新人教版初一数学下册期末测试卷及答案.doc
人教版七年级数学下册期末测试题及答案共五套
火车站李庄七下期期末(共六套)姓名: 学号 班级 一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( ) A .1000 B .1100 C .1150 D .1200PCBA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .8 9.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3) 二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______. 14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘C 1A 1ABB 1CD火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上)18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩ 21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
人教版七年级数学下册期末考试测试卷(含答案)
人教版七年级数学下册期末考试测试卷(含答案)班级姓名成绩(考试时间:120分钟)第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.36的平方根是()A.﹣6B.36C.±D.±62.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2B.﹣2a<﹣2b C.2a<2b D.a+2<b+23.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3B.1C.﹣1D.﹣34.如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°5.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况6.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5)D.(4,﹣5)7.方程4x+3y=16的所有非负整数解为()A.1个B.2个C.3个D.无数个8.已知方程组,则x+y的值为()A.﹣1B.0C.2D.39.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2B.3C.4D.510.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120 D.10x﹣5(20﹣x)<12011.若不等式组⎩⎨⎧-+-142322xxax>>,的解集为32<<x-,则a的取值范围是( )A.21=a B.2-=a C.2-≥a D.1-≤a12.若不等式组⎩⎨⎧<-<-mxxx632无解,则m的取值范围是()A.m>2B.m<2C.m≥2 D.m≤2第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)13.比较大小:13___________3 (填“>,=,<”) ;14. P(3, −4)到y轴的距离是___________.15.已知二元一次方程2x-3y=6,用关于x的代数式表示y,则y=______.16.已知:如图,AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°,则∠BCF的度数是___________.17.若y同时满足y+1>0与y-2<0,则y的取值范围是.三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤)18.计算(5分)3336463-1125.041-0-27-++19.解方程组(5分)237342x y x y +=⎧⎨-=⎩20.(6分)解下列不等式组,并把解集在数轴上表示出来。
新人教版七年级数学下册期末测试卷及答案
新人教版七年级数学下册期末测试卷及答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是()A.15-B.15C.5 D.-52.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.已知x是整数,当30x-取最小值时,x的值是( )A.5 B.6 C.7 D.86.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 8.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.89.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°10.下列等式变形正确的是()A.若﹣3x=5,则x=3 5B.若1132x x-+=,则2x+3(x﹣1)=1C.若5x﹣6=2x+8,则5x+2x=8+6D.若3(x+1)﹣2x=1,则3x+3﹣2x=1二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.分解因式:23m m-=________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x yx y+=⎧⎨-=⎩(2)143()2()4xyx y x y⎧-=-⎪⎨⎪+--=⎩2.解不等式组:()41710853x xxx⎧+≤+⎪⎨--<⎪⎩,并写出它的所有非负整数解.3.如图,直线AB//CD,BC平分∠ABD,∠1=54°,求∠2的度数.4.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.5.为弘扬中华传统文化,我市某中学决定根据学生的兴趣爱好组建课外兴趣小组,因此学校随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)学校这次调查共抽取了名学生;(2)补全条形统计图;(3)在扇形统计图中,“戏曲”所在扇形的圆心角度数为;(4)设该校共有学生2000名,请你估计该校有多少名学生喜欢书法?6.小明同学在A、B两家超市发现他看中的随身听和书包的单价都相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元.(1)求小明看中的随身听和书包单价各是多少元?(2)假日期间商家开展促销活动,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(购物满100元返购物券30元,购物满200元返购物券60元,以此类推;不足100元不返券,购物券可通用).小明只有400元钱,他能买到一只随身听和一个书包吗?若能,选择在哪一家购买更省钱.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、D5、A6、D7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、20°.3、15°4、(3)m m-5、±46、48三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、不等式组的所有非负整数解为:0,1,2,3.3、72°4、(1)详略;(2)∠ABC=∠DEF,∠ACB=∠DFE,略.5、(1)100;(2)补全图形见解析;(3)36°;(4)估计该校喜欢书法的学生人数为500人.6、(1)随身听和书包的单价分别是360元和92元;(2)略.。
新人教版七年级数学下册期末测试卷及完整答案
新人教版七年级数学下册期末测试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.下列图形具有稳定性的是( )A .B .C .D .5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.如图所示,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数-2所对应的点重合,再让圆沿着数轴按顺时针方向滚动,那么数轴上的数-2017将与圆周上的哪个数字重合( )A .0B .1C .2D .3 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中a ∠与β∠互余的是( )A .图①B .图②C .图③D .图④9.如图,在△ABC 中,P 为BC 上一点,PR ⊥AB,垂足为R,PS ⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP ∥AR;③△BRP ≌△CSP.其中正确的是( )A .①②B .②③C .①③D .①②③10.若320,a b -+=则a b +的值是( )A .2B .1C .0D .1-二、填空题(本大题共6小题,每小题3分,共18分)181________.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.若|a|=5,b=﹣2,且ab >0,则a+b=________.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.分解因式:4ax 2-ay 2=_____________.5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=-2.已知关于x 的不等式组5x 13(x-1),13x 8-x 2a 22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a 的取值范围.3.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.4.如图,已知∠ACD =70°,∠ACB =60°,∠ABC =50°.试说明:AB ∥CD .5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图. 种类 A B C D E出行方式 共享单车 步行 公交车 的士 私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有 人,其中选择B 类的人数有 人;(2)在扇形统计图中,求A 类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A ,B ,C 这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、A5、C6、B7、B8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、90°3、-74、2m ≤-5、a (2x+y )(2x-y )6、10三、解答题(本大题共6小题,共72分)1、(1)10m =;(2)5x =2、-4≤a<-3.3、(1)∠BOD ;∠AOE ;(2)152°.4、证明略5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)A 种型号家用净水器购进了100台,B 种型号家用净水器购进了60台.(2)每台A 型号家用净水器的售价至少是200元.。
人教版七年级数学下册期末测试题及答案解析(共六套)
