高思导引--四年级第二十一讲-排列组合教师版
小学四年级奥数(40讲)
小学四年级奥数1—40讲第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。
通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。
二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。
1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。
根据这一规律,括号里应填的数为:10+3=13或16-3=13。
像上面按照一定的顺序排列的一串数叫做数列。
练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。
高思导引-四年级-竖式问题教师版汇编
学习-----好资料第5讲竖式问题内容概述以字母或汉字表示数字的竖式问题,学会选择适当的突破口,并逐步解决问题;能够将文字叙述的题目转化为数字谜形式,便于直观地解决问题。
典型问题兴趣篇1.如图5-1所示,每个英文字母代表一个数字,不同的字母代表不同的数字,其中“G”代表“5”,“A”代表“9”,“D”代表“0”,“H”代表“6”.问:“I”代表的数字是多少?分析:也一定有A+E=HC=4,A+D=D,所以,它们的和一定有进位,所以,、2、F分别是1没有用,所以1、2、3、8B,现在还剩进位,所以E=7I=3.的加法竖式中,不同的汉字代表不同的数字,相同的汉字代)在图5-22. (1 表相同的数字,那么每个汉字各代表什么数字?的减法竖式中,不同的汉字代表不同的数字,相同的汉字代表相在图5-3(2)同的数字,那么每个汉字各代表什么数字?分析:,卒=1(1)观察可得:车,马=卒,所以兵=5=0,兵+兵马,所炮=,+1=5,所以马=4炮+=2以炮5240+5210=10450=2=马,所以:兵,=12)观察可得:炮,兵—兵=马,一定有借位,所以马=9,炮—兵(292=929—1221的竖式中,相同的汉字代表相同的3. 在图5-4+如果23+解数字,不同的汉字代表不同的数字,”所代表的三,那么“字++谜=30 数数字谜位数是多少?更多精品文档.学习-----好资料不同的汉字代表不同的数字,每个汉字代表一个数字,图5-5所示的竖式中,4. ”代表的四位数是多少?那么“北京奥运分析:奥++京,北+奥=0,所以可得要进位,所以;京=8 观察可得:北=1,北+京=9 ,运位,所以:奥=0+运=8,所以要进2=1809 北京奥运ABCDE所示的乘法竖式成立,那么5. 已知图5-6是多少?相同的符号代5-7的竖式中,6. (1) 在图表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?的竖式中,相同的符号代表5-8(2) 在图不同的符号代表不同的数字,相同的数字,那么☆、△、○分别代表什么数字?分析:三种可能,因为是三位数5、9,×△=△,所以△=1、)(1△,○=1,☆乘一位数等于四位数,所以1排除,经分析:△=5=2=2 ,○,当△=5时,☆=4、)△=15、6三种可能,排除12 (=3○=5时,△当=6☆,更多精品文档.学习-----好资料7. 如图5-9,相同的字母表示相同的数字,不同的字母表示不同的数字,那么十个方框中数字之和是多少?分析:B×B=B,所以B=1、5、6,三种可能,经分析1排除,A×B=B,所以B=5,A为奇数,三位数乘B得三位数,所以第一个方格中添1,一百多乘一位数得四位数,所以A只能是7、9,当A=7时,C=7,矛盾不成立;当A=9时,C=7,成立;所以:195×95=18525 1+9+1+7+5+1+8+5+2+5=448. 在图5-10和图5-11中的方格内填入适当的数字,使下列除法竖式成立.分析:,所以除数9=783(1)除数×=6003 ,所以被除数×6=522=87,8787=69÷6003=2465 5=145,所以被除数8=232,所以除数=29,29×(2)除数×29=85÷2465所示的除法竖式中填入合适的数字,使得竖式成立,那么其中的商5-129.在图是多少?分析:三= 除数×7=两位数,除数×另一个一位数,所以除数只能是位数,且三位数的十位上是2 ,9=12614,14×7=98,14×=79所以除数更多精品文档.好资料学习-----后所得乘积恰好是将原来的四位数各位数字顺序910. 有一个四位数,它乘以.颠倒而得的新四位数,求原来的四位数拓展篇不同的汉字代表不同的数字,相同的汉字代表相同的数字,和5-14中,1. 在图5-13. 求出它们使竖式成立的值分析:,四个语、语=5 (1)观察得:巧=1,所以三个英相加得数,进2相加得20,所,向前进2的个位是8,所以英得6 以学=4 以学+学得数个位也是8,所1465+林=7,奥++=6,奥林+匹进2,所以林2 ()观察的奥+林有进1,所以奥6789=83,所以匹,克=9 匹+克进,在这个算式中,相2. 如图5-15不同的同的字母代表相同的数字,、A字母代表不同的数字,那么数字分别是多少?B、C分析:有借位,没有借位,C—BCA=A,—B=B,所以C—AC观察—A=4A=A,所以B=9,所以有借位且,C=8,已知C—B—B=B8、4、9不同的字母表示不同的数在图5-16的竖式中,相同的字母表示相同的数字,3. 字,并且A<B<C<D. 问:竖式中的和是多少?分析:D=5 C=4,,,观察得A=2B=3 2233+3344+4455=10032更多精品文档.学习-----好资料4. 在图5-17的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,那么“”所代表的七位数是多少?携手上海世博会分析:,个=9,手=0,上观察得,黄金三角:携=1,所=7位数的和肯定要进位,要使进1为,则博,=6位,办海=4,假设百位向前进2以会只能是2,,位,办=5,成立,1094382 ;假设百位向前进3=8当世=3时,在;,成立,1094872=8时,在=3当世小悦写了一个四位数,冬冬把这个四位数的个位抹掉,变成了一个三位数,5. 阿奇又把这个三位数的个位抹掉,变成了一个两位数,最后把这三个数加起来,小悦原来写的四位数是多少?结果刚好是7826.分析:利用位值原理ABCD+ABC+AB=78261000A+100B+10C+D+100A+10B+C+10A+B=1110A+111B+11C+D=7826D=1 56-55=1 则当则B=0 C=5时-时当A=778267770=56 7051即一个各位数字互不相同的三位数,用它的三个数字组成一个最大的三位数,6. 再用这三个数字组成一个最小的三位数,组成的这两个三位数之差正好是原来. 求原来的三位数的三位数.更多精品文档.学习-----好资料移到左边首位数字前面,所构成44,将这个7. (1) 一个自然数的个位数字是 4倍,那么原数最小是多少?的新数恰好是原数的一个五位数,将它的各位数字顺序颠倒就可以得到一个新的五位数,而且(2)/4倍,那么原来的五位数是多少这个新的五位数恰好是原数的)(1219782)(中的一个数字,不同的字母2,……908. 如图5-18,每一个英文字母代表,1 、RF分别代表什么数字?、、、代表不同的数字,则字母AQT更多精品文档.学习-----好资料分析:不QAQ×T=1符合题意,当Q=6时为5或6 当Q=5时A=2 .........QTAQ等于T=1 则........AQ×T=AQF=3R=7,Q=5,T=1,A=2,所以“美”三个汉字分别代表三个各不相同的“峡”、中的竖式里,“江”、9. 图5-19. 数字,请把这个竖式写出来分析:=6 ,所以美0,1,5,6中的一个,通过实验排除0,1,5先确定美是□□江,则=×江4或8之一,又因为江峡美或美通过确定江是2 排除,所以江=24或8=8=□□□峡,则峡由于江峡美×峡所示的除法5-2010. 请把如图竖式中空缺的数字补上,其中的商是多少?分析:1 7 则除数个位是7,商的十位数字是=6.........6□□×□□除数的十位数3=×□□□61 则商的个位数字是,7.........6□8 字是更多精品文档.学习-----好资料11. 请把图5-21中的除法竖式补充完整。
第五届高思杯 大复习·考察知识点清单 四年级
十六、 格点图形面积计算
1. 格点图形面积:与单位面积的比较. 2. 正方形格点图形: ① 分割法——一般沿格线分割 ② 添补法——一般添补成长方形(或正方形) 3. 三角形格点图形: ① 分割法——分割成有两条边在格线上的三角形 ② 添补法——一般添补成正三角形 4. 面积公式: ① 正方形格点图形,面积=边界格点数÷ 2+内部格点数-1 ② 三角形格点图形,面积=边界格点数+内部各点数× 2-2
4年级
考察知识点清单
第五届高思杯 大复习
…
…
…
…
二十、 复杂数阵图
1. 特殊数分析 特殊数一般为最大数或最小数 2. 特殊格分析 重数分析法
二十一、
排列组合公式
1. 排列(Arrangement、Permutation) :从 m 个不同的东西中挑选出 n 个排成一列的方法数
n Am m m 1 m 2
十、底高的选取与组合
1. 面积公式
正方形的面积 边长 边长 ;
长方形的面积 长 宽 ; 平行四边形的面积 底 高 ; 三角形的面积 底 高 2 ;
梯形的面积 上底 下底 高 2 .
