achieve common goals. Other animals do this t oo, but we are masters. “Teamwork is the signature adaptation of our species,” he says.Pfaff goes further, insisting that our brain biology “urges us to be kind”. He believes this knowledge alone will inspire individuals to be more altruistic. His desire to create a better world is admirable and some of his ideas are interesting, but Wilson’s analysis is clearer.While it is in our nature to be altruistic, Wilson says, we also have a healthy regard for self-interest and a resistance to being pushed around. Which one comes to the fore depends on the environment in which we find ourselves. Ethics, he says, cannot be taught at individual level, but are “a property of the whole system”.90. Which of the following can be considered an altruistic behaviour accord ing to Comte’s definition?A. A person offers to donate his liver to another who needs one.B. A clerk returns the umbrella to his colleague which he has kept for a long time.C. A student volunteers to wok in the orphanage to collect data for his research.D. A police officer spots a car parking in the no-parking area, finding a child in the trunk.91. What does Donald Pfaff think people should do in order to behave altruistically?A. Draw a picture of the person they are going to help.B. Transform the receiver into a kind person.C. Visualize what they are going to do in mind first.D. Imagine they themselves are to be helped.92. Which of the following statements is David Sloan most likely to agree with in his book?A. Being kind is not something people are born with.B. People in groups are less likely to be selfish.C. People may well act selflessly because of where they are.D. Most people know clearly why they are ready to help others.93. What can be concluded from the passage?A. Figuring out what makes us behave selflessly is a tricky business.B. Unlike Donald Pfaff’s book, David Sloan’s book aims at professional readers.C. Comte’s definition of altruism proves to be impractical in modern times.D. Both Donald Pfaff and David Sloan lay emphasis on team work.(D)When one looks back upon the fifteen hundred years that are the life span of the English language, he should be able to notice a number of significant truths. The history of our been a history of constant change—at times a slow, almost imperceptible change, at other times a violent collision between two languages. Our language has been a living growing organism, it has never been static. Another significant truth that emerges from such a study is that language at all times has been the possession not of one class or group but of many. At one extreme it has been the property of the common, ignorant folk, who have used it in the daily business of their living, much as they have used their animals or the kitchen pots and pans. At the other extreme it has been the treasure of those who have respected it as an instrument and a sign of civilization, and who have struggled by writing it down to give it some permanence, order, dignity, and if possible, a little beauty.As we consider our changing language, we should note here two developments that are of special and immediate importance to us. One is that since the time of the Anglo-Saxons there has been an almost complete reversal of the different relationship of words in a sentence. Anglo-Saxon (old English) was a language of many inflections. Modern English has few inflections. We must now depend largely on word order and function words to convey the meanings that the older language did by means of changes in the forms of words. Function words, you should understand, are words such as prepositions, conjunctions, and a few others that are used primarily to show relationships among other words. A few inflections, however, have survived. And when some word inflections come into conflict with word order, there may be trouble for the users of the language, as we shall see later when we turn our attention to such matters as WHO or WHOM and ME or I. The second fact we must consider is that as language itself changes, our attitudes toward language forms change also. The eighteenth century, for example, produced from various sources a tendency to fix the language into patterns not always set in and grew, until at the present time there is a strong tendency to restudy and re-evaluate language practices in terms of the ways in which people speak and write.94.In contrast to the earlier linguists, modern linguists tend to .A. attempt to continue the standardization of the languageB. evaluate language practices in terms of current speech rather than standards or proper patternsC. be more concerned about language than its analysis or historyD. be more aware of the rules of the language usage95.Choose the appropriate meaning for the word “inflection” used in line 