B ′C ′D ′O ′A ′ODC BA(第8题图)人教版七年级数学第二学期期末考试试卷(一)(满分120分)一、选择题(每小题3分,计24分,请把各小题答案填到表格内) 题号 1 2 3 4 5 6 7 8 答案1. 如图所示,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是 A .某市5万名初中毕业生的中考数学成绩 B .被抽取500名学生 (第1题图)C .被抽取500名学生的数学成绩D .5万名初中毕业生3. 下列计算中,正确的是A .32x x x ÷=B .623a a a ÷=C . 33x x x =⋅D .336x x x += 4.下列各式中,与2(1)a -相等的是A .21a -B .221a a -+C .221a a --D .21a +5.有一个两位数,它的十位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个 D .无数个 6. 下列语句不正确...的是 A .能够完全重合的两个图形全等 B .两边和一角对应相等的两个三角形全等 C .三角形的外角等于不相邻两个内角的和 D .全等三角形对应边相等7. 下列事件属于不确定事件的是A .太阳从东方升起B .2010年世博会在上海举行C .在标准大气压下,温度低于0摄氏度时冰会融化D .某班级里有2人生日相同8.请仔细观察用直尺和圆规.....作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是A .SASB .ASAC .AASD .SSS 二、填空题(每小题3分,计24分)9.生物具有遗传多样性,遗传信息大多储存在DNA 分子上.一个DNA 分子的直径约为0.0000002cm .这个数量用科学记数法可表示为 cm . 10.将方程2x+y=25写成用含x 的代数式表示y 的形式,则y= .11.如图,AB∥CD ,∠1=110°,∠ECD=70°,∠E 的大小是 °.12.三角形的三个内角的比是1:2:3,则其中最大一个内角的度数是 °. 13.掷一枚硬币30次,有12次正面朝上,则正面朝上的频率为 .14.不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其它都相同,从中任意摸出一个球,则摸出 球的可能性最小. 15.下表是自18世纪以来一些统计学家进行抛硬币试验所得的数据:试验者 试验次数n 正面朝上的次数m正面朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正面朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某一个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出一个正确结果的序号: .三、解答题(计72分)17.(本题共8分)如图,方格纸中的△ABC 的三个顶点分别在小正方形的顶点(格点)上,称为格点三角形.请在方格纸上按下列要求画图. 在图①中画出与△ABC 全等且有一个公共顶点的格点△C B A '''; 在图②中画出与△ABC 全等且有一条公共边的格点△C B A ''''''.OA C P P′B (第16题图)(第16题图)18.计算或化简:(每小题4分,本题共8分)(1)(—3)0+(+0.2)2009×(+5)2010 (2)2(x+4) (x-4)19.分解因式:(每小题4分,本题共8分)(1)x x -3 (2)-2x+x 2+120.解方程组:(每小题5分,本题共10分)(1)⎩⎨⎧=+-=300342150y x y x (2)⎩⎨⎧⨯=+=+300%25%53%5300y x y x21.(本题共8分)已知关于x 、y 的方程组⎩⎨⎧=+=+73ay bx by ax 的解是⎩⎨⎧==12y x ,求a b+的值.22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)小王某月手机话费中的各项费用统计情况见下列图表,请你根据图表信息完成下列各题:项目月功能费基本话费长途话费短信费FECBA(第22题图)金额/元 5 50(1)请将表格补充完整; (2)请将条形统计图补充完整.(3)扇形统计图中,表示短信费的扇形的圆心角是多少度?24.(本题4+8=12分)上海世博会会期为2010年5月1日至2010年10月31日。
最新人教版七年级数学下册期末测试题及答案详解(共五套)
最新人教版七年级数学下册期末测试题及答案详解(共五套)人教版七年级数学下学期末模拟试题(一)一、选择题:(本大题共10个小题,每小题3分,共30分)1.若m>-1,则下列各式中错误的是()A。
6m>-6.B。
-5m<-5.C。
m+1>0.D。
1-m<22.下列各式中,正确的是()A。
16=±4.B。
±16=4.C。
3-27=-3.D。
(-4)²=163.已知a>b>0,那么下列不等式组中无解的是()A。
{x<a。
x>-a。
x>a。
x>-a}。
B。
{x>-b。
x<-b。
x <-b。
x<b}C。
{x<a。
x>-a。
x>a。
x<-a}。
D。
{x<-b。
x>-b。
x <-b。
x<b}4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为()A。
先右转50°,后右转40°。
B。
先右转50°,后左转40°C。
先右转50°,后左转130°。
D。
先右转50°,后左转50°5.解为{x=1.y=2}的方程组是()A。
{x-y=1.x-y=-1.x-y=3.3x+y=5}。
B。
{x-y=1.x-y=-1.x-y=3.3x+y=-5}C。
{x-y=1.x-y=-1.3x-y=5.3x+y=5}。
D。
{x-y=1.x-y=-1.3x-y=5.3x+y=-5}6.如图,在△ABC中,∠ABC=50°,∠ACB=80°,BP平分∠ABC,CP平分∠ACB,则∠BPC的大小是()A。
100°。
B。
110°。
C。
115°。
D。
120°7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是()A。
4.B。
3.C。
2.D。
18.在各个内角都相等的多边形中,一个外角等于一个内角的1/2,则这个多边形的边数是()A。
新人教版七年级数学下册期末考试及答案【完美版】
新人教版七年级数学下册期末考试及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c 2.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.如果23a b -=,那么代数式22()2a b a b a a b +-⋅-的值为( ) A .3 B .23 C .33 D .437.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .13208.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A.B. C. D.10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图,在△ABC中,BO、CO分别平分∠ABC、∠ACB.若∠BOC=110°,则∠A=________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是________(只填序号).三、解答题(本大题共6小题,共72分)1.解方程组:(1)32316x y x y -=⎧⎨+=⎩(2)25528x y x y -=⎧⎨+=⎩2.已知,x 无论取什么值,式子35ax bx ++必为同一定值,求a b b +的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE=______度.(2)设∠BAC=α,∠DCE=β.①如图2,当点D 在线段CB 上,∠BAC ≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D 在线段CB 的延长线上,∠BAC ≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.如图,已知AB∥CD,CN是∠BCE的平分线.(1)若CM平分∠BCD,求∠MCN的度数;(2)若CM在∠BCD的内部,且CM⊥CN于C,求证:CM平分∠BCD;(3)在(2)的条件下,连结BM,BN,且BM⊥BN,∠MBN绕着B点旋转,∠BMC+∠BNC是否发生变化?若不变,求其值;若变化,求其变化范围.5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、C5、D6、A7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a≥22、40°3、70.4、a≤2.5、40°6、②.三、解答题(本大题共6小题,共72分)1、(1)5{2xy==;(2)21xy=⎧⎨=-⎩.2、8 53、(1)90°;(2)①α+β=180°;②α=β.4、(1)90°;(2)略;(3)∠BMC+∠BNC=180°不变,理由略5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.。
人教版七年级数学下册期末测试题及答案(共五套)
七下期期末姓名: 学号 班级一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m>-1,则下列各式中错误的...是( ) A.6m>-6 B .-5m<-5 C.m+1>0 D .1-m<2 2.下列各式中,正确的是( )A .16=±4 B.±16=4 C.327-=-3 D .2(4)-=-4 3.已知a>b>0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B.⎩⎨⎧-<->b x a x C.⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D ) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△A BC 中,∠ABC =500,∠ACB =800,BP 平分∠ABC,CP 平分∠ACB,则∠B PC的大小是( )A.1000 B.1100 C.1150 D .1200PBA小刚小军小华(1) (2) (3)C 1A 1A BB 1CD7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A.4 B.3 C .2 D.1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A.5 B .6 C .7 D.89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△AB C的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2 B.12 c m 2 C .15 cm 2D.17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4) D .(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x +1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A沿北偏东60°的方向行驶到B,再从B沿南偏西20°的方向行驶到C,•则∠AB C=_______度.16.如图,AD ∥BC ,∠D=100°,C A平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.CBA D20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥B C , A D平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
人教版七年级数学下册期末考试测试卷(含答案)
人教版七年级数学下册期末考试测试卷(含答案)班级姓名成绩第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.36的平方根是()A.﹣6 B.36 C.±D.±62.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2 B.﹣2a<﹣2b C.2a<2b D.a+2<b+23.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3 B.1 C.﹣1 D.﹣34.如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°5.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况6.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5)D.(4,﹣5)7.方程4x+3y=16的所有非负整数解为()A.1个B.2个C.3个D.无数个8.已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.39.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2 B.3 C.4 D.510.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120 D.10x﹣5(20﹣x)<12011.若不等式组⎩⎨⎧-+-142322xxax>>,的解集为32<<x-,则a的取值范围是( )A.21=a B.2-=a C.2-≥a D.1-≤a12.若不等式组⎩⎨⎧<-<-mxxx632无解,则m的取值范围是()A.m>2 B.m<2 C.m≥2 D.m≤2第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.若点A(1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则B的坐标为.14.若a+1和-5是实数m的两个平方根,则a的值为.15.若0x2-x=++y,则=xy .16.如图,将一个宽度相等的纸条按如图所示沿AB所折叠,已知︒=∠601,则=∠2 .17.已知a是5的整数部分,b是5的小数部分,则a-b= .18.若不等式组⎩⎨⎧<->+1bx23a2x解集为1<x<2,则(a+2)(b-1)值为 .三、解答题(本大题共7小题,共46分.解答应写出文字说明、证明过程或演算步骤)19.计算(5分)2-1-8-02--91-322020+++)()(20.解方程组(5分)⎩⎨⎧=+=+②①1534255x 2y x y21.(6分)解下列不等式组,并把解集在数轴上表示出来。
人教版七年级数学下册期末试卷(共4套:含答案)