2. 面积反求 注意三角形面积反求,必须先“× 2 ” ; . . 3. 知道正方形边长可以计算那面积,知道对角线也可以计算面积:
a A b c
十五、 小数巧算
1. 计算小数加减法,首先要把小数点对齐,也就是把相同数位上的数对齐,然后按照整数加减法的法则 进行计算.注意在小数的末尾添上 0 或去掉 0,小数的大小不变.例如: 3 5 5 9 6 1 3 1 5 2 6 1 3 5 7 2 5 7 6 5 0 5 5
+ 2 3 5
小学数学奥数基础教程(四年级)目30讲全
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
高思奥数导引小学三年级含详解答案第21讲.间隔与数列
第21讲间隔与阵列兴趣篇1、社区门口有一条长为100米的马路,现在要在这条马路的一侧种树,每隔10米种一棵,而且马路的两端都要种。
一共需要种多少棵树?2、学校门前有条长100米的马路,马路两侧一共种了42棵树。
每侧相邻两棵树之间的距离都相等,而且马路的两端都种了。
请问:相邻两棵树之间的距离是多大?3、包包上楼,从第一层走到第三层需要上36级台阶。
如果各层楼之间的台阶数相同,那么包包从第一层走到第六层一共需要上多少级台阶?4、学校组织军训,教官让男生站一排,女生站一排。
请问:(1)包包和同班女生站成一排,她发现自己的左侧有7人、右侧有8人。
女生一共有多少人?(2)铮铮和同班男生站成一排,他发现自己是左起第7个、右起第9个。
男生一共有多少人?(3)昊昊也在男生队伍里。
他发现自己是左起第4个,他的右侧应该有几人?他应该是右起第几人?5、运动会闭幕式结束后,大家准备散场。
班长包包让全班同学站成一行清点人数(她自己并不在队伍中)。
她先从左往右数,发现铮铮是第25个;然后她又从右往左数,发现昊昊正好是第29个。
如果队伍里一共有31人,那么铮铮和昊昊之间有几个人?6、一整块大豆腐长40厘米,宽20厘米。
厨师准备把它切成一些长5厘米,宽4厘米的小块,而且每次只能沿着直线切。
如果不允许移动豆腐的位置,那么厨师至少要切几次?7、学校有一个圆形水池,水池的周长为40米。
如果绕着水池每隔4米种一棵树,一共要种几棵树?8、50个男生沿着300米的跑道站成一圈,并且相邻两人之间的距离都相等。
现在,每相邻两个男生之间又加入了两个女生,相邻两人之间的距离还是相等。
请问:一共加入了多少个女生?加入女生后,相邻两人之间的距离又是多少米?9、有100个人站成一个实心方阵,那么这个方阵的最外层共有多少人?从外向里算起的第二层有多少人?从里向外算起的第三层有多少人?10、一个实心方阵,最外层一共有20人。
请问:(1)最外层每边有多少人?这个方阵一共有多少人?(2)如果要组成一个更大的方阵,至少需要增加多少人?(3)如果给这个方阵最外面再增加一层,那么需要增加多少人?拓展篇1、刘老师想做一张木凳。
小学数学奥数基础教程(四年级)目30讲全
小学奥数基础教程(四年级)- 1 -小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
高斯小学奥数四年级上册含答案第21讲_等积变形
第二^一讲等积变形三角形和平行四边形的关系非常紧密. 回想它们的面积公式,如果我们把一个平行四边形沿对角线分成两块,那么每个三角形的面积正好是平行四边形的一半,如图:除了上面这种情形外, 下图中的阴影三角形由于和平行四边形底、 高都相同,所以面积也是平行四边形的一半.(注意:长方形也是平行四边形)乎讦四谄形翠堀幻戒号帚B. C\ ⑪个三角形,革均匀生 怅,1草场的苹可使⑷头牛吃I 氏,R 草场的草可供祀%牛吃 一天「【草场前龜可供⑷()其牛唏一天,I )堂埸堰?底AB底我们把这种“底相同,高相等”的情况简称为“同底等高” •“同底等高”是我们最早碰到的三角形等积变形的情形,而“等高”最常见的情况就是平行线间的距离相等.如果两个三角形同底等高,那么它们的面积相等.利用平行线间的距离相等,构造同底等高的三角形,是很常见的三角形等积变形.如图,已知平行四边形 ABCD 的面积是100平方 厘米,E 是其中的任意一点,那么图中阴影部分面积 是多少平方厘米?「分析」辅助线把整个图形分成了左右两个平行 四边形,两个阴影三角形与它们分别有什么关 系呢?练习1如图,E 是平行四边形 ABCD 中的任意一点,已 知厶AED 与厶EBC 的面积和是40平方厘米,那么图 中阴影部分的面积是多少?下图中,两条平行线间有四个三角形:三角形 OAB 、三角形PAB 、三角形MAB 和三角形NAB ,它们的底相同,都是 AB ;高相等,都是两条平行线间的距离,所以这四个三角形 的面积是相等的•进一步,我们可以在直线ON 上任取若干个点,这些点分别与A 、B 两点形成若干个同底等高的三角形,这些三角形的面积是相等的.ABCA DBC如图,平行四边形ABCD的底边AD长20厘米, 高CH为9厘米;E是底边BC上任意的一点,那么两个阴影三角形的面积之和是多少平方厘米?「分析」能否通过等积变形,把两个三角形变成一个三角形呢?练习2如图,平行四边形ABCD的面积是100平方厘米,那么阴影部分的面积是多少平方厘米?例题3如图所示,ABFE和CDEF都是长方形,AB的长是4厘米, BC的长是3厘米.那么图中阴影部分的面积是多少平方厘米?「分析」能否通过等积变形,把上层与下层的三角形分别变成一个三角形呢?练习3如图,ABCD和CDEF都是平行四边形,四边形ABFE面积为60平方厘米.请问:阴影部分面积是多少平方厘米?在利用同底等高三角形计算面积的题目中, 而寻找同底.等高.、面积相等的三角形.最重要的一步就是去寻找其中的平行线,进A F HBE CA D例题4如图,梯形ABCD中,E是对角线AC上的一点, 已知DE和AB平行,那么与△ ADC面积相等的三角形一共有哪几个?「分析」要找同底等高面积相等的三角形,首先必须找到平行线哦!练习4如图,梯形ABCD中,共有几个三角形?其中面积相等的三角形共有哪几对?画辅助线是解决几何问题最常用、最重要的方法之一,一条好的辅助线,往往能把无从下手的复杂题目变得非常简单.一般我们习惯把辅助线画成虚线.在上一讲中,我们已经接触过了一些需要画辅助线解决的题目,在利用同底等高三角形计算面积的题目中,我们往往需要自己画出平行线.去构造、寻找同底等高的三角形进而进行面积转化.例题5如图,大正方形的边长是10厘米,小正方形的边长是「分析」图中的三角形底、高都是未知并且不可求的,能否通过等积变形,寻找与它们同底等高、面积相等的三角形呢?