4 of parag raph 2.A. Changes in the forms of words.B. Changes in sentence structures.C. Changes in spelling rules.D. Words that have similar meanings.96.Which of the following statements is not mentioned in the passage?A. It is generally believed that the year 1500 can be set as the beginning of the modern English language.B. Some other languages had great influence on the English language at some stages of its development.C. The English language has been and still in a state of relatively constant change.D. Many classes or groups have contributed to the development of the English language.97. The author of these paragraphs is probably a(an) .A. historianB. philosopherC. anthropologistD. linguist98.Which of the following can be best used as the title of the passage?A. The history of the English language.B. Our changing attitude towards the English language.C. Our changing language.D. Some characteristics of modern English.第II 卷Section ADirections : Fill in the blanks with the proper form of the given word.1. Being ( finance) independent means exactly what it says: You are not dependent on anyone or anything to pay your bills .2.It started as a hobby but now he is freelancing full time offering art direction, graphic design and ( illustrate).3. At last, the board drew the conclusion that the company ( prefer ) to run the risk of developing new products rather than go on producing the products that can’t meet the demands of the new market.4. Your presentation may include the ( describe) of the comic strip and the idea you want to express through the picture.5. Although the digital revolution has brought new life to the making of cartoons and comic strips, many people still believe the traditional hand-drawn works are ( replace) .6. The President must have the ability to tell who is a (rely) source of information and who is not .7. Although at first Japan didn’t leave a deep ( impress) on me, I was gradually attracted by its culture and decided to stay there fore another two months after graduation.8. As usual, Tom gets up at 6 o’clock, and spends at least 10 hours in c oping with various subjects and goes home by the moon and stars ( company) ---- a typical day for a high school student!9. Contrary to our (expect) , the final examination turned out to be a piece of cake.10. He is popular with his peers, for he has a lively sense of humor and appears (nature) confident. Section BDirections : After reading the passage below, fill in the blanks to make the passage coherent and grammatically correct. Use one word that best fits each blank.The word taboo comes from the Tongan language and is used in modern English to describe verbal and nonverbal behavior that is forbidden or to be avoided. (11) what some may think, taboos are not universal. They tend to be specific to a culture or country, and usually form around a group’s values and beliefs.(12) is considered acceptable behavior in one country my be a serious taboo in another. Therefore, (13) you travel to another country , on business or vacation, it is helpful to learn some of that country’s customs (14)you don’t insult the local people.Verbal taboos usually involve topics (15) people believe are too private to talk about publicly , or release to one’s manner of speaking. In many cultures, for example, it is considered bad manners to discuss subjects (16) sex or religion in public. In some countries, the volume of one’s voice may annoy people.Nonverbal taboos usually relate to body languages. One of the biggest difference among many Western Asian, and African cultures is the use of eye contact. In the USA, people make eye contact when talking to others. If a person avoids eye contact, others might think they are being honest or (17) they lack confidence. In many Asian and African cultures , however, children are taught to lower their eyes when talking to their elders, or (18) of higher rank, as a way to show respect.Certain gestures made with the hands can have very different meanings depending on (19) you are. For example, Crossing your middles finger over your forefinger is the sign for good luck in many western countries, in Vietnam and Argentina, however, it is an unsuitable gesture.Behavior that is acceptable and non-offensive in one culture can be highly offensive in another. When visiting a foreign country, be aware of some of the basic differences, (20) will help to ensure a more enjoyable trip. Section CDirections : Complete the following sentences with the help of the Chinese given.21.The reason why many people choose to raise dogs is that dogs can(陪伴他们帮助他们克服孤独感).22. At the exhibition, the company’s (安排了一位销售经理展示新产品).23. By the end of last semester, all the examination rooms _(配备了摄像头阻止学生作弊).24. People are encouraged ( 用纸袋子代替塑料袋replace) for the sake of environmental protection.25. (随着期末考试的临近, draw), almost all the students are busy reviewing the lessons and some have to burn the night oil.26. To his disappointment, he didn’t get the job offer (因为缺少足够的工作经验)。