人教版七年级数学下册期末试卷(含答案)第Ⅰ套一、选择题1. 实数−2,0.3,17,√2,−π中,无理数的个数是( )A.2B.3C.4D.52. 如图,按各组角的位置判断错误的是( ) A.∠1与∠A 是同旁内角B.∠3与∠4是内错角C.∠5与∠6是同旁内角D.∠2与∠5是同位角3. 若a 2=9,√b 3=−2,则a +b =( ) A.−5 B.−11 C.−5或−11 D.±5或±114. 已知x 轴上的点P 到y 轴的距离为3,则点P 的坐标为( ) A.(3, 0)B.(0, 3)C.(0, 3)或(0, −3)D.(3, 0)或(−3, 0)5. 下列各式中,正确的个数是( )①±65是11125的平方根;①√93=3;①√179=±43;①√(−3)2的算术平方根是3;①√0.4=0.2.A.1个B.2个C.3个D.4个6. 今年我县有1200名考生参加中考,为了了解这些考生的数学成绩,从中抽取200名考生的数学成绩进行统计分析,在这个问题中,下列说法:①这1200名考生的数学中考成绩的全体是总体;①每个考生是个体;①200名考生是总体的一个样本;①样本的容量是200.其中说法正确的有( )A.1个B.2个C.3个D.4个7. 如图,把一块含有45∘角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20∘,那么∠2的度数是( )A.30∘B.25∘C.20∘D.15∘8. 已知{x =2y =1 是二元一次方程组{ax +by =7ax −by =1的解,则a −b 的值为( ) A.1B.−1C.2D.39. 导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cmB.23cmC.24cmD.25cm10. 如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1, 0),(2, 0),(2, 1),(3, 1),(3, 0),(3, −1)…根据这个规律探索可得,第100个点的坐标为()A.(14, 0)B.(14, −1)C.(14, 1)D.(14, 2)二、填空题11.如图,AB // CD,EF⊥AB于E,EF交CD于F,已知∠1=60∘,则∠2=________.12.把“对顶角相等”改写成“如果…那么…”的形式为________.13.若y=√x−2+√2−x−3,则x−y=________.14.A,B两点的坐标分别为(1, 0),(0, 2),若将线段AB平移至A1B1,点A1,B1的坐标分别为(2, a),(b, 3),则a+b=________.15.已知关于x的不等式组{x+2>m+nx−1<m−1,的解集为−1<x<2,则(m+n)2020的值是________.16.对于任意实数a,b,定义关于“⊕”的一种运算如下:a⊕b=2a+b.例如:3⊕4=2×3+4=10.若x⊕(−y)=2,且2y⊕x=−1,则x+y=________.三、解答题17.计算:√(−5)2−|2−√2|−√−273.18.(1)解方程组:{4x−3y=11 2x+y=13(2)解不等式组:{3x−5≤113−x3<4x,并把它的解集在数轴上表示出来.19.市消费者协会对销量较大的A,B,C三种奶粉进行了问卷调查,发放问卷540份(问卷由单选和多选题组成),对收回的476份问卷进行了整理,部分数据如下:最近一次购买各品牌奶粉用户的比例如图;用户对各品牌奶粉满意情况如下表:根据上述信息回答下列问题:(1)A品牌奶粉的主要竞争优势是什么?你是怎样看出来的?(2)广告对用户选择品牌有影响吗?请简要说明理由.20.如图,已知AB // CD,∠B=40∘,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.21.在平面直角坐标系中,已知点A(−4, 3)、B(−2, −3)(1)描出A、B两点的位置,并连结AB、AO、BO.(2)△AOB的面积是________.(3)把△AOB向右平移4个单位,再向上平移2个单位,画出平移后的△A′O′B′,并写出各点的坐标.22.如图,∠ADE=∠B,∠1=∠2,FG⊥AB,问:CD与AB垂直吗?试说明理由.23.某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)条件下,哪种方案获利最大?并求最大利润.24.如图1,在平面直角坐标系中,A(a, 0),C(b, 2)且满足(a+2)2+√b−2=0,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD // AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)若AC交y轴于Q,而Q的坐标为(0, 1),在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.参考答案:一、1-5 ACCDA 6-10 BBBDD二、11.30∘12.如果两个角是对顶角,那么这两个角相等13.514.215.116.13三、17.原式=5−2+√2+3=6+√2.18.{4x−3y=112x+y=13,①+①×3,得:10x=50,解得x=5,将x=5代入①,得:10+y=13,解得y=3,① 方程组的解为{x=5y=3;解不等式3x−5≤1,得:x≤2,解不等式13−x3<4x,得:x>1,则不等式组的解集为1<x≤2,将不等式的解集表示在数轴上如下:19.A品牌奶粉主要竞争优势是质量,可以从以下看出:①对A品牌的质量满意的用户最多;①对A品牌的广告、价格满意的用户不是最多.广告对用户选择品牌有影响,可以从以下看出:①对B、C品牌质量、价格满意的用户相差不大;①对B品牌的广告满意的用户多于C品牌,且相差较大;①购买B品牌的用户比例高于C品牌.20.解:① AB // CD,∠B=40∘,① ∠BCE=180∘−∠B=180∘−40∘=140∘,① CN是∠BCE的平分线,① ∠BCN=12∠BCE=12×140∘=70∘,① CM⊥CN,① ∠BCM=20∘.21.△AOB的面积=4×6−12×2×6−12×2×3−12×3×4=24−6−3−6=24−15=9;B′(2, −(1),O′(4,(2).22.CD与AB垂直,理由为:① ∠ADE=∠B,① DE // BC,① ∠1=∠BCD,① ∠1=∠2,① ∠2=∠BCD,① CD // FG,① ∠CDB=∠FGB=90∘,① CD⊥AB.23.解:(1)设A种产品x件,B种为(10−x)件,x+2(10−x)=14,解得x=6,答:A生产6件,B生产4件.(2)设A种产品x件,B种为(10−x)件,{3x+5(10−x)≤44,x+2(10−x)>14,解得3≤x<6.方案一:A生产3件,B生产7件;方案二:A生产4件,B生产6件;方案三:A生产5件,B生产5件.(3)当x=3时,利润为3×1+7×2=17;当x=4时,利润为4×1+6×2=16;当x=5时,利润为5×1+5×2=15.15<16<17,所以第一种方案获利最大,最大利润是17万元.24.略人教版七年级数学下册期末试卷(含答案)第Ⅱ套一、选择题1. 下列实数中,无理数是()A.0B.−1C.√3D.132. 如图,∠1与∠2的关系是()A.对顶角B.同位角C.内错角D.同旁内角3. 下列计算正确的是()A.√−4=−2B.√4=±2C.√(−4)2=4D.±√4=24. 下列各组数中,是方程3x−y=1的解的为()A.{x=0y=−1B.{x=1y=−2 C.{x=−1y=−2 D.{x=13y=15. 下列图形中,不能由“基本图案”(小四边形)经过平移得到的图形为()A. B. C. D.6. 若a>b,则下列不等式成立的是()A.a−2<b−2B.2−a>2−bC.12a>12b D.−2a>−2b7. 某校为了解疫情期间3000名学生网上学习的效果,随机抽取了300名学生网上学习效果的检测情况进行统计分析.其中样本容量为()A.3000名学生网上学习的效果B.3000C.抽取的300名学生网上学习的效果D.3008. 估计√10+1的值()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间9. 如图,有四个条件:①∠1=∠2;①∠1=∠3;①∠2=∠3;①∠2=∠4.其中能判定AB // CD 的条件有()A.1个B.2个C.3个D.4个10. 无论x取何值,点P(x+2, x−1)都不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11. 我国古代数学名著《九章算术》中记载有这样一道题:“今有二马、一牛价过一万,如半马之价;一马二牛价不满一万,如半牛之价.问牛、马价各几何?”其大意是:今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于12匹马的价格;1匹马、2头牛的总价不足10000钱,所差的钱数相当于12头牛的价格.问每头牛、每匹马的价格各是多少?若设每头牛的价格为x钱,每匹马的价格为y钱,则根据题意列方程组正确的为()A.{x+2y=10000−12x2x+y=10000+12yB.{x+2y=10000+12x2x+y=10000−12yC.{2x+y=10000−12xx+2y=10000+12yD.{2x+y=10000+12xx+2y=10000−12y12. 在平面直角坐标系中,对任意两点A(x1, y1)、B(x2, y2),规定运算如下:①A⊕B=(x1+x2, y1+y2);①A⊗B=x1x2+y1y2;①当x1=x2.且y1=y2时,称A=B.则下面命题是假命题的为()A.若A(−1, 2),B(2, 1),则A⊕B=(1, 3),A⊗B=0B.若三点A(x1, y1)、B(x2, y2)、C(x3, y3)满足A⊕B=B⊕C,则A=CC.若三点A(x1, y1)、B(x2, y2)、C(x3, y3)满足A⊗B=B⊗C,则A=CD.任意三点A(x1, y1)、B(x2, y2)、C(x3, y3),恒有(A⊕B)⊕C=A⊕(B⊕C)成立二、填空题13.−8的立方根是________.14.“a的一半与1的差不大于5”用不等式表示为________.15.如图,已知∠1+∠2=180∘,∠3=75∘,则∠4=________.16.在平面直角坐标系中,已知线段MN // x轴,且MN=3,若点M的坐标为(−2, 1),则点N的坐标为________.17.已知a−2b的平方根是±3,a+3b的立方根是−1,则a+b=________.18.在一个盒子中装有若干乒乓球,小明为了探究盒子中所装乒乓球的数量,他先从盒子中取出一些乒乓球,记录了所取乒乓球的数量为m个,并在这些乒乓球上做了记号“*”,然后将它们放回盒子中,充分摇匀;接下来,他又从这个盒子中再次取出一些乒乓球,记录了所取乒乓球的数量为n个,其中带有记号“*”的乒乓球有p个,小明根据实验所得的数据m、n、p,可估计出盒子中乒乓球的数量有________个.三、解答题19.计算:(1)3√5−(5√5−2√5);(2)√16+√−273−|1−√3|.20.解下列方程组:(1){x−2y=5,2x+y=−5,;(2){x2+y3=2,0.3x+0.5y=4.8,.21.园林部门为了对市内某旅游景区内的古树名木进行系统养护,建立了相关的地理信息系统,其中重要的一项工作就是要确定这些古树的位置.已知该旅游景区有树龄百年以上的古松树4棵(S1, S2, S3, S4),古槐树6棵(H1, H2, H3, H4, H5, H6).为了加强对这些古树的保护,园林部门根据该旅游景区地图,将4棵古松树的位置用坐标表示为S1(2, 8),S2(4, 9),S3(10, 5),S4(11, 10).(1)根据S1的坐标为(2, 8),请在图中画出平面直角坐标系;(2)在所建立的平面直角坐标系中,写出6棵古槐树的坐标;(3)已知H5在S1的南偏东41∘,且相距5.4米处,试用方位角和距离描述S1相对于H5的位置?22.如图,已知AB // CD,直线EF与AB、CD相交于H、F两点,FG平分∠EFD.(1)若∠AHE=112∘,求∠EFG和∠FGB的度数;(2)若∠AHE=n∘,请直接写出∠EFG和∠FGB的度数.23.在抗击新冠疫情期间,市教委组织开展了“停课不停学”的活动.为了解此项活动的开展情况,市教委督导部门准备采用以下调查方式中的一种进行调查:A.从某所普通中学校随机选取200名学生作为调查对象进行调查;B.从市内某区的不同学校中随机选取200名学生作为调查对象进行调查;C.从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查.(1)在上述调查方式中,你认为比较合理的一个是________(填番号).(2)如图,是按照一种比较合理的调查方式所得到的数据制成的频数分布直方图,在这个调查中,所抽取200名学生每天“停课不停学”的学习时间在1∼2小时之间的人数m=________.(3)已知全市共有100万学生,请你利用(2)问中的调查结果,估计全市每天“停课不停学”的学习时间在1∼2小时及以上的人数有多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.24.已知不等式组{x2+x+13>0x+5a+43>43(x+1)+a有且只有两个整数解,求实数a的取值范围,并用数轴把它表示出来.25.如图①,已知AB // CD,AC // EF.(1)若∠A=75∘,∠E=45∘,求∠C和∠CDE的度数;(2)探究:∠A、∠CDE与∠E之间有怎样的等量关系?并说明理由.