记得先找平行线哦!8厘米.求阴影部分的面积.A DO如右图,梯形ABCD中,对角线相交于0点,由于AD与BC平行,那么就有△ ABC与厶DBC同底等高、面积相等,△ ABD与厶ACD同底等高、面积相等.那么这个图中还有没有其他面积相等的三角形呢?我们观察一下,△ ABC与厶BCD都包含有厶OBC,而△ABC与厶BCD面积相等,那么就有△ ABO与厶CDO面积相等.我们把梯形中出现的这第三对三角形面积相等称作“梯形的两翼相等”,因为△ ABO与△ CDO恰好如同两片翅膀一般,有的时候我们也称其为“蝴蝶模型”“蝴蝶模型”在几何中应用非常广泛,尤其是在高年级学习比例之后,而且,应用蝴蝶模型,往往能够使得一些过去非常头疼的题目变得异常简单.例题6如图所示,长方形ABCD内的阴影部分的面积之和为70, AB=8, AD=15,四边形EFGO的面积是多少?「分析」能否应用“蝴蝶模型”,使得三块分离的三角形合并呢?课堂内外蝴蝶定理蝴蝶定理 (Butterfly theorem ),是古典欧式平面几何中最精彩的结果之一.这个命题最早出现在1815年,而“蝴蝶定理”这个名称最早出现在《美国数学月刊》1944年2月号,1985年,在河南省《数学教师》创刊号上,杜锡录同志以《平面几何中的名题及妙解》为题,载文向国内介绍蝴蝶定理,从此蝴蝶定理在神州大地到处传开.这个定理最基本的叙述为:设M为圆内弦PQ的中点,过M作弦AB和CD,设AD和BC分别相交PQ于点X和Y,贝U M是XY的中点.从图中可以看出题目的图形像一只蝴蝶,该定理名字由此而得.实际上,在椭圆中,依然存在蝴蝶定理,把上图“压扁”即可.这个定理的证法多的不胜枚举,至今仍然被数学热爱者研究,在高考等考试中时有出现各种变形,有人曾戏称“翩翩蝴蝶舞椭圆,飞落高考数学花”.混沌论中的“蝴蝶定理”:数学的一门分支是混沌论•混沌理论其实是人们对一系列残酷运动的名词描述:初始条件十分微小的变化经过不断放大,对其未来状态会造成极其巨大的差别.混沌理论最为人知的表述就是“蝴蝶效应”:一只南美洲亚马逊河流域热带雨林中的蝴蝶,偶尔扇动几下翅膀,可以在两周后引起美国德克萨斯州的一场龙卷风.西方流传的一首民谣形象的代表了“蝴蝶效应”:丢失一个钉子,坏了一只蹄铁;坏了一只蹄铁,折了一匹战马;折了一匹战马,伤了一位骑士;伤了一位骑士,输了一场战斗;输了一场战斗,亡了一个帝国.作业1. 如图所示,梯形ABCE是由正方形ABCD和等腰直角三角形CDE构成的,已知等腰直角三角形的斜边是10厘米,那么△ BCE的面积是多少平方厘米?2.如图,长方形ABCD的面积为6,平行四边形BECF 的面积为多少?4. 如图,长方形的长为16,宽为5.阴影三角形的面积和为多少?5. 如图,直角梯形 ABCD 中,CD 30,BD 40,BD 和CD 垂直•那么三角形 ABC 的面积是多少?3. 如图所示,一个长方形被分成 4个不同的三角形,红色三角形的面积是 9平方厘米,黄色三角形的面积是 21平方厘米,绿色三角形的面积是 面积是多少平方厘米?10平方厘米,那么蓝色三角形的C1. 例题1答案:50平方厘米详解:根据图中的辅助线,左边阴影面积为左边平行四边形的一半,右边阴影面积为右边平行四边形的一半,所以阴影总面积等于大平行四边形的一半,为50平方厘米.2. 例题2答案:90平方厘米详解:平行四边形面积是180平方厘米•狗牙模型,通过同底等高可以将F拉到A点,把两个三角形合并成一个大三角形,即平行四边形的一半,面积为90平方厘米.3. 例题3答案:6平方厘米详解:双层犬牙模型,可以把ABFE中的阴影面积转化成一个大的三角形,是ABFE面积的一半;CDEF中的阴影面积转化成一个大的三角形,是CDEF面积的一半.所以阴影部分的面积是长方形ABCD面积的一半,即6平方厘米.4. 例题4答案:△KBD和△ABE详解:观察图中哪些线段平行,AD平行于BC,AB平行于DE •根据AD平行于BC,可以知道△KDC 的面积等于△ ABD ;根据AB平行于DE,可以知道厶ABD的面积等于△ ABE .所以与△ ADC 面积相等的三角形有△ ABD和△KBE .5. 例题5答案:50平方厘米;32平方厘米详解:(1)如图,连小正方形对角线,两个正方形对角线平行,所以阴影三角形与大正方形左半个等腰直角三角形同底(共同的底为大正方形对角线)等高、面积相等,等于大正方形面积的一半,为50平方厘米.(2)如图,连大正方形对角线,两个正方形对角线平行,所以阴影三角形与小正方形右半个等腰直角三角形同底(共同的底为小正方形对角线)等高、面积相等,等于小正方形面积的一半,为32平方厘米.第二十一讲等积变形1. 例题1答案:50 平方厘米详解:根据图中的辅助线,左边阴影面积为左边平行四边形的一半,右边阴影面积为右边平行四边形的一半,所以阴影总面积等于大平行四边形的一半,为50 平方厘米.2. 例题2答案:90 平方厘米详解:平行四边形面积是180 平方厘米.狗牙模型,通过同底等高可以将 F 拉到A 点,把两个三角形合并成一个大三角形,即平行四边形的一半,面积为90 平方厘米.3. 例题3答案: 6 平方厘米详解:双层犬牙模型,可以把ABFE 中的阴影面积转化成一个大的三角形,是ABFE 面积的一半;CDEF 中的阴影面积转化成一个大的三角形,是CDEF 面积的一半.所以阴影部分的面积是长方形ABCD 面积的一半,即6 平方厘米.4. 例题4答案:△KBD 和A ABE详解:观察图中哪些线段平行,AD平行于BC,AB平行于DE •根据AD平行于BC,可以知道△KDC 的面积等于△ ABD ;根据AB平行于DE,可以知道厶ABD的面积等于△ ABE .所以与△ ADC 面积相等的三角形有△ ABD和A ABE .5. 例题5答案:50 平方厘米;32 平方厘米详解:(1)如图,连小正方形对角线,两个正方形对角线平行,所以阴影三角形与大正方形左半个等腰直角三角形同底(共同的底为大正方形对角线)等高、面积相等,等于大正方形面积的一半,为50 平方厘米.(2)如图,连大正方形对角线,两个正方形对角线平行,所以阴影三角形与小正方形右半个等腰直角三角形同底(共同的底为小正方形对角线)等高、面积相等,等于小正方形面积的一半,为32 平方厘米.第二十一讲等积变形1. 例题1 答案:50 平方厘米详解:根据图中的辅助线,左边阴影面积为左边平行四边形的一半,右边阴影面积为右边平行四边形的一半,所以阴影总面积等于大平行四边形的一半,为50 平方厘米.2. 