上海交通大学附属中学20162017学年高二12月月考数学试题Word版含答案
上海交通大学附属中学2016-2017学年度第一学期高二数学月考试卷一. 填空题1. 124312⎛⎫⎛⎫= ⎪⎪-⎝⎭⎝⎭2. △ABC 顶点(0,0)A 、(1,2)B 、(3,1)C -,则该三角形面积为3. 已知方程22146x y k k +=-+表示椭圆,则实数k 的取值范围是 4. 若关于,x y 的二元一次方程组12ax y a x ay a+=+⎧⎨+=⎩无解,则a =5. 已知点F 是抛物线24y x =的焦点,M 、N 是该抛物线上两点,||||6MF NF +=,则MN 中点的横坐标为6. 过原点的直线l 与双曲线2222:1x y C a b-=(0,0)a b >>的左右两支分别相交于A 、B 两 点,(3,0)F 是双曲线的左焦点,若||||4FA FB +=,0FA FB ⋅=,则双曲线的方程 是7. 点(1,1)M 到抛物线2y ax =的准线的距离是2,则a =8. △ABC 外接圆半径为1,圆心为O ,3450OA OB OC ++=,则OC AB ⋅=9. 已知圆22:(1)(1)4M x y -+-=,直线:60l x y +-=,A 为直线l 上一点,若圆M 上 存在两点B 、C ,使得60BAC ︒∠=,则点A 横坐标取值范围是 10. 已知1F 、2F 分别是椭圆2214x y +=的两焦点,点P 是该椭圆上一动点,则12PF PF ⋅ 的取值范围是11. 若直线240ax by -+=(0,0)a b >>被圆222410x y x y ++-+=截得的弦长为4, 则ab 的最大值是 12. 已知1F 、2F 分别为椭圆2214x y +=左右焦点,点P 在椭圆上,12||23PF PF +=, 则12F PF ∠=13. 已知20a b ab +-=(0,0)a b >>,当ab 取得最小值时,曲线||||1x x y y a b-=上的点到直线2y x =的距离的取值范围是14. 在平面直角坐标系xOy 中,已知圆22:16O x y +=,点(2,2)P ,M 、N 是圆O 上相异两点,且PM PN ⊥,若PQ PM PN =+,则||PQ 的取值范围是二. 选择题15. 若(2,3)a =,(4,7)b =-,则a 在b 方向上的投影为( )A. 3B. 135C. 655D. 65 16. 已知过定点(2,0)P 的直线l 与曲线22y x =-相交于A 、B 两点,O 为坐标原点, 当△AOB 的面积取到最大值时,直线l 的倾斜角为( )A. 150︒B. 135︒C. 120︒D. 不存在17. 已知双曲线2222:1x y C a b-=(0,0)a b >>的左右焦点分别为1F 、2F ,点O 为双曲线的 中心,点P 在双曲线右支上,△12PF F 内切圆的圆心为Q ,圆Q 与x 轴相切于点A ,过2F 作直线PQ 的垂线,垂足为B ,则下列结论中成立的是( )A. ||||OA OB >B. ||||OA OB <C. ||||OA OB =D. ||OA 、||OB 大小关系不确定18. 若椭圆2212211:1x y C a b +=11(0)a b >>和椭圆2222222:1x y C a b +=22(0)a b >>的焦点相同,且12a a >,给出如下四个结论:① 椭圆1C 和椭圆2C 一定没有公共点;② 1122a b a b >; ③ 22221212a a b b -=-;④ 1212a a b b -<-;其中,所有正确结论的序号是( )A. ①③B. ①③④C. ①②④D. ②③④三. 解答题19. 已知,x y 满足约束条件10230x y x y --≤⎧⎨--≥⎩,当目标函数z ax by =+(0,0)a b >>在该约束条件下取到最小值522a b +最小值;20. 已知△ABC 的三边长||13AB =,||4BC =,||1AC =,动点M 满足CM = CA CB λμ+,且14λμ=; (1)求cos ACB ∠;(2)求||CM 最小值;21. 双曲线2222:1x y E a b-=(0,0)a b >>; (1)点1(,0)A a -、2(,0)A a ,动点P 在E 上,作11A Q A P ⊥,22A Q A P ⊥,求点Q 的 轨迹方程;(2)点00(,)M x y 、00(,)N x y --为E 上定点,点P 为E 上动点,作MP MQ ⊥, NP NQ ⊥,求Q 的轨迹方程;22. 两圆221111:0C x y D x E y F ++++=(圆心1C ,半径1r ),与2222:C x y D x +++220E y F +=(圆心2C ,半径2r )不是同心圆,方程相减(消去二次项)得到的直线 121212:()()0l D D x E E y F F -+-+-=叫做圆1C 与圆2C 的根轴;(1)求证:当1C 与2C 相交于,A B 两点时,AB 所在直线为根轴l ;(2)对根轴上任意点P ,求证:22221122||||PC r PC r -=-;(3)设根轴l 与12C C 交于点H ,12||C C d =,求证:H 分12C C 的比2221222212d r r d r r λ+-=-+;23. 已知椭圆2222:1x y E a b+=(0)a b >>上动点P 、Q ,O 为原点; (1)若2222||||OP OQ a b +=+,求证:||OP OQ k k ⋅为定值;(2)点(0,)B b ,若BP BQ ⊥,求证:直线PQ 过定点;(3)若OP OQ ⊥,求证:直线PQ 为定圆的切线;参考答案 一. 填空题1. 810⎛⎫ ⎪⎝⎭2. 723. (6,1)(1,4)---4. 1-5. 26. 2212x y -=7. 112-或148. 15- 9. [1,5] 10. [2,1]- 11. 1 12.2π 13. 26(0,]3 14. [2622,2622]-+二. 选择题15. C 16. A 17. C 18. B三. 解答题19. 4; 20.(1)12;(2)3; 21.(1)22224a x b y a -=;(2)2222222200a x b y a x b y -=-; 22. 略; 23. 略;。
2016-2017年上海市交大附中高一(下)期中数学试卷和答案
2016-2017学年上海市交大附中高一(下)期中数学试卷一、填空题1.(3分)已知角α的顶点在坐标原点,始边在x轴的正半轴上,其终边上有一点P(5,﹣12),则secα=.2.(3分)arccos(﹣)=.3.(3分)已知扇形的圆心角为2弧度,面积为9cm2,则该扇形的弧长为cm.4.(3分)设sinα=,α∈(,π),则tanα的值为.5.(3分)函数的最小正周期为.6.(3分)若cosxcosy+sinxsiny=,则cos(2x﹣2y)=.7.(3分)函数y=sinx+arcsinx的值域是.8.(3分)关于x的方程cos2x+sinx+a=0在上有解,则a的取值范围是.9.(3分)设函数的最大值为M,最小值为m,则M+m=.10.(3分)已知sinα=3sin(α+),则tan(α+)=.11.(3分)已知△ABC,若存在△A1B1C1,满足,则称△A1B1C1是△ABC的一个“对偶”三角形,若等腰△ABC存在“对偶”三角形,则其底角的弧度数为.12.(3分)已知函数y=kcos(kx)在区间单调递减,则实数k的取值范围为.二、选择题13.(3分)方程tanx=2的解集为()A.{x|x=2kπ+arctan2,k∈Z}B.{x|x=2kπ±arctan2,k∈Z}C.{x|x=kπ+arctan2,k∈Z}D.{x|x=kπ+(﹣1)k arctan2,k∈Z}14.(3分)已知函数y=Asin(ωx+φ)+m(A>0,ω>0)的最大值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则符合条件的函数解析式是()A.B.C.D.15.(3分)函数y=2sin(﹣2x),(x∈[0,π])为增函数的区间是()A.[0,]B.[,]C.[,]D.[,π] 16.(3分)已知α,β,γ是某三角形的三个内角,给出下列四组数据:①sinα,sinβ,sinγ;②sin2α,sin2β,sin2γ;③;④分别以每组数据作为三条线段的长,其中一定能构成三角形的有()A.1组B.2组C.3组D.4组三、解答题17.设,且α,β满足(1)求的值.(2)求cos(α+β)的值.18.如图,等腰三角形ABC中,∠B=∠C,D在BC上,∠BAD大小为α,∠CAD 大小为β.(1)若,求;(2)若,求∠B.19.某景区欲建两条圆形观景步道M1,M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M与AB,AD分别相切于点B,D,圆M2与AC,AD分别相切于点C,D.(1)若,求圆M1,M2的半径(结果精确到0.1米)(2)若观景步道M1,M2的造价分别为每米0.8千元与每米0.9千元,则当∠BAD 多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)20.在△ABC中,内角A,B,C的对边分别为a,b,c.已知=4cosBcosC.(1)求角A的大小;(2)若a=2,求△ABC面积的取值范围;(3)若sinB=psinC,试确定实数p的取值范围,使△ABC是锐角三角形.21.已知集合P是满足下述性质的函数f(x)的全体:存在非零常数M,对于任意的x∈R,都有f(x+M)=﹣Mf(x)成立.(1)设函数g(x)=sinπx,试证明:g(x)∈P;(2)当M=1时,试说明函数f(x)的一个性质,并加以证明;(3)若函数h(x)=sinωx∈P,求实数ω的取值范围.2016-2017学年上海市交大附中高一(下)期中数学试卷参考答案与试题解析一、填空题1.(3分)已知角α的顶点在坐标原点,始边在x轴的正半轴上,其终边上有一点P(5,﹣12),则secα=.【解答】解:由题意可得x=5,y=﹣12,r=|OP|=13,∴cosα==,∴secα=.故答案为:.2.(3分)arccos(﹣)=.【解答】解:===.故答案为:.3.(3分)已知扇形的圆心角为2弧度,面积为9cm2,则该扇形的弧长为6cm.【解答】解:设扇形的弧长为l,圆心角大小为α(rad),半径为r,扇形的面积为S,则:r2===9.解得r=3∴扇形的弧长为l=rα=3×2=6l=rα=3×2=6cm.故答案为:6.4.(3分)设sinα=,α∈(,π),则tanα的值为﹣.【解答】解:∵sinα=,α∈(,π),∴cosα=﹣=﹣,∴tanα===﹣.故答案为:﹣.5.(3分)函数的最小正周期为π.【解答】解:函数=2﹣1+1=﹣cos(2x+)+1 的最小正周期为=π,故答案为:π.6.