(3)若将图①变为图①,题设的条件不变,此时∠A、∠CDE与∠E之间又有怎样的等量关系,请直接写出你探究的结论.26.武汉新冠肺炎疫情发生后,全国人民众志成诚抗疫救灾.某公司筹集了抗疫物资120吨打算运往武汉疫区,现有甲、乙、丙三种车型供运输选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)全部物资一次性运送可用甲型车8辆,乙型车5辆,丙型车________辆;(2)若全部物资仅用甲、乙两种车型一次性运完,需运费9600元,求甲、乙两种车型各需多少辆?(3)若该公司打算用甲、乙、丙三种车型同时参与运送,已知车辆总数为14辆,且一次性运完所有物资,你能分别求出三种车型的辆数吗?此时的总运费为多少元?参考答案:一、1-5 CBCAD 6-10 CDCAB 11-12 CC二、13.−214.12a−1≤515.105∘16.(1, 1)或(−5, 1)17.318.mnp三、19.原式=3√5−5√5+2√5=0;原式=4−3−(√3−1)=4−3−√3+1=2−√3.20.{x−2y=52x+y=−5,①×2+①得:5x=−5,解得:x=−1,把x=−1代入①得:−1−2y=5,解得:y=−3,所以方程组的解是:{x=−1y=−3;将原方程组化简得:{3x+2y=123x+5y=48,①-①得:3y=36,解得:y=12,把y=12代入①得:3x+24=12,解得:x=−4,所以方程组的解是:{x=−4y=12.22.略23.① ∠1+∠AHE=180∘,∠AHE=112∘,① ∠1=68∘,又① AB // CD,① ∠1=∠EFD,∠FGB+∠DFG=180∘① ∠EFD=68∘,又① FG平分∠EFD,① ∠EFG=∠DFG=12∠EFD=34∘,① ∠FGB=146∘;若∠AHE=n∘时,同理可得:∠EFG=90∘−12n;∠FGB=90∘+12n24.由题意可得,从市教育部门学生学籍档案中随机抽取200名学生作为调查对象进行调查比较合理,故选:C;m=200−92−36−18=54,故答案为:54;100×200−92200=54(万),答:全市每天“停课不停学”的学习时间在1∼2小时及以上的人数有54万人;这个调查设计有不合理的地方,如在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.25.解不等式x2+x+13>0得:x>−25,解不等式x+5a+43>43(x+1)+a得:x<2a,则不等式组的解集为:−25<x<2a,① 不等式组{x2+x+13>0x+5a+43>43(x+1)+a有且只有两个整数解,① 两个整数解为:0,1,① 1<2a≤2,<a≤1.解得:12用数轴表示如下:26.在图①中,① AB // CD① ∠A+∠C=180∘,① ∠A=75∘,① ∠C=180∘−∠A=180∘−75∘=105∘,过点D作DG // AC,① AC // EF,① DG // AC // EF,① ∠C+∠CDG=180∘,∠E=∠GDE,① ∠C=105∘,∠E=45∘,① ∠CDG=180∘−105∘=75∘,∠GDE=45∘,① ∠CDE=∠CDG+∠GDE,① ∠CDE=75∘+45∘=120∘;如图①,通过探究发现,∠CDE=∠A+∠E.理由如下:① AB // CD,① ∠A+∠C=180∘,过点D作DG // AC,① AC // EF,① DG // AC // EF,① ∠C+∠CDG=180∘,∠GDE=∠E,① ∠CDG=∠A,① ∠CDE=∠CDG+∠GDE,① ∠CDE=∠A+∠E;如图①,通过探究发现,∠CDE=∠A−∠E.① AB // CD,① ∠A +∠C =180∘, ① AC // EF , ① ∠E =∠CHD ,① ∠CHD +∠C +∠CDE =180∘, ① ∠E +∠C +∠CDE =180∘, ① ∠E +∠CDE =∠A , 即∠CDE =∠A −∠E .27.(1)4(2)设甲种车型需x 辆,乙种车型需y 辆,根据题意得:{5x +8y =120,450x +600y =9600,解得{x =8,y =10,答:甲种车型需8辆,乙种车型需10辆.(3)设甲车有a 辆,乙车有b 辆,则丙车有(14−a −b)辆,由题意得, 5a +8b +10(14−a −b)=120, 即a =4 − 25b ,① a 、b 、14−a −b 均为正整数, ① b 只能等于5, ① a =2, 14−a −b =7,① 甲车2辆,乙车5辆,丙车7辆,则需运费450×2+600×5+700×7=8800(元),答:甲车2辆,乙车5辆,丙车7辆,此时的总运费为8800元.人教版七年级数学下册期末试卷(含答案)第Ⅲ套一、选择题1. 在,,,,这五个数中,无理数的个数是()A.1B.2C.3D.42. 下列计算中正确的是()A. B. C. D.3. 如图,已知直线被直线c所截,,,则的度数为()A. B. C. D.4. 如图,如果,下面结论正确的是()A. B. C. D.5. 在平面直角坐标系中,在第一象限的点是()A. B. C. D.6. 在平面直角坐标系xoy中,若A点坐标为(−3, 3),B点坐标为(2, 0),则△ABO的面积为()A.15B.7.5C.6D.37. 以下调查中,适宜抽样调查的是()A.调查某班学生的身高B.某学校招聘教师,对应聘人员面试C.对乘坐某班客机的乘客进行安检D.调查某批次汽车的抗撞击能力8. 方程组的解是()A. B. C. D.9. 不等式组的解集是()A. B. C. D.10. 《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x人,物品价格为y钱,可列方程组为()A. B. C. D.二、填空题11.计算:=________.12.若点在轴上,则=________.13.有一些乒乓球,不知其数,先取12个做了标记,把它们放回袋中,混合均匀后又取了20个,发现含有2个做标记,可估计袋中乒乓球有________个.14.某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题,答对一题加10分,答错(或不答)一道题扣5分,如果小明参加本次竞赛得分要不低于140分,那么他至少答对________道题.15.《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马?根据题意,求得大马有________匹.16.下列命题:①相等的角是对顶角;①互补的角就是平角;①互补的两个角一定是一个锐角,另一个钝角;①在同一平面内,平行于同一条直线的两条直线平行;①邻补角的平分线互相垂直.其中真命题的序号是________.三、解答题17.计算:18.如图,平分,,,求的度数.19.解不等式组:20.解方程组21.为了解某品牌电动汽车的性能,对该批电动汽车进行了抽检,将一次充电后行驶的里程数分为,,,四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,并将抽查结果整理后,绘制成如下的两个不完整的统计图,根据所给信息解答以下问题:(1)补全条形统计图;(2)扇形统计图中等级对应的扇形的圆心角是多少度?(3)如果该厂每年生产5000辆该品牌电动汽车,估计能达到等级的有多少辆?22.如图,在平面直角坐标系中,的三个顶点的坐标分别是,,.将向上平移5个单位长度,再向右平移8个单位长度,得到.(1)在平面直角坐标系中画出;(2)直接写出点,,的坐标;(3)求的面积.23.某水果从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中大樱桃损耗了5%,小樱桃损耗了15%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为每千克多少元?(结果精确到0, 1)24.如图,以直角△AOC的直角顶点O为原点,以OC,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0, a),C(b, 0)满足.(1)点A的坐标为________;点C的坐标为________.(2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发沿x轴负方向以每秒2个单位长度的速度匀速移动,Q点从O点出发沿y轴正方向以每秒1个单位长度的速度匀速移动,点P到达O点整个运动随之结束.AC的中点D的坐标是(4, 3),设运动时间为t秒.问:是否存在这样的t,使得△ODP与△ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC=∠DCO,点G是第二象限中一点,并且y轴平分∠GOD.点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究∠GOA,∠OHC,∠ACE之间的数量关系,并证明你的结论(三角形的内角和为180∘可以直接使用).参考答案一、1-5 BCBCA 6-10 DDBAA二、11.112.313.12014.1615.2516.①①三、17.解:√(−2)2−4−√5(1−√5)+|2−√5=2−4−√5+5+√5−2 =118.解:AD平分∠CAB∠CAB=2∠1=60∘DE(AC2=2=CAB=60∘19.解:{2x+3≤x+5①5−6x−2≤3(2−x)①解不等式①得:x≤2解不等式①得:x>−1① 所以不等式组的解集是−1<x≤220.解:由①得x=3+y①把①代入①得33+y)−8y=1ℎy=−1把y=−1代人①得x=2|x=2…原方程组的解为了y=−121.(1)抽检的电动汽车的总数为30−30%=100(辆),A等级电动汽车的数量为100−30−40−20=10(辆),条形统计图为:(2)20+100×360∘=72∘答:扇形统计图中D等级对应的扇形的圆心角是:72(3)20+100×5000=1000答:估计能达到D等级的车辆有1000辆.22.(1)如图所示,ΔA1B1C1即为所求.(2)由图知,A1(5,5)B1(2,3)C1(6,0)(3)ΔA1B1C1的面积为4×5−12×2×3−12×1×5−12×3×4=17223.(1)设小樱桃的进价为每千克》元,大樱桃的进价为每千克)元,根据题意可得:{200x+200y=8000 y−x=20解得:{x=10 y=30…小樱桃的进价为每千克10元,大樱桃的进价为每千克30元;(2)200×[(40−30)+(16−10)]=3200(元),…第一次销售完后,该水果商共赚了320元;设第二次大樱桃的售价为①元/千克,(1−15%)×200×16+(1−5%)×2000a−800003200×90%解得:a≥83219=43.8答:大樱桃的售价最少应为43.8元/千克.24.(1)√a−b+2+|b−8|=0a−b+2=0 b−8=0a=6,b=8.A(0,6),C(8,0)故答案为:(0,6)(8,0)(2)由(1)知,A(0,6)C(8,0)..0A=6,OB=8由运动知,OQ=tPC=2tOP=8−2t:D(4,3)① S△OBQ=12OQ×|x|=12t×4=2tS△ODP=12OP×|y B|=12(8−2i)×3=12−3t20DP与ΔODQ的面积相等,.2t=12−3it=2.4…存在t=2.4时,使得ΔODP与ΔODQ的面积相等;(3)2△GOA+∠ACE=∠OHC,理由如下:x轴⊥y轴,△AOC=∠DOC+∠AOD=90∘.20AC+∠ACO=90∘又∠DOC=∠DCO① 20AC=∠AOD.x轴平分2GOD,① 2GOA=∠AOD.① 2GOA=∠OAC..OGIAC,如图,过点H作HFIIOG交x轴于F,.HFIIAC,…_FℎAC=2AC:OGlIFH,…:GOD=∠FHC).① △GOD+∠ACE=∠FHO+∠EHC即∠GOD+∠ACE=∠OHC,.24GOA+∠ACE=∠OH人教版七年级数学下册期末试卷(含答案)第Ⅳ套一、选择题1. 下列图形是中国一些航空公司的标志,其中是轴对称图形的是()A.B. C. D.2. 下列计算正确的是()A.a+3a=4a2B.(−3a2)3=−27a6C.a4⋅a3=a12D.(a+b)2=a2+b23. 下列事件中,是必然事件的是()A.同位角相等B.打开电视,正在播出系列专题片“中国战‘疫’”C.经过红绿灯路口,遇到绿灯D.对于任意有理数m,n,都有(m−n)2≥04. 清代•袁牧的一首诗《苔》中的诗句:“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为()A.8.4×10−5B.8.4×10−6C.84×10−7D.8.4×1065. 如图,将直角三角板与直尺贴在一起,使三角板的直角顶点在直尺的一边上,若∠1=35∘,则∠2的度数是()A.35∘B.45∘C.55∘D.65∘6. 如图,AB平分∠DAC,增加下列一个条件,不能判定△ABC≅△ABD的是()A.AC=ADB.BC=BDC.∠CBA=∠DBAD.∠C=∠D7. 如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A.a2−b2=(a+b)(a−b)B.a(a−b)=a2−abC.(a−b)2=a2−2ab+b2D.a(a+b)=a2+ab8. 成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,体息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系的示意图是()A. B. C. D.9. 