例题2 答案:90 平方厘米详解:平行四边形面积是180 平方厘米.狗牙模型,通过同底等高可以将F 拉到A 点,把两个三角形合并成一个大三角形,即平行四边形的一半,面积为90 平方厘米.3. 例题3答案: 6 平方厘米详解:双层犬牙模型,可以把ABFE 中的阴影面积转化成一个大的三角形,是ABFE 面积的一半;CDEF 中的阴影面积转化成一个大的三角形,是CDEF 面积的一半.所以阴影部分的面积是长方形ABCD 面积的一半,即6 平方厘米.4. 例题4答案:△KBD 和A ABE详解:观察图中哪些线段平行,AD 平行于BC,AB 平行于DE .根据AD 平行于BC ,可以知道△\DC的面积等于△ ABD ;根据AB平行于DE,可以知道厶ABD的面积等于△ ABE .所以与△ ADC 面积相等的三角形有△ ABD和A ABE .5. 例题5答案:50 平方厘米;32 平方厘米详解:(1)如图,连小正方形对角线,两个正方形对角线平行,所以阴影三角形与大正方形左半个等腰直角三角形同底(共同的底为大正方形对角线)等高、面积相等,等于大正方形面积的一半,为50 平方厘米.(2)如图,连大正方形对角线,两个正方形对角线平行,所以阴影三角形与小正方形右半个等腰直角三角形同底(共同的底为小正方形对角线)等高、面积相等,等于小正方形面积的一半,为32 平方厘米.。
小学数学奥数基础教程(四年级)目30讲全
小学奥数基础教程(四年级)- 1 -小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
高思导引-四年级-竖式问题教师版汇编
学习-----好资料第5讲竖式问题内容概述以字母或汉字表示数字的竖式问题,学会选择适当的突破口,并逐步解决问题;能够将文字叙述的题目转化为数字谜形式,便于直观地解决问题。
典型问题兴趣篇1.如图5-1所示,每个英文字母代表一个数字,不同的字母代表不同的数字,其中“G”代表“5”,“A”代表“9”,“D”代表“0”,“H”代表“6”.问:“I”代表的数字是多少?分析:也一定有A+E=HC=4,A+D=D,所以,它们的和一定有进位,所以,、2、F分别是1没有用,所以1、2、3、8B,现在还剩进位,所以E=7I=3.的加法竖式中,不同的汉字代表不同的数字,相同的汉字代)在图5-22. (1 表相同的数字,那么每个汉字各代表什么数字?的减法竖式中,不同的汉字代表不同的数字,相同的汉字代表相在图5-3(2)同的数字,那么每个汉字各代表什么数字?分析:,卒=1(1)观察可得:车,马=卒,所以兵=5=0,兵+兵马,所炮=,+1=5,所以马=4炮+=2以炮5240+5210=10450=2=马,所以:兵,=12)观察可得:炮,兵—兵=马,一定有借位,所以马=9,炮—兵(292=929—1221的竖式中,相同的汉字代表相同的3. 在图5-4+如果23+解数字,不同的汉字代表不同的数字,”所代表的三,那么“字++谜=30 数数字谜位数是多少?更多精品文档.学习-----好资料不同的汉字代表不同的数字,每个汉字代表一个数字,图5-5所示的竖式中,4. ”代表的四位数是多少?那么“北京奥运分析:奥++京,北+奥=0,所以可得要进位,所以;京=8 观察可得:北=1,北+京=9 ,运位,所以:奥=0+运=8,所以要进2=1809 北京奥运ABCDE所示的乘法竖式成立,那么5. 已知图5-6是多少?相同的符号代5-7的竖式中,6. (1) 在图表相同的数字,不同的符号代表不同的数字,那么☆、△、○分别代表什么数字?的竖式中,相同的符号代表5-8(2) 在图不同的符号代表不同的数字,相同的数字,那么☆、△、○分别代表什么数字?分析:三种可能,因为是三位数5、9,×△=△,所以△=1、)(1△,○=1,☆乘一位数等于四位数,所以1排除,经分析:△=5=2=2 ,○,当△=5时,☆=4、)△=15、6三种可能,排除12 (=3○=5时,△当=6☆,更多精品文档.学习-----好资料7. 如图5-9,相同的字母表示相同的数字,不同的字母表示不同的数字,那么十个方框中数字之和是多少?分析:B×B=B,所以B=1、5、6,三种可能,经分析1排除,A×B=B,所以B=5,A为奇数,三位数乘B得三位数,所以第一个方格中添1,一百多乘一位数得四位数,所以A只能是7、9,当A=7时,C=7,矛盾不成立;当A=9时,C=7,成立;所以:195×95=18525 1+9+1+7+5+1+8+5+2+5=448. 在图5-10和图5-11中的方格内填入适当的数字,使下列除法竖式成立.分析:,所以除数9=783(1)除数×=6003 ,所以被除数×6=522=87,8787=69÷6003=2465 5=145,所以被除数8=232,所以除数=29,29×(2)除数×29=85÷2465所示的除法竖式中填入合适的数字,使得竖式成立,那么其中的商5-129.在图是多少?分析:三= 除数×7=两位数,除数×另一个一位数,所以除数只能是位数,且三位数的十位上是2 ,9=12614,14×7=98,14×=79所以除数更多精品文档.好资料学习-----后所得乘积恰好是将原来的四位数各位数字顺序910. 有一个四位数,它乘以.颠倒而得的新四位数,求原来的四位数拓展篇不同的汉字代表不同的数字,相同的汉字代表相同的数字,和5-14中,1. 在图5-13. 求出它们使竖式成立的值分析:,四个语、语=5 (1)观察得:巧=1,所以三个英相加得数,进2相加得20,所,向前进2的个位是8,所以英得6 以学=4 以学+学得数个位也是8,所1465+林=7,奥++=6,奥林+匹进2,所以林2 ()观察的奥+林有进1,所以奥6789=83,所以匹,克=9 匹+克进,在这个算式中,相2. 如图5-15不同的同的字母代表相同的数字,、A字母代表不同的数字,那么数字分别是多少?B、C分析:有借位,没有借位,C—BCA=A,—B=B,所以C—AC观察—A=4A=A,所以B=9,所以有借位且,C=8,已知C—B—B=B8、4、9不同的字母表示不同的数在图5-16的竖式中,相同的字母表示相同的数字,3. 字,并且A<B<C<D. 问:竖式中的和是多少?分析:D=5 C=4,,,观察得A=2B=3 2233+3344+4455=10032更多精品文档.学习-----好资料4. 在图5-17的竖式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字,那么“”所代表的七位数是多少?