(3分)若cosxcosy+sinxsiny=,则cos(2x﹣2y)=﹣.【解答】解:∵cosxcosy+sinxsiny=cos(x﹣y)=,∴cos(2x﹣2y)=cos2(x﹣y)=2cos2(x﹣y)﹣1=﹣.故答案为:﹣.7.(3分)函数y=sinx+arcsinx的值域是[﹣sin1﹣,sin1+] .【解答】解:函数y=sinx+arcsinx的定义域为[﹣1,1],且在此定义域内单调递增,故当x=﹣1时,函数y=sinx+arcsinx有最小值﹣sin1+(﹣)=﹣sin1﹣.故当x=1时,函数y=sinx+arcsinx有最大值sin1+,故函数y=sinx+arcsinx的值域是[﹣sin1﹣,sin1+],故答案为[﹣sin1﹣,sin1+].8.(3分)关于x的方程cos2x+sinx+a=0在上有解,则a的取值范围是.【解答】解:由cos2x+sinx+a=0,转化为:1﹣sin2x+sinx+a=0,即(sinx﹣)2=∵上,sinx∈(0,1)∴sinx﹣∈(,]则(sinx﹣)2∈[0,]∴∴a的取值范围是.故答案为.9.(3分)设函数的最大值为M,最小值为m,则M+m=2.【解答】解:由题可知t=sinx∈[﹣1,1],则y=f(x)=1+,令z=,则当t=0时z=0,且函数z为奇函数,所以z max+z min=0,又因为M+m=(1+z max)+(1+z min),所以M+m=2+(z max+z min)=2,故答案为:2.10.(3分)已知sinα=3sin(α+),则tan(α+)=2﹣4.【解答】解:∵sinα=3sin(α+)=3sinα•+3cosα•,∴tanα=,∴tan=tan(﹣)===2﹣,∴tan(α+)====2﹣4,故答案为:2﹣4.11.(3分)已知△ABC,若存在△A1B1C1,满足,则称△A1B1C1是△ABC的一个“对偶”三角形,若等腰△ABC存在“对偶”三角形,则其底角的弧度数为.【解答】解:设A=B,由已知得sinA1=sinB1,cosA=sinA1,cosB=sinB1,cosC=sinC1,则A1=B1,所以A+A1=,B+B1=,C+C1=(舍)或A+A1=,B+B1=,C=C1﹣,解得C=,A=B==.故答案是:.12.(3分)已知函数y=kcos(kx)在区间单调递减,则实数k的取值范围为[﹣6,﹣4]∪(0,3]∪[8,9]∪{﹣12} .【解答】解:当k>0时,令2mπ≤kx≤π+2mπ,解得≤x≤+,m ∈Z,∵函数y=kcos(kx)在区间单调递减,∴,解得,m∈Z,∴0<k≤3或8≤k≤9.当k<0时,令﹣π+2mπ≤﹣kx≤2mπ,解得﹣≤x≤﹣,m∈Z,∵函数y=kcos(kx)在区间单调递减,∴,解得,m∈Z,∴﹣6≤k≤﹣4,或k=﹣12,综上,k的取值范围是[﹣6,﹣4]∪(0,3]∪[8,9]∪{﹣12}.故答案为:[﹣6,﹣4]∪(0,3]∪[8,9]∪{﹣12}.二、选择题13.(3分)方程tanx=2的解集为()A.{x|x=2kπ+arctan2,k∈Z}B.{x|x=2kπ±arctan2,k∈Z}C.{x|x=kπ+arctan2,k∈Z}D.{x|x=kπ+(﹣1)k arctan2,k∈Z}【解答】解:由tanx=2,根据正切函数图象及周期可知:x=kπ+arctan2.故选:C.14.(3分)已知函数y=Asin(ωx+φ)+m(A>0,ω>0)的最大值为4,最小值为0,最小正周期为,直线是其图象的一条对称轴,则符合条件的函数解析式是()A.B.C.D.【解答】解:由题意可得A+m=4,A﹣m=0,解得A=2,m=2.再由最小正周期为,可得=,解得ω=4,∴函数y=Asin(ωx+φ)+m=2sin(4x+φ)+2.再由x=是其图象的一条对称轴,可得4×+φ=kπ+,k∈Z,又|φ|<,∴φ=,故符合条件的函数解析式是y=2sin(4x+)+2,故选:D.15.(3分)函数y=2sin(﹣2x),(x∈[0,π])为增函数的区间是()A.[0,]B.[,]C.[,]D.[,π]【解答】解:∵y=2sin(﹣2x)=﹣2sin(2x﹣),∴只要求y=2sin(2x﹣)的减区间,∵y=sinx的减区间为[2kπ+,2kπ+],∴令2x﹣∈[2kπ+,2kπ+],解得x∈[kπ+,kπ+],又x∈[0,π],∴x∈[,].故选:C.16.(3分)已知α,β,γ是某三角形的三个内角,给出下列四组数据:①sinα,sinβ,sinγ;②sin2α,sin2β,sin2γ;③;④分别以每组数据作为三条线段的长,其中一定能构成三角形的有()A.1组B.2组C.3组D.4组【解答】解:∵α,β,γ是某三角形的三个内角,设α,β,γ的对边分别为a,b,c,不妨令α≤β≤γ,则a≤b≤c,则a+b>c.则①中,sinα=,sinβ=,sinγ=;则+>,故一定能构成三角形;②中,sin2α=,sin2β=,sin2γ=,由+>仅在a2+b2﹣c2>0,即cosγ>0时成立,故不一定能构成三角形.③中,+﹣=+>0恒成立.恒成立,故一定能构成三角形,故③正确.④中,当α=β=30°时γ=120°,tan+tan﹣tan<0,故不一定能构成三角形,故①③正确,故选:B.三、解答题17.设,且α,β满足(1)求的值.(2)求cos(α+β)的值.【解答】解:(1)∵5sinα+5cosα=8,∴10(sinα+cosα)=8,即sin(α+)=,(3分)∵α∈(0,),∴α+∈(,),∴cos(α+)==;(4分)(2)又∵sinβ+cosβ=2,∴2(sinβ+cosβ)=2,即sin(β+)=,(6分)∵β∈(,),∴β+∈(,),∴cos(β+)=﹣,(7分)∴cos(α+β)=sin[+(α+β)]=sin[(α+)+(β+)]=sin(α+)cos(β+)+cos(α+)sin(β+)=×(﹣)+×=﹣.(12分)18.如图,等腰三角形ABC中,∠B=∠C,D在BC上,∠BAD大小为α,∠CAD 大小为β.(1)若,求;(2)若,求∠B.【解答】解:(1)在△ABD中,由正弦定理得,在△ACD中,由正弦定理得,∵∠B=∠C,∴,∴==.(2)由(1)知==,又β=α+,∴sinβ=sin()=sinα+cosα,∴sinα+c osα=2sinα,即cosα=3sinα,∴tanα=,∴α=,β=,∴B=(π﹣α﹣β)=.19.某景区欲建两条圆形观景步道M1,M2(宽度忽略不计),如图所示,已知AB⊥AC,AB=AC=AD=60(单位:米),要求圆M与AB,AD分别相切于点B,D,圆M2与AC,AD分别相切于点C,D.(1)若,求圆M1,M2的半径(结果精确到0.1米)(2)若观景步道M1,M2的造价分别为每米0.8千元与每米0.9千元,则当∠BAD 多大时,总造价最低?最低总造价是多少?(结果分别精确到0.1°和0.1千元)【解答】解:(1)连结M1M2,AM1,AM2,∵圆M1与AB,AD相切于B,D,圆M2与AC,AD分别相切于点C,D,∴M1,M2⊥AD,∠M1AD=∠BAD=,∠M2AD=,∴M1B=ABtan∠M1AB=60×=20≈34.6(米),∵tan==,∴tan=2﹣,同理可得:M2D=60×tan=60(2﹣)≈16.1(米).(2)设∠BAD=2α(0<α<),由(1)可知圆M1的半径为60tanα,圆M2的半径为60tan(45°﹣α),设观景步道总造价为y千元,则y=0.8•2π•60tanα+0.9•2π•60tan(45°﹣α)=96πtanα+108π•,设1+tanα=x,则tanα=x﹣1,且1<x<2.∴y=96π(x﹣1)+108π()=12π•(8x+﹣17)≥84π≈263.8,当且仅当8x=即x=时取等号,当x=时,tanα=,∴α≈26.6°,2α≈53.2°.∴当∠BAD为53.2°时,观景步道造价最低,最低造价为263.8千元.20.在△ABC中,内角A,B,C的对边分别为a,b,c.已知=4cosBcosC.(1)求角A的大小;(2)若a=2,求△ABC面积的取值范围;(3)若sinB=psinC,试确定实数p的取值范围,使△ABC是锐角三角形.【解答】解:(1)∵=4cosBcosC,∴3sinBsinC+cosBcosC﹣sinBcosC﹣cosBsinC,∴﹣sin(B+C)=3cos(B+C),∴tan(B+C)=﹣,∴tanA=,∴A=,(2)由余弦定理可得a2=b2+c2﹣2bccosA,∴4=b2+c2﹣bc≥2bc﹣bc=bc,当且仅当b=c时取等号,∴S=bcsinA≤×4×=,△ABC∴△ABC面积的取值范围为(0,],(3)sinB=psinC,∴p===+,∵△ABC为锐角三角形,A=,∴<C<,∴tanC>,∴<p<2,即p的范围为21.已知集合P是满足下述性质的函数f(x)的全体:存在非零常数M,对于任意的x∈R,都有f(x+M)=﹣Mf(x)成立.(1)设函数g(x)=sinπx,试证明:g(x)∈P;(2)当M=1时,试说明函数f(x)的一个性质,并加以证明;(3)若函数h(x)=sinωx∈P,求实数ω的取值范围.【解答】解:(1)取M=1 对于任意x∈R,g(x+M)=sin(πx+π)=﹣sinπx=﹣g(x)=Mf(x)∴g(x)∈P(2)M=1时,f(x+1)=﹣f(x)f(x+2)=﹣f(x+1)=f(x)∴f(x)是一个周期函数,周期为2;(3)∵h(x)=sinωx∈P∴存在非零常数M,对于对于任意的x∈R,都有h(x+M)=﹣Mh(x)成立.既sin(ωx+ωM)=﹣Msinωx若|M|>1,取sinωx=1,则sin(ωx+ωM)=﹣M对x∈R恒成立时不可能的.若|M|<1,取sin(ωx+ωM)=1,则对x∈R也不成立.∴M=±1当M=1时sin(ωx+ω)=﹣sinωx,sin(ωx+ω)+sinωx=0,(x∈R),解得:ω=2kπ+π(k∈Z);当M=﹣1时sin(ωx﹣ω)=sinωx,sin(ωx﹣ω)﹣sinωx=0,(x∈R),解得:ω=2kπk∈Z综上可得ω=kπ(k∈Z)。
【全国百强校】上海交通大学附属中学2016-2017学年高二下学期期中考试数学试题
;
12. 将一块边长为 6cm 的正方形纸片, 先按如图 1 所示的阴影部分截去 4 个相等的等腰三角形, 然后将剩
余部分沿虚线折叠成一正视图为正三角形,则其体积
图1
图2
个动点,则 AD AM 的取值范围是
;
7.
i 是虚数单位,则 i
2
3
2i 3i
2017
2017 i
8. 已知椭圆和双曲线有公共焦点,那么双曲线的渐近线方程是
; ;
9. 如图所示的几何体中, 四边形 ABCD 是矩形, 该几何体的左视图面积为
DE、 CE 上的点,则 AM+MN+NB 的最小值为
;
2 倍, 若 M 、N 分别是线段 2
交大附中高二下学期数学期中考试卷
1. 直线的一个方向向量为
;
2. 已知复数 z* 是 z 的共轭复数,则 z*
;
3. 给出下列命题:其中正确命题的序号为
①若 z C ,则 z2 0 ;;②若 a,b R ,且 a
;
b ,则 a i
b i ;③若 a
R ,则 a 1 i 是纯虚数;
④若 z 1 ,则 z3 1 对应的点在复平面内的第一象限
4. 如图, 正方体的底面与正四面体的底面在同一平面
平面相交平面个数为
.