已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PB=BC,则符合要求的作图痕迹是()A. B. C.D.10. 如图,在四边形ABCD中,连结AC,点E在BA的延长线上,有下列四个选项:①∠BAC =∠ACD;①∠EAC+∠ACD=180∘;①∠EAD=∠B;①∠EAD=∠ACD.现从中任选一个作为条件,能判定BE // CD的概率是()A.14B.12C.34D.1二、填空题11.已知a m=2,a n=5,则a m+n=________.12.若a=3−b,则代数式a2+2ab+b2的值为________.13.武侯祠博物馆享有“三国圣地”的美誉,它的大门的栏杆示意图如图所示,BA⊥AE于点A,CD // AE,若∠BCD=120∘,那么∠ABC=________度.14.如图,点D在△ABC的BC边上,且CD=2BD,点E是AC边的中点,连接AD,DE,假设可以随意在图中取点,那么这个点取在阴影部分的概率是________.15.如图1,在长方形ABCD中,动点P从点B出发,沿BC−CD−DA运动,至点A处停止.设点P运动的路程为x,△ABP的面积为y,y与x的关系如图2所示,则当y=2时,对应的x的值是________.三、解答題16.)−1−(2020−π)0+(0.25)4×44.(1)计算:(12(2)计算图中阴影部分的面积.17.(1)先化简,再求值:[(x−y)2−y(y+2x)]÷x,其中|x−3|+(y+1)2=0.(2)如图,在单位长度为1的正方形网格中,点A,B,C都在格点上.①填空:△ABC的面积为________;①画出△ABC关于直线l对称的△A′B′C′,其中点A,B,C的对应点分别为A′,B′,C′;①在直线l上画出一个点P,使PA+PC的值最小.18.已知:如图,AB // CD,AC与BD相交于点E,且EA=EC.(1)求证:EB=ED;(2)过点E作EF⊥BD,交DC的延长线于点F,连结FB,求证:S△BEF=S△AEB+S△CEF.19.在新冠疫情期间,成都市某医疗器械厂接到生产口罩的任务,要求在11天内生产2000万个口罩.该医疗器械厂安排甲、乙两车间共同完成本次生产任务.已知甲车间每天生产60万个口罩,乙车间每天生产90万个口罩.甲,乙两车间同时开工,甲车间生产a 天后停工1天改造工艺,然后按照新工艺继续生产,其每天生产口罩的数量变为m 万个.甲、乙两车间各自生产口罩的数量y (万个)与乙车间的生产时间x (天)之间的关系如图所示,请结合图象回答下列问题:(1)填空:a =________,m =________;(2)试问:当x 取何值时,甲、乙两车间生产口罩的数量相同;(3)甲、乙两车间能否在11天内完成本次生产任务?若能,求甲车间比乙车间多生产多少万个口罩?若不能,请说明理由.20.对于任意有理数a ,b ,c ,d ,我们规定|a b c d|=a 2+d 2−bc . (1)填空:对于有理数x ,y ,k ,若|2xkx −2yy|是一个完全平方式,则k =________; (2)对于有理数x ,y ,若2x +y =18,|3x +y2x 2+3y 23x −3y|=204. (i)求xy 的值;(ii)将长方形ABCD 和长方形CEFG 按照如图方式进行放置,其中点E 在边CD 上,连接BD ,BF .若a =2x ,b =y ,图中阴影部分的面积为174,求n 的值.21.如图,AC平分∠BAD,CB⊥AB于点B,CD⊥AD于点D.(1)如图1,求证:CB=CD;(2)如图2,点E,F分别是线段AD,AB上的动点,连结EF,交AC于点G,且满足DE+BF=EF.(①)试探究∠AFE与∠ACE之间满足的数量关系,并说明理由;(①)若DE=1,BF=n,且S△AEF=S△CED,请直接写出AG的值(用含n的代数式表示),不必GC写出求解过程.参考答案:一、1-5 DBDBC 6-10 BADCB二、11.1012.913.15014.1315.1或7三、16.原式=2−1+(0.25×4)4=2−1+14=2−1+1=2;阴影部分的面积为(3a+2b)(2a+b)−(a+2b)(a+b)=6a2+3ab+4ab+2b2−(a2+ab+2ab+2b2)=6a2+3ab+4ab+2b2−a2−ab−2ab−2b2=5a2+4ab.17.原式=(x2−2xy+y2−y2−2xy)÷x=(x2−4xy)÷x=x−4y,由|x−3|+(y+1)2=0,得到x−3=0,y+1=0,解得:x=3,y=−1,则原式=3+4=7;×2×2=2;①根据题意得:S△ABC=12故答案为:2;①如图所示,即为所求;①如图所示,即为所求.18.证明:① AB // CD,① ∠ABE=∠D,在△ABE和△CDE中{∠ABE=∠D,∠AEB=∠CEDEA=EC① △ABE≅△CDE(AAS),① EB=ED;证明:① △ABE≅△CDE,① S△AEB=S△DEC,① EB=ED,① S△BEF=S△DEF,① S△DEF=S△DEC+S△CEF,① S△BEF=S△AEB+S△CEF.19.2,120由题意90x=120+120(x−3),解得x=8,① 当x=8时,甲、乙两车间生产口罩的数量相同.乙11天完成11×90=990(万个),甲10天完成120+8×120=1080(万个),① 990+1080=2070>2000,1080−990=90(万个)① 在11天内能完成本次生产任务,甲车间比乙车间多生产90万个口罩.20.|2xkx−2yy|=(2x)2+y2−kx×(−2y)=4x2+y2+2kxy,① |2xkx−2yy|是一个完全平方式,① 2k=±2×√4×1=±4,解得k=±2;(i)方法1:(3x+y)2+(x−3y)2−3(2x2+3y)2=9x2+6xy+y2+x2−6xy+9y2−6x2−9y2=4x2+y2=204,4xy=(2x+y)2−(4x2+y2)=120,解得xy=30;方法2:依题意有{2x+y=18(3x+y)2+(x−3y)2−3(2x2+3y2)=204,解得{x1=9−√212y1=9+√21,{x2=9+√212y2=9−√21,则xy=30;(ii)na2+nb2−12na2−12b(a+nb)=174,na2+nb2−ab=348,4nx2+ny2−2xy=348,n(2x+y)2−4nxy−2xy=348,324n−120n−60=348,解得n=2.故n的值为2.故答案为:±2.21.证明:如图1,① AC平分∠BAD,CB⊥AB于点B,CD⊥AD于点D,① CD=CB;(i)如图2,∠AFE=2∠ACE,理由是:延长AB到H,使BH=ED,连接CH,设∠H=α,∠CFH=β,① CD=CB,∠D=∠CBH=90∘,① Rt△CDE≅Rt△CBH(SAS),① ∠DEC=∠H,CE=CH,① EF=DE+BF,DE=BH,① EF=BF+BH=FH,① CF=CF,① △CEF≅△CHF(SSS),① ∠CFE=∠CFH,∠H=∠CEF,① ∠AFE=180∘−2β,△AEF中,∠EAF=180∘−∠AEF−∠AFE=2α−(180∘−2β)=2α+2β−180∘,① AC平分∠DAB,∠DAB=α+β−90∘,① ∠DAC=12△AEC中,∠ACE=∠DEC−∠DAC=α−(α+β−90∘)=90∘−β,① ∠AFE=2∠ACE;(ii)如图3,延长AB到H,使BH=ED=1,连接CH,过A作AP⊥EF于P,过C作CM⊥EF于M,① FH=EF=n+1,由(i)知:∠EFC=∠HFC,① CM=CB=CD,① S△AEF=S△CED,① 12EF⋅AP=12DE⋅CD,即12(n+1)⋅AP=12CM,① APCM =1n+1,① S△AEGS△EGC =12EG⋅AP12EG⋅CM=12AG12CG,① AGCG =APCM=1n+1.。
新人教版七年级数学下册期末考试题及答案【完整版】
新人教版七年级数学下册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为()A.2a+2b-2c B.2a+2b C.2c D.02.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35° B.70° C.110° D.145°3.在平面直角坐标系中,点A(﹣3,2),B(3,5),C(x,y),若AC∥x 轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,5) B.10,(3,﹣5)C.1,(3,4) D.3,(3,2)4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.645.若关于x的不等式组()2213x x ax x<⎧-⎪⎨-≤⎪⎩恰有3个整数解,则a的取值范围是()A .102a ≤<B .01a ≤<C .102a -<≤D .10a -≤<6.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3B .23C .33D .43 7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a+1)2+|b+5|=b+5,且|2a-b-1|=1,则ab=___________.2.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__________°.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.若关于x、y的二元一次方程组34355x y mx y-=+⎧⎨+=⎩的解满足0x y+≤,则m的取值范围是________.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x yy x+=⎧⎨=-⎩(2)223346a ba b⎧+=-⎪⎨⎪-=⎩2.已知关于x的不等式21122m mxx->-.(1)当m=1时,求该不等式的非负整数解;(2)m取何值时,该不等式有解,并求出其解集.3.如图,已知点A(-2,3),B(4,3),C(-1,-3).(1)求点C到x轴的距离;(2)求三角形ABC的面积;(3)点P在y轴上,当三角形ABP的面积为6时,请直接写出点P的坐标.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、D5、A6、A7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、105°3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、2m≤-5、40°6、±3三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、(1)0,1;(2)当m≠-1时,不等式有解;当m> -1时,原不等式的解集为x<2;当m< -1时,原不等式的解集为x>2.3、(1)3;(2)18;(3)(0,5)或(0,1).4、60°5、(1)20%;(2)6006、(1) 5元(2) 0.5元/千克; y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.。
新人教版七年级数学下册期末测试卷及答案【各版本】
新人教版七年级数学下册期末测试卷及答案【各版本】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若()286m n a b a b =,那么22m n -的值是 ( ) A .10 B .52 C .20 D .322.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .803.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( )A .9B .8C .5D .44.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC =180°6.如图,要把河中的水引到水池A 中,应在河岸B 处(AB ⊥CD )开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是( )A .两点之间线段最短B .点到直线的距离C .两点确定一条直线D .垂线段最短7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=-B .851060860x x -=+C .851060860x x +=-D .85108x x +=+ 8.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D=________.3a 的平方根是3±,则a =_________。
人教版七年级数学下册期末考试测试卷(含答案)精选全文