携手上海世博会分析:,个=9,手=0,上观察得,黄金三角:携=1,所=7位数的和肯定要进位,要使进1为,则博,=6位,办海=4,假设百位向前进2以会只能是2,,位,办=5,成立,1094382 ;假设百位向前进3=8当世=3时,在;,成立,1094872=8时,在=3当世小悦写了一个四位数,冬冬把这个四位数的个位抹掉,变成了一个三位数,5. 阿奇又把这个三位数的个位抹掉,变成了一个两位数,最后把这三个数加起来,小悦原来写的四位数是多少?结果刚好是7826.分析:利用位值原理ABCD+ABC+AB=78261000A+100B+10C+D+100A+10B+C+10A+B=1110A+111B+11C+D=7826D=1 56-55=1 则当则B=0 C=5时-时当A=778267770=56 7051即一个各位数字互不相同的三位数,用它的三个数字组成一个最大的三位数,6. 再用这三个数字组成一个最小的三位数,组成的这两个三位数之差正好是原来. 求原来的三位数的三位数.更多精品文档.学习-----好资料移到左边首位数字前面,所构成44,将这个7. (1) 一个自然数的个位数字是 4倍,那么原数最小是多少?的新数恰好是原数的一个五位数,将它的各位数字顺序颠倒就可以得到一个新的五位数,而且(2)/4倍,那么原来的五位数是多少这个新的五位数恰好是原数的)(1219782)(中的一个数字,不同的字母2,……908. 如图5-18,每一个英文字母代表,1 、RF分别代表什么数字?、、、代表不同的数字,则字母AQT更多精品文档.学习-----好资料分析:不QAQ×T=1符合题意,当Q=6时为5或6 当Q=5时A=2 .........QTAQ等于T=1 则........AQ×T=AQF=3R=7,Q=5,T=1,A=2,所以“美”三个汉字分别代表三个各不相同的“峡”、中的竖式里,“江”、9. 图5-19. 数字,请把这个竖式写出来分析:=6 ,所以美0,1,5,6中的一个,通过实验排除0,1,5先确定美是□□江,则=×江4或8之一,又因为江峡美或美通过确定江是2 排除,所以江=24或8=8=□□□峡,则峡由于江峡美×峡所示的除法5-2010. 请把如图竖式中空缺的数字补上,其中的商是多少?分析:1 7 则除数个位是7,商的十位数字是=6.........6□□×□□除数的十位数3=×□□□61 则商的个位数字是,7.........6□8 字是更多精品文档.学习-----好资料11. 请把图5-21中的除法竖式补充完整。
(完整版)高思导引四年级第二十三讲最值问题一教师版
第23讲最值问题一内容概述求最大值与最小值的问题,解题时宜首先考虑起主要作用的量,有时还需要局部调整或者枚举各种可能情形.和为定值的两数的乘积随着两数之差的增大而减小.典型问题兴趣篇1.3个连续奇数相乘,所得乘积的个位数字最小可能是多少? 答案:3分析:乘积的个位数字是由这三个奇数的个位数字决定的。
个位数字可能是:1、3、5、7、9。
通过试验个位是7、9、1的三个连续奇数相乘满足条件,7×9×1=63个位最小是3.2. 用1、2、4可以组成6个没有重复数字的三位数,这些三位数中相差最小的两个数之差是多少?答案:9分析:要使两个数差最小百位数字相同十位与个位数字相近。
满足条件的是412和421.差是421-412=9.3. 用24根长l厘米的火柴棒围成一个矩形,这个矩形的面积最大是多少?如果用22根火柴棒呢?答案:36平方厘米;30平方厘米。
分析:(1)矩形的周长是24厘米。
长和宽的和:24÷2=12(厘米)和为定值的两数的乘积随两数之差的增大而减少。
和是12的两数差为0是积最大。
这两个数相等都是6.即长和宽相等面积是6×6=36(平方厘米)。
(2)周长是22厘米。
长和宽的和是22÷2=11(厘米)和是11差是0时,这样的两个数不是整数。
差是1时两数分别为6和5.积是30.4.三个自然数的和是19,它们的乘积最大可能是多少?答案:252分析:和一定差越小积越大。
19÷3=6……1,6+6+6=18再加1得19,三个数分别是6、6、7时积最大。
最大是6×6×7=252. 5.(1)请将l、2、3、4填人算式“口口×口口”的方格中.要使得算式结果最大,应该怎么填?(2)请将1、2、3、4、5、6填人算式“口口口×口口口”的方格中.要求5、6分别填在百位,4、3分别填在十位,1、2分别填在个位,并使得算式结果最大.应该怎么填?答案:(1)41×32 (2)542×631分析:(1)要使积最大,两个数应尽量大所以4、3分别在十位,1、2在个位。
小学数学奥数基础教程(四年级)目30讲全
小学奥数基础教程(四年级)- 1 -小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
小学数学奥数基础教程(四年级)目30讲全
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
高思导引--四年级第二十一讲-排列组合教师版
第21讲ﻩ排列组合内容概述了解排列、组合公式的来由及含义,掌握具体的计算方法;辨析排列、组合之间酌区别与联系,并能够合理应用.典型问题兴趣篇1. 计算:24(1)A ﻩ410(2)Aﻩﻩ3336(3)3A A ⨯+【答案】(1)12 (2)5040 (3)138【解析】根据排列公式 )1()1(+-⨯-⨯=n m m m A nm 计算 243341036(1)4312(2)109875040(3)3138A A A A =⨯==⨯⨯⨯=⨯+=2.费叔叔、小悦、冬冬和阿奇四个人站成一排照相,一共有多少种不同的排列方法? 【答案】24【解析】这种排列是有序的24123444=⨯⨯⨯=A3.体育课上,老师从10名男生中挑出4人站成一排,—共有多少种不同的排列方法? 【答案】5040【解析】先从10人中选出4人,再让4人全排列50402102444410=⨯=⨯A C4.费叔叔、小悦、冬冬、阿奇四个人一块乘公共汽车去公园,上车后发现有8个空座位,他们一共有多少种不同的坐法? 【答案】1680【解析】先让4人选座位,再让4人全排列168024704448=⨯=⨯A C5.用1至7这7个数字一共能组成多少个没有重复数字的三位数?如果把这些三位数从小到大排起来,312是其中第几个? 