上,且 AB//CD ,则直线 EF 与正方体六个面所在
F
E
D
C
A
B
5. 如图,正方形 OABC 的边长为 1cm,它是水平放置的一个平面图形的直观图,则原图形的周长
是
cm.
y
C
B
D
A
x
6. 在直角梯形 ABCD 中, AB//DC,AD ⊥AB , AD=DC=2 , AB=3 ,点 M 是线段 CB 上(包括边界)的一
上海交大附中2016-2017学年高一下学期3月月考数学试卷 含解析
2016-2017学年上海交大附中高一(下)3月月考数学试卷一、填空题:(本大题共12小题,每小题5分,共70分)1.你在忙着答题,秒针在忙着“转圈",现在经过了2分钟,则秒针转过的角的弧度数是.2.已知角α的终边上一点P落在直线y=2x上,则sin2α=.3.把化成Asin(α+φ)(A>0,φ∈(0,2π))的形式为.4.函数的定义域为.5.函数的最大值为.6.已知,求tan2α+cot2α=.7.已知:,则= .8.若函数y=lg(ax2﹣ax+1)的值域为R,则实数a的取值范围是.9.若关于x的方程5x=有负根,则实数a的取值范围是.10.小媛在解试题:“已知锐角α与β的值,求α+β的正弦值"时,误将两角和的正弦公式记成了sin(α+β)=cosαcosβ+sinαsinβ,解得的结果为,发现与标准答案一致,那么原题中的锐角α的值为.(写出所有的可能值)11.已知﹣5sin2α+sin2β=3sinα,则y=sin2α+sin2β函数的最小值为.12.已知,则f(cos10)= .二、选择题:13.一个扇形OAB的面积为1平方厘米,它的周长为4厘米,则它的中心角是( )A.2弧度 B.3弧度 C.4弧度 D.5弧度14.角α的终边在第二象限,那么的终边不可能在的象限是第()象限.A.一B.二C.三D.四15.已知α,β均为锐角,且,则α,β的大小关系是( ) A.α<βB.α>βC.α=β D.不确定16.下列关于幂函数y=xα(α∈Q)的论述中,正确的是( )A.当α=0时,幂函数的图象是一条直线B.幂函数的图象都经过(0,0)和(1,1)两个点C.若函数f(x)为奇函数,则f(x)在定义域内是增函数D.幂函数f(x)的图象不可能在第四象限内三、解答题:解答应写出必要的文字说明或推理、验算过程。
17.有一种细菌A,每小时分裂一次,分裂时每个细菌都分裂为2个,现有某种饮料200毫升,其中细菌A的浓度为20个/毫升:(1)试讲饮料中的细菌A的个数y表示成经过的小时数x的函数;(2)若饮料中细菌A的总数超过9万个,将对人体有害,那么几个小时后该饮料将对人体有害?(精确到0。
上海交大附中2017届高三下学期返校数学试卷 含解析
2016—2017学年上海交大附中高三(下)返校数学试卷一、填空题:(本大题共14小题,每小题5分,共70分)1.函数y=tan3x的最小正周期为.2.计算= .3.= .4.若集合M={y|y=﹣x2+5,x∈R},N={y|y=,x≥﹣2},则M∩N= .5.二项式(x+1)10的展开式中,x4的系数为.6.现有6位同学排成一排照相,其中甲、乙二人相邻的排法有种.7.若cos(π+α)=﹣,π<α<2π,则sinα=.8.若一个球的体积为,则它的表面积为.9.三棱锥O﹣ABC中,OA=OB=OC=2,且∠BOC=45°,则三棱锥O﹣ABC体积的最大值是.10.如图所示,在长方体ABCD﹣A1B1C1D1中,AD=2,AB=AE=1,M 为矩形AEHD内一点,若∠MGF=∠MGH,MG和平面EFGH所成角的正切值为,则点M到平面EFGH的距离为.11.若集合A1,A2满足A1∪A2=A,则称(A1,A2)为集合A的一种分析,并规定:当且仅当A1=A2时,(A1,A2)与(A2,A1)为集合A 的同一种分析,则集合A={a1,a2,a3}的不同分析种数是.12.已知函数y=a x+b(b>0)是定义在R上的单调递增函数,图象经过点P(1,3),则的最小值为.13.已知函数f(x)是R上的减函数,且y=f(x﹣2)的图象关于点(2,0)成中心对称.若u,v满足不等式组,则u2+v2的最小值为.14.已知x∈R,定义:A(x)表示不小于x的最小整数,如,若x>0且A(2x•A(x))=5,则x的取值范围为.二、选择题:15.在△ABC中,若,则△ABC一定是( )A.等腰三角形 B.直角三角形C.等腰直角三角形D.等边三角形16.已知z∈C,“”是“z为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既不充分也不必要条件17.下列关于公差d>0的等差数列{a n}的四个命题:p1:数列{a n}是递增数列;p2:数列{na n}是递增数列;p3:数列是递增数列;p4:数列{a n+3nd}是递增数列;其中真命题是()A.p1,p2B.p3,p4C.p2,p3D.p1,p418.某工厂今年年初贷款a万元,年利率为r(按复利计算),从今年末起,每年年末偿还固定数量金额,5年内还清,则每年应还金额为()万元.A.B.C.D.三、解答题:本大题共5小题,共90分。
上海市交通大学附属中学XXXX学年高一下学期期末考试数学试卷.pdf
(an+1 +1)2
= (an +1)(an+2
+ 1)
⇒
a2 n+1
+
2an+1
= an an+2
+ an + an+2
⇒
an + an+2
= 2 an+1
⇒ an (1+ q2 − 2q) = 0 ⇒ q = 1
即 an = 2 ,所以 Sn = 2n ,故选择答案 C。
三.解答题:(10 分+10 分+10 分+12 分)
2
n 的最小值。
上海交 通大学附属 中学 20 10- 20 11学年度 第二学期 高一数学期终试卷
( 满 分1 00分 ,90 分 钟 完成 , 允 许 使用 计 算 器 , 答 案 一律 写 在 答 题纸 上 )
一.填空题:(共14小题,每小题3分)
1、 208� 2、-1
9、
3
10、
±
3 5
3、19
∴ Sn = b1 + b2 + ⋅⋯ + bn = −(1× 2 + 2 × 22 + 3 × 23 + ⋯ + n ⋅ 2n
设 Tn =1× 2 + 2 × 22 + 3× 23 + ⋯ + n ⋅ 2n
①
则 2Tn = 1× 22 + 2 × 23 + 3 × 24 + ⋯ + n ⋅ 2n +1
4、5
6、1
7、 [− arcsin 1 , π ] 42
8、 an
上海市上海交通大学附属中学嘉定分校2023-2024学年高一下学期期末考试数学试卷(无答案)
的正整数,平面直角坐标系xOy中,正n边形P1P2⋯P 表示的平面区域的面积为 .(结果用16.若无穷数列{a n}满足:a1≥0,当n∈N,n≥2时,∣a n―a n―1∣=max{a1,a2,⋯,a n―1}(其中max{a1,a2 ,⋯,a n―1}表示a1,a2,⋯,a n―1中的最大项),有以下结论:①若数列{a n}是常数列,则a n=0(n∈N,n≥1);②若数列{a n}是等差数列,则公差d<0;③若数列{a n}是等比数列,则公比q>1;④若存在正整数T,对任意n∈N,n≥1,都有a n+T=a n,则a1是数列{a n}的最大项.则其中的正确结论的个数是()A.1个B.2个C.3个D.4个三、解答题(本大题共有5题,满分78分),解答下列各题必须在答题纸的规定区域(对应的题号)内写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知直线l1:x+ay―a=0和直线l2:ax―(2a―3)y+a―2=0.(1)若l1⊥l2,求实数a的值;(2)若l1//l2,求实数a的值.18.(本题满分14分,第1小题满分6分,第2小题满分8分)已知等差数列{a n}的首项为1,前n项和为S n,且4a5是3与S7―1的等比中项.(1)求数列{a n}的通项公式;(2)若T n是数列{1a n a n+1}的前n项和,求T n的最小值.19.(本题满分16分,第1小题满分4分,第2①小题满分5分,第2②小题满分7分)从空间一点O出发作三条两两互相垂直的坐标轴,可以建立空间直角坐标系O―xyz.如果坐标系中的坐标轴不垂直,那么这样的坐标系称为“斜坐标系”.设Ox、Oy、Oz是空间中相互成60∘角的三条坐标轴,其中i、j 、k分别是x轴、y轴、z轴正方向的单位向量.