精选全文完整版(可编辑修改)人教版七年级数学下册期末考试测试卷(含答案)班级: 姓名: 得分:时间:120分钟 满分:120分一、选择题(共10小题,每题3分,共30分)1.如果m 是任意实数,则点P (m ﹣4,m+3)一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.实数a 在数轴上的位置如图所示,则|a -2.5|=( )A .a -2.5B .2.5-aC .a +2.5D .-a -2.5 3.下列选项中的式表示正确的是( )A.255=±B. 255±=C. 255±=±D.2(5)-=-5 4.以下问题,不适合用全面调查的是( )A .旅客上飞机前的安检B .学校招聘教师,对应聘人员的面试C .了解全校学生的课外读书时间D .了解一批灯泡的使用寿命 5.如图,下列条件中:(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.能判定AB ∥CD 的条件个数有( ) A .1 B .2 C .3 D .46.如图,已知AC ∥BD ,∠CAE=35°,∠DBE=40°,则∠AEB 等于( )A .30°B .45°C .60°D .75°7.以方程组21y x y x =-+⎧⎨=-⎩的解为坐标的点(,)x y 在平面直角坐标系中的位置是 ( )A .第一象限B .第二象限C .第三象限D .第四象限8.小颖家离学校1 200米,其中一段为上坡路,另一段为下坡路,她去学校共用了16分钟,假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时,若设小颖上坡用了x 分钟,下坡用了y 分钟,可列方程组为 ( )A.35120016x y x y +=⎧⎨+=⎩B.35 1.2606016x y x y ⎧+=⎪⎨⎪+=⎩C.35 1.216x y x y +=⎧⎨+=⎩D.351200606016x y x y ⎧+=⎪⎨⎪+=⎩ 9.若点P(2k-1,1-k)在第四象限,则k的取值范围为( ) A 、k>1 B 、k<21 C 、k>21 D 、21<k<1 10.下列判断不正确的是( )A 、若a b >,则4a 4b -<-B 、若2a 3a >,则a 0<C 、若a b >,则22ac bc > D 、若22ac bc >,则a b > 二、填空题(共10小题,每题3分,共30分)11.如图是统计学生跳绳情况的频数分布直方图,如果跳 75次以上(含75次)为达标,则达标学生所占比例为 .12.81的算术平方根是 ,-8的立方根是 .13.当a=______时,P (3a+1,a+4)在x 轴上,到y 轴的距离是______ . 14.已知点A (2-a ,a +1)在第四象限,则a 的取值范围是15.如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到矩形OABC 的边时反弹,反弹时反射角等于入射角. 当小球第1次碰到矩形的边时的点为P 1,第2次碰到矩形的边时的点为P 2,……第n 次碰到矩形的边时的点为P n . 则点P 3的坐标是 ,点P 2015的坐标是 .16.如图,已知直线AD ,BE ,CF 相交于点O ,OG ⊥AD ,且∠BOC =35°,∠FOG =30°,则∠DOE =________.17.如图,直线l 1//l 2,AB ⊥CD ,∠1=34°,那么∠2的度数是 .18.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .19.关于x 、y 的方程组x m 6y 3m +=⎧⎨-=⎩中,x y += .20.我们定义a b c d=ad -bc ,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x +y 的值是________.三、解答题(共60分)21.(5分)计算:(-1)2438--3)2︱22.(10分)解下列二元一次方程组(1)⎩⎨⎧=-+=01032y x x y (2) ⎩⎨⎧-=-=+421y x y x23.(6分)解不等式组:()()⎪⎩⎪⎨⎧>+-+≤-213351623x x x x ,并把不等式组解集在数轴上表示出来.24.(6分)如图,蚂蚁位于图中点A (2,1)处,按下面的路线移动:(2,1)→(2,4)→(7,4)→(7,7)→(1,7)→(1,1)→(2,1).请你用线段依次把蚂蚁经过的路线描出来,看看它是什么图案,并括号内写出来.( )25.(6分)如图,直线AB ∥CD ,∠GEB 的平分线EF 交CD 与点F ,∠HGF=40°,求∠EFD 的度数.HEFGD CBA26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;321C P DAB321CP DAB 1l 2l 1l 2l 3l l 图①图②27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.答案.26.(9分)已知直线21//l l ,直线3l 与1l 、2l 分别交于C 、D 两点,点P 是直线3l 上的一动点如图,若动点P 在线段CD 之间运动(不与C 、D 两点重合),问在点P 的运动过程中是否始终具有213∠=∠+∠这一相等关系?试说明理由;如图,当动点P 在线段CD 之外且在的上方运动(不与C 、D 两点重合),则上述结论是否仍成立?若不成立,试写出新的结论,并说明理由;【答案】(1)∠3+∠1=∠2成立,理由见解析;(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.【解析】(2)∠3+∠1=∠2不成立,新的结论为∠3-∠1=∠2.理由如下:过点P 作PE ∥l 1,∴∠1=∠APE ;∵l 1∥l 2,∴PE ∥l 2,∴∠3=∠BPE ;又∵∠BPE-∠APE=∠2,∴∠3-∠1=321C P DAB321CP DAB 1l 2l 1l 2l 3l 3l 图①图②∠2.考点:平行线的性质.27.(9分)某学校准备购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个足球和3个篮球共需340元,购买5个足球和2个篮球共需410元.(1)购买一个足球、一个篮球各需多少元?(2)根据学校的实际情况,需购买足球和篮球共96个,并且总费用不超过5720元.问最多可以购买多少个篮球?【答案】(1)购买一个足球需要50元,购买一个篮球需要80元;(2)最多可以购买30个篮球.【解析】考点:1、二元一次方程组的应用;2、不等式的应用.28.(9分)第一中学组织七年级部分学生和老师到苏州乐园开展社会实践活动,租用的客车有50座和30座两种可供选择.学校根据参加活动的师生人数计算可知:若只租用30座客车x辆,还差5人才能坐满;(1)则该校参加此次活动的师生人数为(用含x的代数式表示);(2)若只租用50座客车,比只租用30座客车少用2辆,求参加此次活动的师生至少有多少人?(3)已知租用一辆30座客车往返费用为400元,租用一辆50座客车往返费用为600元,学校根据师生人数选择了费用最低的租车方案,总费用为2200元,试求参加此次活动的师生人数.【答案】(1)3x-5;(2)145;(3)175.【解析】试题分析:(1)直接含x的代数式表示该校七年级学生的总数即可;(2)根据题意列出不等式,即可求解.(3)分别设出客车的数量,列出方程,求解,分别进行讨论即可得出结论. 试题解析:(1)30x-5;(2)由题意知:50(x-2)≥30x-5,∴x≥194,∵当x越小时,参加的师生就越少,且x为整数.∴当x=5时,参加的师生最少,即30×5-5=145人.考点:1.一元一次不等式的应用;2.二元一次方程的应用.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
新人教版七年级数学下册期末测试卷【及答案】
新人教版七年级数学下册期末测试卷【及答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④ B.①②④ C.①③④D.①②③3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.5 4.已知a=b,下列变形正确的有()个.①a+c=b+c;②a﹣c=b﹣c;③3a=3b;④ac=bc;⑤a bc c =.A.5 B.4 C.3 D.25.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,58.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A.①②B.②③C.①③D.①②③10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣a|+|b﹣c|的结果是________.2.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.如图,五边形ABCDE 是正五边形,若12l l //,则12∠-∠=__________.4.如果关于x 的不等式组232x a x a >+⎧⎨<-⎩无解,则a 的取值范围是_________. 5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)326{2317x y x y -=+= (2)414{3314312x y x y +=---=2.已知:关于x 的方程2132x m x +--=m 的解为非正数,求m 的取值范围.3.如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4,求证:AD ∥BE.4.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)A型商品0.8 0.5B型商品 2 1(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、B5、B6、D7、C8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、203、724、a≤2.5、16、54°三、解答题(本大题共6小题,共72分)1、(1)43xy=⎧⎨=⎩;(2)3114xy=⎧⎪⎨=⎪⎩.2、34 m≥.3、略4、(1)略(2) ∠AEB=15°(3) 略5、(1)30;(2)①补图见解析;②120;③70人.6、(1)A种型号商品有5件,B种型号商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元。
人教版七年级数学下册期末考试测试卷(含答案)
人教版七年级数学下册期末考试测试卷(含答案)班级 姓名 成绩(考试时间:120分钟 )第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数3.14,),之间依次增加一个两个,,,,26...(262262226.4-0,57.1,9-722-π其中无理数的个数是( ) A .2B .3C .4D .52.9的平方根是( )A .3B .3±C .3D .3±3.为了了解全校七年级300名学生的视力情况,骆老师从中抽查了50名学生的视力情况、针对这个问题,下面说法正确的是( )A 、300名学生是总体B 、每名学生是个体C 、50名学生是所抽取的一个样本D 、这个样本容量是504.如图,把三角板的直角顶点放在直尺的一边上,若∠1=27°,则∠2的度数是( )A .53°B .63°C .73°D .27°5.若a <b ,则下列不等式中成立的是( )A .a +5>b +5B .﹣5a >﹣5bC .3a >3bD .6.若方程()133a 2=++-y xa 是关于x ,y 的二元一次方程,则a 的值为( )A.-3B.2±C.3±D.3 7.点P(-3,4)到x 轴的距离是( )A 、-3B 、3C 、4D 、5. 8.若点P (a,a -3)在第四象限,则a 的取值范围是( )A.0a 3<<-B.3a 0<<C.3a >D.0a <9.已知⎩⎨⎧=-=12y x 是方程52=+y kx 的一个解,则k 的值为( )23.-A 23.B 32.-C 32.D 10.某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打( )A.6折B.7折C.8折D.9折11.如图,a//b,M,N 分别在a,b 上,P 为两平行线间一点,那么=∠+∠+∠321( )︒180.A ︒270.B ︒360.C ︒540.D12.若不等式组⎩⎨⎧->-≥-2210x x x a 有解,则a 的取值范围是( )A.1a ->B.1a -≥C.1a ≤D.1a <第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分) 13.比较大小:13___________3 (填“>,=,<”) ;14. P(3, −4)到y 轴的距离是___________.15.已知二元一次方程2x -3y=6,用关于x 的代数式表示y ,则y=______.16.已知:如图,AB ∥CD ,EF ∥CD,且∠ABC =20°,∠CFE =30°,则∠BCF 的度数是___________.17.若y 同时满足y +1>0与y -2<0,则y 的取值范围是 .三、解答题(本大题共7小题,共49分.解答应写出文字说明、证明过程或演算步骤) 18.计算(5分)3336463-1125.041-0-27-++19.解方程组(5分)237342x y x y +=⎧⎨-=⎩20.(6分)解下列不等式组,并把解集在数轴上表示出来。
人教版(七年级)初一下册数学期末测试题及答案doc