【答案】(1)210;(2)第61人【解析】第一个位置有7中选择第二个位置有6个选择第三个位置有5个选择个是第个,开头的有个,百位是开头的有百位是61312302301)2(210)1(151617=⨯⨯A A A6.计算:25(1)C47(2)C ﻩ3366(2)A C ⨯【答案】(1)10 (2)35 (3)2400 【解析】根据组合公式24335766547654(1)10(2)35(3)120202*********n n m mn n A C C C A C A ⨯⨯⨯⨯=====⨯=⨯=⨯⨯⨯⨯7.图21-1中有六个点,任意三个点都不在一条直线上.请问:(1)以这些点为端点,一共可以连出多少条线段? (2)以这些点为顶点,一共可以连出多少个三角形? 【答案】(1)15条;(2)20个【解析】(1)不在同一直线两点确定一条直线2615C =(2)不在同一直线三点确定一个三角形3620C =个8.费叔叔把10张不同的游戏卡片分给冬冬和阿奇,并且决定给冬冬8张,给阿奇2张.一共有多少种不同的分法? 【答案】45【解析】先选出8张冬冬,剩下2张就是阿奇的81020C =9.小悦要从八门课程中选学三门,一共有多少种选法?如果数学课与钢琴课时间冲突,不能同时学,她一共有多少种选法? 【答案】50【解析】用排除法八门中任选三门,有56种,数学课与钢琴课同时上有6种,减去不符合题意的6种,318656650C C -=-=种10.象棋兴趣小组一共有9名同学,请问:(1)如果从中选3名同学在第二天的早上、中午、晚上分别做值日,共有多少种选法? (2)如果从中选3名同学去参加一次全市比赛,共有多少种选法? 【答案】(1)504种 ; (2)84种【解析】(1)先选出3人再全排列,39987504A =⨯⨯=种(2)这种选人是无序的3984C =种拓展篇1. 计算:25(1)A ﻩﻩ37(2)A4266(3)A A -【答案】(1)20;(2)210;(3)330 【解析】25(1)5420A =⨯=37(2)765210A =⨯⨯=4266(3)654365330A A -=⨯⨯⨯-⨯=2.如图21-2所示,有5面不同颜色的小旗,任取3面排成一行表示一种信号,用这5面小旗一共可以表示出多少种不同的信号?【答案】60【解析】先从5面旗选出3面旗,再让三面旗全排列3560A =种3.3名同学一块去图书馆借科幻小说,发现书架上只剩下9本,且各不相同.如果每人只借1本,那么共有多少种不同的借法? 【答案】504【解析】先从9本书选出3本书,再让3本书全排列39504A =种4.用1、2、3、4、5这五个数码可以组成多少个没有重复数字的四位数?将这些四位数从小到大排列起来,4125是第几个? 【答案】(1)120;(2)74个【解析】(1)第一个位置有5种选法,第二个位置有4种选法,第三个位置有三种选法,第四个位置有2种选法,45120A =(2)千位以1开头的有11143224A A A ⨯⨯=个千位以2开头的有11143224A A A ⨯⨯=个千位以3开头的有11143224A A A ⨯⨯=个千位以4开头第一个4123,第二个就是4125所以243274⨯+=个5. 计算:39(1)Cﻩ321010(2)2C C -⨯ﻩ45(3)C ,15C ﻩ 710(4)C ,310C【答案】(1)84;(2)30;(3)5,5;(4)120,120【解析】39(1)84C =;321010(2)21209030C C -⨯=-= ;45(3)5C =,155C =ﻩ710(4)120C =,310120C =6.如图21-3所示,从端点O 出发的射线共有7条,图中一共有多少个锐角? 【答案】21【解析】夹角最大两条直线间夹角小于90度,所以这两条直线间的任两条直线组成的角小于90度,2776221C=⨯÷=个7.如图21-4所示,在一个圆周上有8个点,以这些点为顶点或端点,一共可以画出多少条线段?多少个三角形?多少个四边形?【答案】(1)28条;(2)56个;(3)70个;【解析】(1)不在同一直线两点确定1条直线,2828C=条(2)不在同一直线三点确定1个三角形,3856C=个(3)不在同一直线四点确定1个四边形,4870C=个ﻬ8.9支球队进行足球比赛,实行单循环制,即每两队之间只比赛一场.每场比赛后胜方得3分,平局双方各得1分,负方不得分.请问:一共要举行多少场比赛?9支队伍的得分总和最多为多少?【答案】(1)36场(2)108分【解析】(1)9个队中每2个队比一场2936C=场(2)分总和最多,那就是全赢363108⨯=分9.学校十佳歌手大赛的10名获奖选手中,每3人都要照一张合影.问:需要拍多少张照片? 【答案】120张【解析】没有排序问题所以38120C=10.在新学期的班会上,大家要从11名候选人中选出班干部.请问:(1)选出三人组成班委会,那一共有多少种选法?(2)从剩下的候选人中,选出三人分别担任语文、数学、英语的课代表,一共有多少种选法?【答案】(1)165种(2)336种【解析】(1)从11人中选出3人311165C=种(2)从剩下3人选出3人全排列33 83566336C A⨯=⨯=种11.费叔叔带着小悦、冬冬、阿奇去参加一次聚会,主持人要求每个人从12个颜色不同的彩球中领取一个.请问:(1)小悦是第一个取球的人,她一共选出了4个球,准备回头分给大家,那一共有多少种选法?(2)小悦回到座位后,把这4个球分给大家,一共有多少种分法?(3)最后他们四人手中拿到的球一共有多少种可能?【答案】(1)495种;(2)24种;(3)11880种【解析】(1)从12个球中选出4个没有排序问题412495C=种(2)把四个不同色的球分给4个人4424A=种(3)先从12个不同色的球选出4个不同色的球,再分给4个人,44 1244952411880C A⨯=⨯=种12.周末大扫除,老师要从第一组的10名男生和10名女生中选出5人留下打扫卫生.请问:(1)如果老师随意选择,一共有多少种选择方法?(2)如果老师决定选出2名男生和3名女生,一共有多少种选择方法?【答案】(1)15504种;(2)5400种【解析】(1)从20人中选出5人32015504C=种(2)从10名男生选2人,从10名女生选3人2310105400C C⨯=种超越篇1.有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字的和等于11.将所有这样的四位数从小到大依次排列,第20个是多少?