(1)计算i⋅j+j⋅k+i⋅k的值;(2)若向量n=xi+yj+zk,则把有序数对[x,y,z]叫做向量n在该斜坐标系中的坐标.已知OA=[0,2,1],OB=[2,1,0]①求OA⋅OB的值;②求△AOB的面积.四、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.(本题满分14分,第(1)题满分6分,第(2)题满分8分)已知复数z=(2―a)+(2+a)i,其中i为虚数单位,a∈R(1)若z⋅z=16,求实数a的值;(2)求|z―2|的最小值,并指出|z―2|取到最小值时实数a的值.18.(本题满分14分,第(1)题满分4分,第(2)题满分4分,第(3)题满分6分)已知函数y=f(x),其中f(x)=sin(ωx+φ),(ω>0,0≤φ<2π)*(1)若ω=1,φ=0,在用“五点法”作出函数y=f(x),x∈[0,2π]的大致图像的过程中,第一步需要将五个关键点列表,请完成下表:x0f(x)0(2)若ω=2,φ=π3,写出函数y=f(x)的最小正周期和单调增区间(3)若y=f(x)的频率为1π,且f(x)≤f(π2)恒成立,求函数y=f(x)的解析式.19.(本题满分14分,第(1)题满分6分,第(2)题满分8分)如图,某地有三家工厂分别位于矩形ABCD的两个顶点A、B及CD的中点P处.AB=30km,BC=10km.为了处理这三家工厂的污水,现要在该矩形区域内(不含边界)且与A、B等距离的一点O处,建造一个污水处理厂,并铺设三条排污管道OA、OB、OP.记排污管道的总长度为y km.(1)设∠BAO=θ,将y表示成θ的函数并求其定义域;(2)确定污水处理厂的位置,使排污管道的总长度y最短,并求出此时y的值.。
2019年上海市上海交大附中数学高一下期末
上海交通大学附属中学2017学年度第二学期高一数学期终考试卷考生注意:1.答卷前,考生务必在答题纸上将姓名、考号填写清楚.2.本试卷共有21道试题,满分100分,考试时间90分钟.一、填空题(本大题共有12题,满分36分)考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分.1.函数y =____________.2.已知数列{}n a 是公比为q 的等比数列,且134a a ⋅=,48a =,则1a q +=________. 3.公比为q 的无穷等比数列{}n a 满足:1q <,12()n n n a k a a ++=++(*n ∈N ),则实数k 的取值范围为_________.4.已知角α的终边在射线43y x =-(0x ≤)上,则sin 2tan 2αα+=______.5.关于x 的方程sin cos cos2x x x +=([]x ππ∈-,)的所有解之和为_________. 6.函数()sin sin()3f x x x π⋅=-的最小正周期为________. 7.设数列{}n a 满足:121a a ==,32a =,且对于任意正整数n 都有121n n n a a a ++⋅⋅≠,又123123n n n n n n n n a a a a a a a a ++++++⋅⋅⋅=+++,则1232013a a a a ++++=________.8.已知(0)x π∈,,函数21cos 8sin 2()sin xx f x x++=的最小值是___________.9.设x 为实数,[]x 为不超过实数x 的最大整数,如[2.66]2=,[ 2.66]3-=-.记{}[]x x x =-,则{}x 的取值范围为[01),.现定义无穷数列{}n a 如下:{}1a a =,当0n a ≠时,11{}n na a +=;当0n a =时,10n a +=.当1132a <≤时,对任意的自然数n 都有n a a =,则实数a 的值为________. 10.设等差数列{}n a 满足:22222233363645sin cos cos cos sin sin 1sin()a a a a a a a a -+-=+,公差(10)d ∈-,.若当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则首项1a 的取值范围是________. 11.若三个角α、β、γ满足:17tan tan tan 6αβγ++=,4cot cot cot 5αβγ++=-,17cot cot cot cot cot cot 5αββγγα⋅+⋅+⋅=-,则tan()αβγ++=___________.12.已知线段AB 上有9个确定的点(包括端点A 与B ).现对这些点进行往返标数(从A →B →A →B →…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点A 上标1称为点1,然后从点1开始数到第二个数,标上2,称为点2,再从点2开始数到第三个数,标上3,称为点3(标上数n 的点称为点n ),…,这样一直继续下去,直到1,2,3,…,2013都被标记到点上.则点2013上的所有标记的数中,最小的是____________.二、选择题(本大题共有4题,满分16分)每题有且只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.13.用数学归纳法证明“当n 为正奇数时,n n x y +能被x y +整除”的第二步是[答] ()(A) 证明假设n k =(1k ≥且k ∈N )时正确,可推出1n k =+正确 (B) 证明假设21n k =+(1k ≥且k ∈N )时正确,可推出23n k =+正确 (C) 证明假设21n k =-(1k ≥且k ∈N )时正确,可推出21n k =+正确 (D) 证明假设n k ≤(1k ≥且k ∈N )时正确,可推出2n k =+时正确14.右图是偶函数)sin()(ϕω+=x A x f (0A >,0ω>,0ϕπ<<)的部分图象,KML △为等腰直角三角形,90KML ∠=︒,1KL =,则1()6f =[答] ()(A) 43-(B) 14-(C) 12-(D)43 15.若sin sin 1x y +=,则cos cos x y -的取值范围是[答] ()(A)[(B)[ (C) [11]-, (D) [22]-,16.设等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ⋅->,99100101a a -<-.给出下列结论:①01q <<;②9910110a a ⋅->;③100T 的值是n T 中最大的;④使1n T >成立的最大自然数n 等于198.其中正确的结论是 [答] ( ) (A) ①③ (B) ①④ (C) ②③(D) ②④三、解答题(本大题共有5题,满分48分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.21BA已知函数)sin()(ϕω+=x x f (0ω>,0ϕπ<<)在一个周期上的一系列对应值如下表:(1(2)在ABC △中,2AC =,3BC =,A 为锐角,且21)(-=A f ,求ABC △的面积.18.(本题满分10分)本题共有2个小题,第(1)小题满分4分,第(2)小题满分6分.已知集合{}()310C x y xy x y =-++=,,数列{}n a 的首项31=a ,且当2n ≥时,点1()n n a a C -∈,,数列{}n b 满足11n nb a =-. (1)试判断数列{}n b 是否是等差数列,并说明理由; (2)若lim()1n n ns ta b →∞+=(s ,t ∈R ),求t s 的值.如图,一个半圆和长方形组成的铁皮,长方形的边AD 为半圆的直径,O为半圆的圆心,1AB =,2BC =,现要将此铁皮剪出一个等腰三角形PMN ,其底边MN BC ⊥.(1)若30MOD ∠=︒,求三角形铁皮PMN 的面积; (2)求剪下的三角形铁皮PMN 面积的最大值.PNCBAODM20.(本题满分10分)本题共有2个小题,第1小题满分3分,第2小题满分7分.已知数列{}n a 的前n 项和n S ,满足2n n n S a b =+(n ∈*N ). (1)若n b =n, 求数列{}n a 的通项公式;(2)若(1)n n b =-,求数列{}n n a b ⋅的前n 项和n T 的表达式.21.(本题满分10分)本题共有3个小题,第1小题满分2分,第2小题满分3分,第3小题满分5分.