人教版(七年级)初一下册数学期末测试题及答案doc一、选择题1.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( ) A .12a b =⎧⎨=⎩ B .21a b =⎧⎨=⎩ C .12a b =-⎧⎨=-⎩ D .21a b =⎧⎨=-⎩2.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE ;④∠A+∠ADC=180°.其中,能推出AB ∥DC 的条件为( )A .①④B .②③C .①③D .①③④ 3.等腰三角形的两边长分别为3和6,那么该三角形的周长为( )A .12B .15C .10D .12或15 4.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个 5.一个多边形的每个内角都等于140°,则这个多边形的边数是( ) A .7B .8C .9D .10 6.若25a=,23b =,则232a b -等于( ) A .2725 B .109 C .35 D .25277.△ABC 是直角三角形,则下列选项一定错误的是( )A .∠A -∠B=∠CB .∠A=60°,∠B=40°C .∠A+∠B=∠CD .∠A :∠B :∠C=1:1:2 8.下列运算正确的是( )A .236x x x ⋅=B .224(2)4x x -=-C .326()x x =D .55x x x ÷= 9.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠210.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题11.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m .12.一个五边形所有内角都相等,它的每一个内角等于_______.13.若分解因式221(3)()x mx x x n +-=++,则m =__________. 14.若多项式29x mx ++是一个完全平方式,则m =______.15.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 16.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.17.如图,根据长方形中的数据,计算阴影部分的面积为______ .18.水由氢原子和氧原子组成,其中氢原子的直径约为0.000 000 000 1 m,这个数据用科学记数法表示为____.19.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.20.小马在解关于x的一元一次方程3232a xx-=时,误将- 2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=_____.三、解答题21.已知关于x、y的方程组354526x yax by-=⎧⎨+=-⎩与2348x yax by+=-⎧⎨-=⎩有相同的解,求a、b的值.22.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。
新人教版七年级数学下册期末测试卷及答案【学生专用】
新人教版七年级数学下册期末测试卷及答案【学生专用】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-5的相反数是( )A .15-B .15C .5D .-52.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A.118°B.119°C.120°D.121°7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13208.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)的立方根是________.1.272.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.正五边形的内角和等于______度.4.已知直线AB∥x轴,点A的坐标为(1,2),并且线段AB=3,则点B的坐标为________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解下列方程(组):(1)321126x x-+-=(2)2.已知关于x的不等式xa<7的解也是不等式2752x a a->-1的解,求a的取值范围.3.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.4.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.小明用的练习本可以到甲、乙两家商店购买,已知两商店的标价都是每本2元,甲商店的优惠条件是购买10本以上,从第11本开始按标价的70%出售;乙商店的优惠条件是,从第一本起按标价的80%出售.(1)设小明要购买x(x>10)本练习本,则当小明到甲商店购买时,须付款元,当到乙商店购买时,须付款元;(2)买多少本练习本时,两家商店付款相同?(3)小明准备买50本练习本,为了节约开支,应怎样选择哪家更划算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、C5、B6、C7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、203、5404、(4,2)或(﹣2,2).5、±46、54°三、解答题(本大题共6小题,共72分)1、(1)x=16;(2)13383 xy⎧=⎪⎪⎨⎪=⎪⎩2、-109≤a<03、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤403;(3)两人相遇时间为第8分钟.4、(1)65°(2)证明略5、()117、20;()22次、2次;()372;()4120人.6、(1)10×2+(x-10)×2×0.7 ;2x×0.8(2)买30本时两家商店付款相同(3)甲商店更划算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.平面直角坐标中,点M(0,﹣3)在()A.第二象限B.第四象限C.x轴上D.y轴上2.下列计算错误的是()A.=3 B.=﹣4 C.=3 D.=﹣23.已知a、b,a>b,则下列结论不正确的是()A.a+3>b+3 B.a﹣3>b﹣3 C.3a>3b D.﹣3a>﹣3b4.下面说法正确的是()A.25的平方根是5 B.(﹣3)2的平方根是﹣3C.0.16的算术平方根是±0.4 D.的算术平方根是5.如图,下面说法错误的是()A.∠1与∠C是内错角 B.∠2与∠C是同位角C.∠1与∠3是对顶角 D.∠1与∠2是邻补角6.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况7.x是不大于5的正数,则下列表示正确的是()A.0<x<5 B.0<x≤5 C.0≤x≤5 D.x≤58.比较下列各组数的大小,正确的是()A.>5 B.<2 C.>﹣2 D.+1>9.下列命题中,真命题是()A.两个锐角之和为钝角B.相等的两个角是对顶角C.同位角相等 D.钝角大于它的补角10.如图,直线AB、CD相交于点O,OD平分∠BOF,OE⊥CD于O,若∠EOF=α,下列说法①∠AOC=α﹣90°;②∠EOB=180°﹣α;③∠AOF=360°﹣2α,其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(本大题共6小题.每小题3分.共18分)11.如图,直线AB、CD相交于点O,若∠1=150°,则∠2= °.12.不等式组的解集是.13.如图是某校初一学生到校方式的条形统计图,根据图形可知该校初一学生的总人数是人.14.某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1500人,则该校教师共有人.15.线段CD是由线段AB平移得到的,其中点A(﹣1,4)平移到点C(3,﹣2),点B(5,﹣8)平移到点D,则点D的坐标是.16.若m2=100,||=1,则m+= .三、解答题(本大题共62分)解答应写出文字说明、推理过程或演算步骤17.在如图所示的直角坐标系中描出下列各点:A(﹣2,0),B(2,5),C(﹣,﹣3)18.完成下面证明:如图,CB平分∠ACD,∠1=∠3.求证AB∥CD.证明:∵CB平分∠ACD∴∠1=∠2()∵∠1=∠3.∴∠2=∠.∴AB∥CD().19.解下列方程组:(1)(2).20.解不等式(组),并把它们的解集在数轴上表示出来:〔1)解不等式5(x+l)≤3x﹣1;〔2)解不等式组:.21.某路段某时段用雷达测速仪随机监测了200辆汽车的时速,得到如下频数分布表(不完整):注:30﹣40为时速大于或等于30千米而小于40千米,其它类同.数据段频数30~40103650~608060~7070~8020(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果此路段该时间段经过的车有1000辆.估计约有多少辆车的时速大于或等于60千米.22.如图,∠BAP+∠APD=180°,∠AOE=∠1,∠FOP=∠2.(1)若∠1=55°,求∠2的度数;(2)求证:AE∥FP.23.某少年宫管、弦乐队共46人.其中管乐队人数少于23人,弦乐队人数不足45人,现准备购买演出服装.下面是某服装厂给出的演出服装的价格购买服装的套数1套至23套24套至44套45套及以上每套服装的价格60元50元40元如果管乐队、弦乐队分别单独购买服装,一共需付2500元.(1)管乐队、弦乐队各多少人?(2)如果管乐队、弦乐队联合起来购买服装.那么比两队各自购买服装共可以节省多少钱?24.己知关于x,y的方程组(1)当2m ﹣6=0时,求这个方程组的解;(2)当这个方程组的解x、y满足,求m的取值范围:(3)在(2)的条件下,如果三角形ABO的顶点坐标分别分A(x,0),B(0,y),O(0,0),那么三角形AOB面积的最大值、最小值各是多少?参考答案与试题解析一、选择题(本大题共10小题,每小题2分,满分20分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.平面直角坐标中,点M(0,﹣3)在()A.第二象限B.第四象限C.x轴上D.y轴上【考点】D1:点的坐标.【分析】根据y轴上的点的横坐标为0解答即可.【解答】解:∵点M(0,﹣3)的横坐标为0,∴点M在y轴上.故选D.【点评】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.2.下列计算错误的是()A.=3 B.=﹣4 C.=3 D.=﹣2【考点】24:立方根;22:算术平方根.【专题】1 :常规题型.【分析】①若a≥0,则的意义是指求a的算术平方根,它的结果不能为负;②任何一个实数都可以开立方,而且结果的符号与被开方数的符号一致.【解答】解:因为:==3===4==3==﹣2所以,B选项错误故:选B【点评】B选项的错误是学生容易犯的,这是对算术平方根的理解不透彻,要记住一个非负数的算术平方根是一个非负数.3.已知a、b,a>b,则下列结论不正确的是()A.a+3>b+3 B.a﹣3>b﹣3 C.3a>3b D.﹣3a>﹣3b【考点】C2:不等式的性质.【分析】根据不等式的性质判断即可.【解答】解:A、∵a>b,∴a+3>b+3,正确,故本选项错误;B、∵a>b,∴a﹣3>b﹣3,正确,故本选项错误;C、∵a>b,∴3a>3b,正确,故本选项错误;D、∵a>b,∴﹣3a<﹣3b,错误,故本选项正确;故选D.【点评】本题考查了不等式性质的应用,注意:①不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.4.下面说法正确的是()A.25的平方根是5 B.(﹣3)2的平方根是﹣3C.0.16的算术平方根是±0.4 D.的算术平方根是【考点】22:算术平方根;21:平方根.【分析】依据平方根、算术平方根的定义和性质求解即可.【解答】解:A、25的平方根是±5,故A错误;B、(﹣3)2的平方根是±3,故B错误;C、0.16的算术平方根是+0.4,故C错误;D、的算术平方根是,故D正确.故选:D.【点评】本题主要考查的是算术平方根和平方根的定义和性质,熟练掌握相关知识是解题的关键.5.如图,下面说法错误的是()A.∠1与∠C是内错角 B.∠2与∠C是同位角C.∠1与∠3是对顶角 D.∠1与∠2是邻补角【考点】J6:同位角、内错角、同旁内角;J2:对顶角、邻补角.【分析】依据内错角、同位角、对顶角、邻补角的定义回答即可.【解答】解:A、∠1与∠C是内错角,故A正确,与要求不符;B、∠2与∠C是同旁内角,故B错误,与要求相符;C、∠1与∠3是对顶角,故C正确,与要求不符;D、∠1与∠2是邻补角,故D正确,与要求不符.故选:B.【点评】本题主要考查的是内错角、同位角、对顶角、邻补角的定义,掌握相关定义是解题的关键.6.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:了解某校七年级(1)班学生期中数学考试的成绩,适合用全面调查方式;了解一批签字笔的使用寿命适合用全抽样调查方式;了解市场上酸奶的质量情况适合用全抽样调查方式;了解某条河流的水质情况适合用全抽样调查方式;故选:A.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.x是不大于5的正数,则下列表示正确的是()A.0<x<5 B.0<x≤5 C.0≤x≤5 D.x≤5【考点】C1:不等式的定义.