【答案】5132【解析】因为由4个互不相同且不为零的数字组成,并且这4个数字的和等于11,只有数字1,2,3,5满足千位1开头有11326A A⨯=个,千位2开头有11326A A⨯=个,千位3开头有11 326A A⨯=个,千位5开头有第一个5123第二个5132 6+6+6+2=202.在身高互不相同的6个人中,选出3个人站成第一排,另外3个人站成第二排.请问: (1)如果可以随便站,那么一共有多少种排法?(2)如果要求第二排最矮的人也比第一排最高的人高,那么一共有多少种不同的排法? 【答案】(1)720种;(2)36种【解析】(1)先从6人中选出3个人为第一排,再全排列,剩下3人为一排再全排列333 633720C A A⨯⨯=种(2)最高三人为第二排,其余三人为第一排,让它们每排分别全排列,333336A A⨯=种3.小口袋中有4个球,大口袋中有6个球,这些球颜色各不相同.请问:(1)任意取4个球出来,那么共有多少种不同的结果?(2)取出4个球,而且恰好从每个口袋中各取2个球,共有多少种不同结果?【答案】(1)210种;(2)90种【解析】(1)从小口袋取出4个大口袋取0个,从小口袋取出3个大口袋取1个,从小口袋取出2个大口袋取2个,从小口袋取出1个大口袋取3个,从小口袋取出0个大口袋取4个41322314 44646466180902415210C C C C C C C C+⨯+⨯+⨯+=++++=种(2)每个袋子取两个,是无序的224661590C C⨯=⨯=种4. 在1至30这30个自然数中任意挑选出两个不同的数,使得它们的和是偶数,一共有多少种不同的挑选方法?【答案】210种【解析】和为偶数,共2种情况:奇+奇偶+偶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21讲ﻩ排列组合内容概述了解排列、组合公式的来由及含义,掌握具体的计算方法;辨析排列、组合之间酌区别与联系,并能够合理应用.典型问题兴趣篇1. 计算:24(1)A ﻩ410(2)Aﻩﻩ3336(3)3A A ⨯+【答案】(1)12 (2)5040 (3)138【解析】根据排列公式 )1()1(+-⨯-⨯=n m m m A nm 计算 243341036(1)4312(2)109875040(3)3138A A A A =⨯==⨯⨯⨯=⨯+=2.费叔叔、小悦、冬冬和阿奇四个人站成一排照相,一共有多少种不同的排列方法? 【答案】24【解析】这种排列是有序的24123444=⨯⨯⨯=A3.体育课上,老师从10名男生中挑出4人站成一排,—共有多少种不同的排列方法? 【答案】5040【解析】先从10人中选出4人,再让4人全排列50402102444410=⨯=⨯A C4.费叔叔、小悦、冬冬、阿奇四个人一块乘公共汽车去公园,上车后发现有8个空座位,他们一共有多少种不同的坐法? 【答案】1680【解析】先让4人选座位,再让4人全排列168024704448=⨯=⨯A C5.用1至7这7个数字一共能组成多少个没有重复数字的三位数?如果把这些三位数从小到大排起来,312是其中第几个? 【答案】(1)210;(2)第61人【解析】第一个位置有7中选择第二个位置有6个选择第三个位置有5个选择个是第个,开头的有个,百位是开头的有百位是61312302301)2(210)1(151617=⨯⨯A A A6.计算:25(1)C47(2)C ﻩ3366(2)A C ⨯【答案】(1)10 (2)35 (3)2400 【解析】根据组合公式24335766547654(1)10(2)35(3)120202*********n n m mn n A C C C A C A ⨯⨯⨯⨯=====⨯=⨯=⨯⨯⨯⨯7.图21-1中有六个点,任意三个点都不在一条直线上.请问:(1)以这些点为端点,一共可以连出多少条线段? (2)以这些点为顶点,一共可以连出多少个三角形? 【答案】(1)15条;(2)20个【解析】(1)不在同一直线两点确定一条直线2615C =(2)不在同一直线三点确定一个三角形3620C =个8.费叔叔把10张不同的游戏卡片分给冬冬和阿奇,并且决定给冬冬8张,给阿奇2张.一共有多少种不同的分法? 【答案】45【解析】先选出8张冬冬,剩下2张就是阿奇的81020C =9.小悦要从八门课程中选学三门,一共有多少种选法?如果数学课与钢琴课时间冲突,不能同时学,她一共有多少种选法? 【答案】50【解析】用排除法八门中任选三门,有56种,数学课与钢琴课同时上有6种,减去不符合题意的6种,318656650C C -=-=种10.象棋兴趣小组一共有9名同学,请问:(1)如果从中选3名同学在第二天的早上、中午、晚上分别做值日,共有多少种选法? (2)如果从中选3名同学去参加一次全市比赛,共有多少种选法? 【答案】(1)504种 ; (2)84种【解析】(1)先选出3人再全排列,39987504A =⨯⨯=种(2)这种选人是无序的3984C =种拓展篇1. 计算:25(1)A ﻩﻩ37(2)A4266(3)A A -【答案】(1)20;(2)210;(3)330 【解析】25(1)5420A =⨯=37(2)765210A =⨯⨯=4266(3)654365330A A -=⨯⨯⨯-⨯=2.如图21-2所示,有5面不同颜色的小旗,任取3面排成一行表示一种信号,用这5面小旗一共可以表示出多少种不同的信号?【答案】60【解析】先从5面旗选出3面旗,再让三面旗全排列3560A =种3.3名同学一块去图书馆借科幻小说,发现书架上只剩下9本,且各不相同.如果每人只借1本,那么共有多少种不同的借法? 【答案】504【解析】先从9本书选出3本书,再让3本书全排列39504A =种4.用1、2、3、4、5这五个数码可以组成多少个没有重复数字的四位数?将这些四位数从小到大排列起来,4125是第几个? 【答案】(1)120;(2)74个【解析】(1)第一个位置有5种选法,第二个位置有4种选法,第三个位置有三种选法,第四个位置有2种选法,45120A =(2)千位以1开头的有11143224A A A ⨯⨯=个千位以2开头的有11143224A A A ⨯⨯=个千位以3开头的有11143224A A A ⨯⨯=个千位以4开头第一个4123,第二个就是4125所以243274⨯+=个5. 计算:39(1)Cﻩ321010(2)2C C -⨯ﻩ45(3)C ,15C ﻩ 710(4)C ,310C【答案】(1)84;(2)30;(3)5,5;(4)120,120【解析】39(1)84C =;321010(2)21209030C C -⨯=-= ;45(3)5C =,155C =ﻩ710(4)120C =,310120C =6.