将边长分别为1、2、3、4、…、n 、1n +、…(n ∈*N )的正方形叠放在一起,形成如图所示的图形.由小到大,依次记各阴影部分所在的图形为第1个、第2个、…、第n 个阴影部分图形.设前n 个阴影部分图形的面积的平均值为()f n .记数列{}n a 满足11a =,+1()()n n f n n a f a n ⎧=⎨⎩当为奇数当为偶数.(1)求()f n 的表达式;(2)写出2a 、3a 的值,并求数列{}n a 的通项公式. (3)记a b ad bc c d=-.若n n b a s =+(s ∈R ),且2110n n n n b b b b +++<恒成立,求s 的取值范围.54321上海交通大学附属中学2012-2013学年第二学期高一期末考试数学一. 填空题(本大题满分36分)本大题共有12题,考生应在答题纸上相应编号的空格 内直接填写结果,每个空格填对得3分,否则一律得零分. 1.[]0,π2.3或3- 3.()(),20,-∞-⋃+∞ 4.26255.0 6.π 7.4025 8.4 9.21- 10.4332ππ⎛⎫⎪⎝⎭, 11.1112.2二. 选择题(本大题满分16分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得4分,否则一律得零分.13.C 14.D 15.A 16. B 三. 解答题(本大题满分48分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. (本题满分8分) 本题共有2个小题,第(1)小题满分4分,第(2)小题满分4分.解:(1) ()cos 2f x x =; (4分)(2)1()2f A =-,即1cos 22A =-,又A 为锐角,π3A ∴= , (5分)在ABC △中,由正弦定理得:sin sin BC ACA B=, sin 3sin AC A B BC ⋅∴== ,又BC AC >,π3B A ∴<= ,6cos 3B ∴=, (6分)323sin sin()sin cos cos sin C A B A B A B +∴=+=+=,(7分)PNCBA ODM1sin 22ABC S AC BC C ∴=⋅⋅⋅=△ (8分) 18.(本题满分10分)本题共有2个小题,第(1)小题满分4分,第(2)小题满分6分.(1)∵当2≥n 时,点()n n a a ,1-恒在曲线C 上∴01311=++---n n n n a a a a (1分) 由nn a b -=11得 当2≥n 时,1111111111111222n n n n n n n n n n n n n n a a a a b b a a a a a a a a ----------=-===-----+-+ (3分) ∴数列{}n b 是公差为21-的等差数列. (4分)(2)∵31=a ,∴211111-=-=a b ∴()1111222n b n n ⎛⎫=-+-⨯-=- ⎪⎝⎭ (6分) ∴n a n -=-1121 , 则 na n 21+= (8分)∴2221222112122n ns s n t n tn ts t n a b n n n n ⎛⎫-+⋅+-++ ⎪⎝⎭+==⎛⎫---+ ⎪⎝⎭1lim =⎪⎪⎭⎫⎝⎛+∞→n n n b t a s ∴1=s ∴1=ts (10分)19.(本题满分10分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分5分.(1)设MN 交AD 交于Q 点 ,∵30MOD ∠=,∴12MN =,(1分)OQ =(2分)1136(122228PMNSMN AQ +=⋅=⨯⨯+= (5分) (2)设MOD θ∠=,θ∴∈[0,]2π,sin MQ θ=,cos OQ θ= (6分) 1(1sin )(1cos )2PMN S MN AQ θθ∴=⋅=++1(1sin cos sin cos )2θθθθ=+++ (7分) 令sin cos t θθ+=∈,2211(1)(1)=224PMNt t St -+∴=++ (8分) ∴当t =,即4πθ=时,(9分) PMNS取得最大值,PMNS ∴的最大值为4223+. (10分)20.(本题满分10分)本题共有2个小题,第1小题满分3分,第2小题满分7分.(1)由2n n S a n =+ (*)当n=1时,可得11a =-当2n ≥时,1121n n S a n --=+-(**)(*)与(**)相减得121n n a a -=-,()1121n n a a --=- 故{}1n a -是以11a -=-2为首项,以2为公比的等比数列,所以1122n n a --=-⋅,得112212n nn a -=-⋅=-(2)由2(1)(1)n n n S a n =+-≥得: 1112(1),2n n n S a n ---=+-≥两式相减得: 122(1),2nn n a a n -=--≥解法一:11142422(1)(1)2(1)(1)3333n n n n n n n a a a ---=----=+---1122(1)2((1))(2)33n n n n a a n --+-=+-≥故数列2(1)3n n a ⎧⎫+-⎨⎬⎩⎭是以12133a -=为首项,公比为2的等比数列.所以121(1)233n n n a -+-=⨯, 即1122(1)33n n n a -=⨯--.解法二:两边同除以(1)n-,得到 1122,2(1)(1)n n n n a a n --=--≥-- 设112(1)(1)nn n n a a λλ--⎛⎫+=-+ ⎪--⎝⎭, 1123(1)(1)n n n n a a λ--∴=----,23λ=, 2(1)3n n a ⎧⎫∴+⎨⎬-⎩⎭是以12133a -+=-为首项,2-为公比的等比数列.121(2)(1)33n n n a -⎛⎫∴+=-⨯- ⎪-⎝⎭整理后得到 1122(1)33n n n a -=⨯--.21.(本题满分10分)本题共有3个小题,第1小题满分2分,第2小题满分3分,第2小题满分5分.(1) 由题意,第1个阴影部分图形的面积为2221-,第2个阴影部分图形的面积为2243-,……,第n 个阴影部分图形的面积为()222(21)n n --.故()()()22222221432(21)()n n f n n⎡⎤-+-+--⎣⎦=1234(21)221n nn n+++++-+==+ (2分)(2) 11a =2(1)3a f ==32()2317a f a ==⨯+= (3分)当n 为偶数时,(1)21n a f n n =-=- (4分)当n 为大于1的奇数时,[]11()2122(1)1145n n n a f a a n n --==+=--+=-故1121451n n a n n n n =⎧⎪=-⎨⎪-⎩() (为偶数) (为大于的奇数) (5分)(3) 由(2)知 1121451n s n b n s n n s n +=⎧⎪=-+⎨⎪-+⎩() (为偶数) (为大于的奇数) (6分)又2110n n n n b b b b +++<恒成立11212()0n n n n n n n b b b b b b b +++++⇔-=-<恒成立(ⅰ) 当1n =时,12()0n n n b b b ++-<恒成立,即213()(3)(6)0b b b s -=+-<恒成立,于是303s s +>⇒>- (7分) (ⅱ)当n 为偶数时,12()0n n n b b b ++-<恒成立,即 ()()[4(1)5][(21)2(2)1]41(4)0n s n s n s n s +-+⋅-+-+-+=-+-< 恒成立,于是410n s -+>恒成立,()max 417s n >-+=- (8分)(ⅲ)当n 为大于1的奇数时,12()0n n n b b b ++-<恒成立即[]()()()()2(1)1454(2)52180n s n s n s n s +-+⋅-+-+-+=++-<⎡⎤⎣⎦ 恒成立,于是210n s ++>恒成立,max (21)7s n >--=- (9分)综上所述:3s >- (10分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
交大附中高一期末数学试卷
一. 填空题
1. 无限循环小数0.036
化成最简分数为 2.