【分析】根据已知列出不等式即可.【解答】解:∵x是不大于5的正数,∴0<x≤5,故选B.【点评】本题考查了正数、不等式的应用,能理解正数、不大于的意义是解此题的关键.8.比较下列各组数的大小,正确的是()A.>5 B.<2 C.>﹣2 D.+1>【考点】2A:实数大小比较.【专题】17 :推理填空题.【分析】根据实数大小比较的方法,应用比较平方法、比较立方法、作差法,分别判断出每组数的大小即可.【解答】解:∵=24,52=25,24<25,∴<5,∴选项A不正确;∵=9,23=8,9>8,∴>2,∴选项B不正确;∵=﹣6,(﹣2)3=﹣8,﹣6>﹣8,∴>﹣2,∴选项C正确;∵﹣(+1)=﹣1>1﹣1=0∴﹣(+1)>0,∴+1<,∴选项D不正确.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,注意比较平方法、比较立方法、作差法的应用.9.下列命题中,真命题是()A.两个锐角之和为钝角B.相等的两个角是对顶角C.同位角相等 D.钝角大于它的补角【考点】O1:命题与定理.【分析】利用反例对A进行判断;根据对顶角的定义对B进行判断;根据平行线的性质对C进行判断;根据补角的定义对D进行判断.【解答】解:A、30°与40°为锐角,所以A选项为假命题;B、相等的两个角不一定是对顶角,所以B选项为假命题;C、两直线平行,同位角相等,所以C选项为假命题;D、钝角的补角为锐角,所以D选项为真命题.故选D.【点评】本题考查了命题与定理:要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.10.如图,直线AB、CD相交于点O,OD平分∠BOF,OE⊥CD于O,若∠EOF=α,下列说法①∠AOC=α﹣90°;②∠EOB=180°﹣α;③∠AOF=360°﹣2α,其中正确的是()A.①②B.①③C.②③D.①②③【考点】J3:垂线;IJ:角平分线的定义;J2:对顶角、邻补角.【分析】根据垂线、角之间的和与差,即可解答.【解答】解:∵OE⊥CD于O,∠EOF=α,∴∠DOF=α﹣90°,∵OD平分∠BOF,∴∠BOD=∠FOD,∵∠AOC=∠BOD,∴∠AOC=∠FOD,∴∠AOC=α﹣90°,①正确;∴∠BOE=180°﹣∠COE﹣∠AOC=180°﹣90°﹣(α﹣90°)=180°﹣α,②正确;∴∠AOF=180°﹣∠AOC﹣∠DOF=180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α,③正确;故选:D.【点评】本题考查了垂线,解决本题的关键是利用角之间的关系解答.二、填空题(本大题共6小题.每小题3分.共18分)11.如图,直线AB、CD相交于点O,若∠1=150°,则∠2= 30 °.【考点】J2:对顶角、邻补角.【分析】根据邻补角的定义列式计算即可得解.【解答】解:∵直线AB、CD相交于点O,∠1=150°,∴∠2=180°﹣∠1=180°﹣150°=30°.故答案为:30.【点评】本题考查了对顶角、邻补角,是基础题,熟记邻补角的定义是解题的关键.12.不等式组的解集是x>﹣2 .【考点】C3:不等式的解集.【分析】在数轴上表示出各不等式的解集,再取其公共部分即可.【解答】解:如图所示,,故不等式组的解集为:x>﹣2.故答案为:x>﹣2.【点评】本题考查的是不等式的解集,熟知求不等式解集的方法是解答此题的关键.13.如图是某校初一学生到校方式的条形统计图,根据图形可知该校初一学生的总人数是300 人.【考点】VC:条形统计图.【分析】求出条形统计图每部分的人数的和即可.【解答】解:该校除以学生是总数是60+90+150=300.故答案是:300.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.14.某初中学校的男生、女生以及教师人数的扇形统计图如图所示,若该校男生、女生以及教师的总人数为1500人,则该校教师共有135 人.【考点】VB:扇形统计图.【分析】首先求得教师所占百分比,乘以总人数即可求解.【解答】解:教师所占的百分比是:1﹣46%﹣45%=9%,则教师的人数是:1500×9%=135.故答案为:135.【点评】本题主要考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小.15.线段CD是由线段AB平移得到的,其中点A(﹣1,4)平移到点C(3,﹣2),点B(5,﹣8)平移到点D,则点D的坐标是(9,﹣14).【考点】Q3:坐标与图形变化﹣平移.【专题】31 :数形结合.【分析】利用点A(﹣1,4)平移到点C(3,﹣2)得到线段AB的平移规律,然后规律此平移规律写出点B平移后的对应点的坐标即可得到D点坐标.【解答】解:点D的坐标为(9,﹣14).故答案为(9,﹣14).【点评】本题考查了坐标与图形变化﹣平移:在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.16.若m2=100,||=1,则m+= 13或﹣7 .【考点】7A:二次根式的化简求值.【分析】根据m2=100,||=1,可以求得m、n的值,从而可以求得m+的值.【解答】解:∵m2=100,||=1,∴m=±10,n=±3,∴n2=9,∴m+=±10+3,即m+=13或m+=﹣7,故答案为:13或﹣7.【点评】本题考查二次根式的化简求值,解题的关键是明确二次根式化简的方法.三、解答题(本大题共62分)解答应写出文字说明、推理过程或演算步骤17.在如图所示的直角坐标系中描出下列各点:A(﹣2,0),B(2,5),C(﹣,﹣3)【考点】D1:点的坐标.【分析】根据平面直角坐标系中点的表示方法找出各点的位置即可.【解答】解:如图所示.【点评】本题考查了点坐标,熟练掌握平面直角坐标系中的点的表示方法是解题的关键.18.完成下面证明:如图,CB平分∠ACD,∠1=∠3.求证AB∥CD.证明:∵CB平分∠ACD∴∠1=∠2(角平分线的定义)∵∠1=∠3.∴∠2=∠ 3 .∴AB∥CD(内错角相等两直线平行).【考点】J9:平行线的判定.【分析】根据角平分线的性质得到∠1=∠2,而∠1=∠3,则得到∠2=∠3,根据“内错角相等两直线平行”即可得到结论.【解答】证明:∵CB平分∠ACD∴∠1=∠2(角平分线的定义)∵∠1=∠3.∴∠2=∠3.∴AB∥CD(内错角相等两直线平行).故答案为:角平分线的定义,3,内错角相等两直线平行.【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.19.解下列方程组:(1)(2).【考点】98:解二元一次方程组.【专题】11 :计算题;521:一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),由①得,y=3x﹣3③,把③代入②得,4x+3(3x﹣3)=17,解得:x=2,把x=2代入③,得y=3,则方程组的解为;(2),②﹣①得,7y=﹣14,解得:y=﹣2,把y=﹣2代入①得,3x﹣2(﹣2)=19,解得:x=5,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.解不等式(组),并把它们的解集在数轴上表示出来:〔1)解不等式5(x+l)≤3x﹣1;〔2)解不等式组:.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】(1)先去括号,再移项,合并同类项,把x的系数化为1,再在数轴上表示出来即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:(1)去括号,得5x+5≤3x﹣1,移项,得5x﹣3x≤﹣1﹣5,合并同类项,得2x≤﹣6,系数化为1,得x≤﹣3.在数轴上表示为:;(2)解①,得x≤3,解②,得x≥﹣,故不等式组的解集为:﹣≤x≤3.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.某路段某时段用雷达测速仪随机监测了200辆汽车的时速,得到如下频数分布表(不完整):注:30﹣40为时速大于或等于30千米而小于40千米,其它类同.数据段频数30~401040~50 3650~608060~705470~8020(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果此路段该时间段经过的车有1000辆.估计约有多少辆车的时速大于或等于60千米.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据频数之和等于总数可得60~70的频数,各组组距为10,补全表格即可;(2)根据(1)中频数分布表补全直方图即可;(3)求出样本中时速大于或等于60千米的百分比,再乘以总数1000即可得.【解答】解:(1)60~70的频数为200﹣(10+36+80+20)=54,补全表格如下:数据段频数30~401040~503650~608060~705470~8020(2)如图所示:(3)∵200辆车中时速大于或等于60千米的有74辆,占,∴,答:估计约有370辆车的时速大于或等于60千米.【点评】本题主要考查频数分布表和频数分布直方图及样本估计总体,熟练掌握频数之和等于总数及直方图的高的实际意义是解题的关键.22.如图,∠BAP+∠APD=180°,∠AOE=∠1,∠FOP=∠2.(1)若∠1=55°,求∠2的度数;(2)求证:AE∥FP.【考点】J9:平行线的判定.【分析】(1)根据对顶角相等和角的等量关系可求∠2的度数;(2)首先根据∠BAP+∠APD=180°可判断出AB∥CD,根据平行线的性质可得∠BAP=∠APC,再有∠1=∠2可得∠FPA=∠EAP,然后根据内错角相等,两直线平行可判定出AE∥PF.【解答】(1)解:∵∠AOE=∠1,∠FOP=∠2又∵∠AOE=∠FOP(对顶角相等),∴∠1=∠2∵∠1=55°,∴∠2=55°;(2)证明:∵∠BAP+∠APD=180°,∴AB∥CD(同旁内角互补,两直线平行),∴∠BAP=∠APC(两直线平行,内错角相等),∵∠1=∠2,∴∠EAO=∠FPO,∴AE∥PF.【点评】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理与性质定理.23.某少年宫管、弦乐队共46人.其中管乐队人数少于23人,弦乐队人数不足45人,现准备购买演出服装.下面是某服装厂给出的演出服装的价格购买服装的套数1套至23套24套至44套45套及以上每套服装的价格60元50元40元如果管乐队、弦乐队分别单独购买服装,一共需付2500元.(1)管乐队、弦乐队各多少人?(2)如果管乐队、弦乐队联合起来购买服装.那么比两队各自购买服装共可以节省多少钱?【考点】9A:二元一次方程组的应用.【分析】(1)设管乐队x人,弦乐队y人,等量关系:管、弦乐队共46人;管乐队、弦乐队分别单独购买服装,一共需付2500元.(2)根据45套及以上的价格为40元,求得管乐队、弦乐队联合起来购买服装所用的钱,与2500元比较即可求得.【解答】(1)设管乐队x人,弦乐队y人.依题意,列方程组解得答:设管乐队管乐队20人,弦乐队26人.(2)2500﹣46×40=660答:如果管乐队、弦乐队联合起来购买服装,那么比两队各自购买服装共可以节省660元.【点评】本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.24.己知关于x,y的方程组(1)当2m﹣6=0时,求这个方程组的解;(2)当这个方程组的解x、y满足,求m的取值范围:(3)在(2)的条件下,如果三角形ABO的顶点坐标分别分A(x,0),B(0,y),O(0,0),那么三角形AOB面积的最大值、最小值各是多少?【考点】KY:三角形综合题.【分析】先用m把x,y表示出来,(1)当2m﹣6=0时,求出m代入中,求出x,y即可;(2)把代入,求出m的范围;(3)由﹣4≤m≤﹣1求出x,y的范围,即可确定出三角形面积的最大值和最小值.【解答】解:由方程组,得,(1)∵2m﹣6=0,∴m=3,∴,(2)∵方程组的解满足,∴,∴,∴﹣4≤m≤﹣1,(3)∵﹣4≤m≤﹣1,∴1≤m+5≤4,﹣6≤﹣m﹣7≤﹣3,∵,即1≤x≤4,﹣6≤y≤﹣3,∴1≤|x|≤4,3≤|y|≤6三角形AOB面积的最小值=三角形AOB面积的最大值=.【点评】此题是三角形综合题,主要考查了方程组的解法,方程的解法,不等式组的解法,三角形面积的确定,解本题的关键是用m表示出x,y.1、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seenthe Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn'thave known my way about.The weather was splendid on that day, which I thought was rare. I still remember some peopletold me that in Britain there was weather and no climate. During the same day, it might snow in the morning, rainat noon, shine in the afternoon and be windy before the night falls. So I think I was lucky。