如图21-3所示,从端点O 出发的射线共有7条,图中一共有多少个锐角? 【答案】21【解析】夹角最大两条直线间夹角小于90度,所以这两条直线间的任两条直线组成的角小于90度,2776221C=⨯÷=个7.如图21-4所示,在一个圆周上有8个点,以这些点为顶点或端点,一共可以画出多少条线段?多少个三角形?多少个四边形?【答案】(1)28条;(2)56个;(3)70个;【解析】(1)不在同一直线两点确定1条直线,2828C=条(2)不在同一直线三点确定1个三角形,3856C=个(3)不在同一直线四点确定1个四边形,4870C=个ﻬ8.9支球队进行足球比赛,实行单循环制,即每两队之间只比赛一场.每场比赛后胜方得3分,平局双方各得1分,负方不得分.请问:一共要举行多少场比赛?9支队伍的得分总和最多为多少?【答案】(1)36场(2)108分【解析】(1)9个队中每2个队比一场2936C=场(2)分总和最多,那就是全赢363108⨯=分9.学校十佳歌手大赛的10名获奖选手中,每3人都要照一张合影.问:需要拍多少张照片? 【答案】120张【解析】没有排序问题所以38120C=10.在新学期的班会上,大家要从11名候选人中选出班干部.请问:(1)选出三人组成班委会,那一共有多少种选法?(2)从剩下的候选人中,选出三人分别担任语文、数学、英语的课代表,一共有多少种选法?【答案】(1)165种(2)336种【解析】(1)从11人中选出3人311165C=种(2)从剩下3人选出3人全排列33 83566336C A⨯=⨯=种11.费叔叔带着小悦、冬冬、阿奇去参加一次聚会,主持人要求每个人从12个颜色不同的彩球中领取一个.请问:(1)小悦是第一个取球的人,她一共选出了4个球,准备回头分给大家,那一共有多少种选法?(2)小悦回到座位后,把这4个球分给大家,一共有多少种分法?(3)最后他们四人手中拿到的球一共有多少种可能?【答案】(1)495种;(2)24种;(3)11880种【解析】(1)从12个球中选出4个没有排序问题412495C=种(2)把四个不同色的球分给4个人4424A=种(3)先从12个不同色的球选出4个不同色的球,再分给4个人,44 1244952411880C A⨯=⨯=种12.周末大扫除,老师要从第一组的10名男生和10名女生中选出5人留下打扫卫生.请问:(1)如果老师随意选择,一共有多少种选择方法?(2)如果老师决定选出2名男生和3名女生,一共有多少种选择方法?【答案】(1)15504种;(2)5400种【解析】(1)从20人中选出5人32015504C=种(2)从10名男生选2人,从10名女生选3人2310105400C C⨯=种超越篇1.有一些四位数,它们由4个互不相同且不为零的数字组成,并且这4个数字的和等于11.将所有这样的四位数从小到大依次排列,第20个是多少?【答案】5132【解析】因为由4个互不相同且不为零的数字组成,并且这4个数字的和等于11,只有数字1,2,3,5满足千位1开头有11326A A⨯=个,千位2开头有11326A A⨯=个,千位3开头有11 326A A⨯=个,千位5开头有第一个5123第二个5132 6+6+6+2=202.在身高互不相同的6个人中,选出3个人站成第一排,另外3个人站成第二排.请问: (1)如果可以随便站,那么一共有多少种排法?(2)如果要求第二排最矮的人也比第一排最高的人高,那么一共有多少种不同的排法? 【答案】(1)720种;(2)36种【解析】(1)先从6人中选出3个人为第一排,再全排列,剩下3人为一排再全排列333 633720C A A⨯⨯=种(2)最高三人为第二排,其余三人为第一排,让它们每排分别全排列,333336A A⨯=种3.小口袋中有4个球,大口袋中有6个球,这些球颜色各不相同.请问:(1)任意取4个球出来,那么共有多少种不同的结果?(2)取出4个球,而且恰好从每个口袋中各取2个球,共有多少种不同结果?【答案】(1)210种;(2)90种【解析】(1)从小口袋取出4个大口袋取0个,从小口袋取出3个大口袋取1个,从小口袋取出2个大口袋取2个,从小口袋取出1个大口袋取3个,从小口袋取出0个大口袋取4个41322314 44646466180902415210C C C C C C C C+⨯+⨯+⨯+=++++=种(2)每个袋子取两个,是无序的224661590C C⨯=⨯=种4. 在1至30这30个自然数中任意挑选出两个不同的数,使得它们的和是偶数,一共有多少种不同的挑选方法?【答案】210种【解析】和为偶数,共2种情况:奇+奇偶+偶。
1至30有15个奇数与15个偶数,所以共2×C152=210种5.如图21-5所示,两条直线上分别有6个点和4个点.以这些点为顶点,可以连出多少个三角形?【答案】96个【解析】三角形构成共两类:上2下1, 上1下2.C62×C41+C61×C42=96个6. 从15名同学中选出5人,上场参加篮球比赛.请问:(1)如果甲、乙两人必须人选,共有多少种选法?(2)如果甲、乙两人中至少有一人人选,共有多少种选法? (3)如果甲、乙、丙三人中恰好入选一人,共有多少种选法? (4)如果甲、乙、丙不能同时都人选,共有多少种选法?【答案】(1)286种;(2)1716种;(3)1458种;(4)2937种 【解析】(1)甲乙必入选,则剩下13人内选3人, 共C 133=286种(2)对立事件,减去都不如选的情况 共C155-C135=1716种(3)恰好入选1人,另12人中选4人 共 C 31×C 124=1485种 (4)不能同时入选的对立事件为同时入选 共C 155-C 122=2937种7.一体育课上,老师将冬冬、阿奇和另7名同学分成3组做游戏,每组3人.一共有多少种分组方法?如果要求冬冬和阿奇分到同一组,有多少种分组方法? 【答案】(1)280种(2)70种【解析】2285(1)2810280C C ⨯=⨯=种1275(2)71070C C ⨯=⨯=种8. 大、小两个口袋中,装有一些同样的小球.大口袋里装有9个小球,分别编号为l,2,3,…,9;小口袋里装有6 个小球,分别编号为1,2,3,…,6.从这两个口袋中分别摸出3 个小球,这6个小球的编号一共有多少种可能情况? 【答案】764种【解析】共有球 编号为 7 8 9的各一个,1 2 3 4 5 6 的各两个。