函数y =的定义域是
3. 若{}n a 是等比数列,18a =,41a =,则2468a a a a +++=
4. 函数()tan cot f x x x =+的最小正周期为
5. 已知,a b R ∈且2lim()31
n an bn n n →∞+-=+,则22a b += 6. 用数学归纳法证明“11112321
n n +++⋅⋅⋅+<-*(,1)n N n ∈>”时,由n k =(1)k >不 等式成立,推证1n k =+时,左边应增加的项数共 项
7. 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,
若a =2c =,120A ︒=, 则ABC S ∆=
8. 函数()arcsin(cos )f x x =,5[
,]46x ππ∈的值域为 9. 数列{}n a 满足12225222
n n a a a n ++⋅⋅⋅+=+,*n N ∈,则n a = 10. 设[]x 表示不超过x 的最大整数,则[sin1][sin 2][sin3][sin10]+++⋅⋅⋅+=
11. 已知225sin sin 240αα+-=,α为第二象限角,则cos 2α
=
12. 分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学 科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形 规律生长成一个数形图,则第13行的实心圆点的个数是
13. 数列{}n a 满足:,21(0.5),2n n n q n k a n k
⎧=-⎪=⎨=⎪⎩,*k N ∈, {}n a 的前n 项和记为n S ,若lim 1n n S →∞
≤,则实数q 的 取值范围是
14. 已知数列{}n a 满足:1a m =*()m N ∈,1
0.531n n n
a a a +⎧=⎨+⎩ n n a a 当为偶数时当为奇数时,若61a =, 写出m 所有可能的取值
二. 选择题
15. 设a 、b 、c 是三个实数,则“2b ac =”是“a 、b 、c 成等比数列”的( )
A. 充分非必要条件
B. 必要非充分条件
C. 充要条件
D. 既非充分也非必要条件
16. 若函数()sin()f x A x ωϕ=+(0,0,||)A ωϕπ>>≤
局部图像如图所示,则函数()y f x =的解析式为( )
A. 3sin(2)26y x π=
+ B. 3sin(2)26y x π=- C. 3sin(2)23y x π=+ D. 3sin(2)23
y x π=- 17. 若数列{}n a 对任意2n ≥()n N ∈满足11(2)(2)0n n n n a a a a -----=,下面给出关于数 列{}n a 的四个命题:① {}n a 可以是等差数列;② {}n a 可以是等比数列;③ {}n a 可以既 是等差又是等比数列;④ {}n a 可以既不是等差又不是等比数列;
则上述命题中,正确的个数为( )
A. 1个
B. 2个
C. 3个
D. 4个
18. 若数列{}n a 前12项的值各异,且12n n a a +=对任意的*n N ∈都成立,则下列数列中可 取遍{}n a 前12项值的数列为( )
A. 31{}k a +
B. 41{}k a +
C. 51{}k a +
D. 61{}k a +
三. 解答题
19. 已知函数()cos2sin 22f x a x x a b =-++(0)a ≠,[0,
]2x π∈,值域为[5,1]-,
求常数a 、b 的值;
20. 在一次人才招聘会上,有A 、B 两家公司分别开出了他们的工资标准:A 公司允诺第 一个月工资为8000元,以后每年月工资比上一年月工资增加500元;B 公司允诺第一年月 工资也为8000元,以后每年月工资在上一年的月工资基础上递增5%,设某人年初被A 、B 两家公司同时录取,试问:
(1)若该人分别在A 公司或B 公司连续工作n 年,则他在第n 年的月工资分别是多少;
(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不计其他因素),该人应该选择哪家公司,为什么?
21. 如图,一个半圆和长方形组成的铁皮,长方形的边AD 为半圆的直径,O 为半圆的圆心,
1AB =,2BC =,现要将此铁皮剪出一个等腰三角形PMN ,其底边MN BC ⊥,点P 在 边AB 上,设MOD θ∠=;
(1)若30θ︒=,求三角形铁皮PMN 的面积;
(2)求剪下的三角形铁皮PMN 面积的最大值;
22. 在xOy 平面上有一点列111(,)P a b 、222(,)P a b 、⋅⋅⋅、(,)n n n P a b 、⋅⋅⋅,
对每个正整数n , 点n P 位于函数1000()6x
a y =(06)a <<的图像上,且点n P 、点(,0)n 与点(1,0)n +构成一 个以n P 为顶角顶点的等腰三角形;
(1)求点n P 的纵坐标n b 的表达式;
(2)若对每个自然数n ,以n b 、1n b +、2n b +为边长能构成一个三角形,求a 的取值范围;
(3)设12n n B bb b =⋅⋅⋅*()n N ∈,若a 取(2)中确定的范围内的最小整数,问数列{}n B 的 最大项的项数是多少?试说明理由;
23. 设递增数列{}n a 共有k 项,定义集合{|,1}k i j A x x a a i j k ==+≤<≤,将集合k A 中 的数按从小到大排列得到数列{}n b ;
(1)若数列{}n a 共有4项,分别为11a =,23a =,34a =,46a =,写出数列{}n b 的各 项的值;
(2)设{}n a 是公比为2的等比数列,且10.52a <<,若数列{}n b 的所有项的和为4088, 求1a 和k 的值;
(3)若5k =,求证:{}n a 为等差数列的充要条件是数列{}n b 恰有7项;
参考答案
一. 填空题 1. 255 2. [1,2] 3. 8516
4. π
5. 17
6. 2k
7. 8. [,]34ππ- 9. 114,12,2
n n n +=⎧⎨≥⎩ 10. 4- 11. 35 12. 144 13. 1
(1,]2- 14. 4、5、32
二. 选择题
15. B 16. D 17. C 18. C
三. 解答题
19. 2a =,5b =-;或2a =-,1b =;
20.(1)A 公司:7500500n +;B 公司:18000(15%)n -+;
(2)A 公司十年月工资总和为1230000,B 公司十年月工资总和为1207476,选A 公司;
21.(1)
68+;(2)34
+;
22.(1)0.51000()6n n a b +=;(2)36a <<;(3)16B 最大,因为161b >,171b <; 23.(1)14b =,25b =,37b =,49b =,510b =;
(2)11a =,(21)(1)4088k k --=,9k =;(3)略;。